Ampower Releases Paper Discussing Sinter-Based 3D Printing Technologies

Ampower is an aptly named company, as its goal is to empower companies to benefit from additive manufacturing. The German company offers its expertise on all things 3D printing-related in order to help clients make the most out of the technology, and its advice often comes in the form of in-depth studies on additive manufacturing. Its most recent study, “Metal Additive Manufacturing with sinter-based technologies,” can be downloaded for free from the company’s website. The study offers a close look at sinter-based additive manufacturing technologies and compares them with laser beam powder bed fusion (LB-PBF) and metal injection molding (MIM).

The paper offers an overview of metal additive manufacturing technologies, comparing sinter-based technologies to LB-PBF. Test specimens from nine different suppliers were obtained and examined, including density cubes and tensile bars as well as a full automotive component.

The paper goes on to closely look at the full process of sinter-based technologies, including the necessary debindering step. These include several options, including thermal debindering, thermal catalytic debindering, and solvent debindering. The authors compare the costs of theses different debindering options, as well as the costs of metal FDM vs. binder jetting and LP-PBF.

“Compared to traditional high-volume manufacturing technologies, LB-PBF is generally associated with high machine and material cost at low production speed,” the authors state. “Thus, not every part that is technologically feasible is reasonable from a business perspective. Sinter-based metal AM technologies promise to change this and lower the cost for metal parts for higher production volumes.”

The authors then examine the materials that are available for the various production technologies, noting that LB-PPF currently has a wider range of metal materials available.

“For this study stainless steel alloys 316L and 17-4PH were examined to determine the material characteristics,” they continue. These alloys are commonly available for the processes LB-PBF, MIM, metal FDM and BJT and therefore enable the best comparability. The obtained results are based on over 50 specimens from nine different system suppliers.”

The testing included porosity analysis, in which cross sections of the pieces produced by each technology were analyzed by light microscopy. For the sinter-based technologies, the debindering and not the 3D printing itself was responsible for more of the porosity in the final parts. Higher pore distribution and larger defects were found in the parts produced by binder jetting and metal FDM than those produced by LB-PBF. Material properties were also tested.

Design potentials and limitations for each of the technologies are also discussed, and design guidelines are given. The authors point out that manufacturers currently have more of a variety of technologies to choose from than ever before, but that variety also requires that they become knowledgeable about more technologies than ever.

“Due to the debindering and sintering process challenges of large parts, binder jetting technology and metal FDM will most likely be used to manufacture small to medium-small components,” the authors conclude. “Metal FDM will cover low production volumes due to its flexibility. Binder jetting technology, on the other hand, will close the gap to very high-volume production technologies such as MIM and will become a cost efficient alternative.”

The full paper is definitely worth a read if you’re interested in the intricacies and varieties of the different methods of metal additive manufacturing, particularly sinter-based technologies. You can download the paper here. You can also visit Ampower at formnext at Booth E30 for a free hard copy.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Image: Ampower]

 

 

 

134 Replies to “Ampower Releases Paper Discussing Sinter-Based 3D Printing Technologies”

  1. Pingback: cialis 20 mg price
  2. Pingback: cialis from canada
  3. Pingback: viagra generic
  4. Pingback: rx pharmacy
  5. Pingback: Real cialis online
  6. Pingback: vardenafil generic
  7. Pingback: payday loans
  8. Pingback: cash payday
  9. Pingback: cash payday
  10. Pingback: generic cialis
  11. Pingback: Planet7
  12. Pingback: cialis 5 mg
  13. Pingback: dave
  14. Pingback: new cialis
  15. Pingback: cialis generic
  16. Pingback: DNS Tools
  17. Pingback: casino
  18. Pingback: online slots
  19. Pingback: real casino online
  20. Pingback: slot machines
  21. Pingback: viagra viagra
  22. Pingback: order viagra
  23. Pingback: Scannable fake Id
  24. Pingback: satta king
  25. Pingback: online casinos
  26. Pingback: Cialis 80mg uk
  27. Pingback: Cialis 20mg nz
  28. Pingback: arimidex 1mg nz
  29. Pingback: online casinos
  30. Pingback: cialis online
  31. Pingback: cialis 20mg pills
  32. Pingback: cialis 20mg pills
  33. Pingback: cialis online
  34. Pingback: buy levitra 10 mg
  35. Pingback: cialis ordering
  36. Pingback: Buy pfizer viagra
  37. Pingback: Generic viagra us
  38. Pingback: viagra for sale
  39. Pingback: cialis for sale
  40. Pingback: zyprexa 15 mg nz
  41. Pingback: zyvox pills
  42. Pingback: aripiprazole usa
  43. Pingback: loratadine usa
  44. Pingback: fwdcmesy
  45. Pingback: what is in cialis
  46. Pingback: gemfibrozil usa
  47. Pingback: cheap clotrimazole
  48. Pingback: thesis for dummies
  49. Pingback: metformin drug
  50. Pingback: buy propecia
  51. Pingback: soft tablet
  52. Pingback: buy cialis rush
  53. Pingback: valtrex 1500 mg

Comments are closed.