3D Printing Webinar and Virtual Event Roundup, July 13, 2020

We’ve got six webinars and virtual events to tell you about in this week’s roundup, including two about ceramics 3D printing, one focused on patents and another on pharmaceuticals, a live tour, and a live look at 3DEXPERIENCE. A few of these are taking place today…read on to learn the details!

Patents in Additive Manufacturing

The European Patent Office (EPO), one of the largest public service institutions in Europe, is launching a new study on Monday, July 13th, titled “Patents and additive manufacturing – Trends in 3D printing technologies,” to offer evidence that Europe is a global 3D printing innovation hub. Ahead of the launch, there will be a panel discussion between EPO president António Campinos and Christian Archambeau, Executive Director of the European Union Intellectual Property Office (EUIPO), and then the EPO’s Chief Economist, Yann Ménière, will present the study.

The study is part of a four-day digital conference, from July 13-16, regarding the impact of 3D printing intellectual property, organized by the EPO and the EUIPO and including speakers like Isinnova founder and CEO Cristian Fracassi and stereolithography inventor Chuck Hull. You can register for the entire conference here.

3D Printing in Pharmaceuticals and Dietary Supplements

From 9 am to noon each day July 13-16, the US Pharmacopeia (USP) and International Association for Pharmaceutical Technology (APV) will be co-hosting a virtual workshop series, “The Promise of 3D Printing in Pharmaceuticals and Dietary Supplements: Quality and Standards Considerations,” that will look at how pharmaceutical and supplement 3D printing is progressing near and at point-of-care (POC), standards and guidance, and potential applications. Several key objectives of the series including discussing quality management needs in areas like testing, design optimization, and terminology, understanding best practices, engaging stakeholders to look at 3D printing progress in health and wellness, and determining what quality needs can be fulfilled with better guidance and standards.

These webinars are suggested for POC healthcare practitioners, 3D printing enthusiasts and industry professionals, pharmaceutical industry stakeholders, and business and science leaders from academic institutions, companies, and advocacy/professional organizations related to personalized health. You can register for the webinar series here. You can select which days you want to join, though USP and APV encourage total workshop attendance.

Exploring 3DEXPERIENCE WORKS Live

Also on July 13th, 3DEXPERIENCE experts John Martorano III and Gian Calise will begin hosting a live webinar series focused on exploring 3DEXPERIENCE WORKS. In this series of webinars, which will take place every other Monday, Calise and Martorano will answer all your questions about the platform in a fun, yet informative way. Each session will feature a different 3D design workflow, along with best practices and tips, and guest appearance from other SOLIDWORKS experts.

At the end of every webinar session, attendees can also take a poll to suggest future topics. Register for the webinar series here.

Lithoz on 3D Printing Ceramics

The first ceramics webinar this coming week will be held by Lithoz on Wednesday, July 15th, at 10 am EST, and titled “Ceramic 3D printing: advancing new applications in AM.” For the first 30 minutes, webinar moderator Davide Sher, the co-founder and CEO of 3dpbm, and Lithoz co-founder and CEO Johannes Homa will discuss the unique properties of the material, talk about how ceramics can benefit AM applications in a variety of applications, and provide some insight into LCM technology. The final 15 minutes will be reserved for Q&A.

“The impact of 3D printing is today being felt far beyond the metal and the plastic industry. This is particularly true in the world of ceramics, where processes such as Lithoz’ ceramic 3D printing technology are unlocking new applications which were previously impossible.”

Register for the free webinar here. If you miss this one, Lithoz will be holding another webinar about ceramics in August.

Live Tour of Ricoh 3D

Also on July 15th, Ricoh 3D will be offering a live tour of its Additive Manufacturing Centre, since COVID-19 is keeping it from offering an in-person look at its AM, metrology, and process control capabilities. During the tour, you’ll get a chance to see the company’s in-house 3D printing technology, in addition to learning from its material and design experts how AM can benefit your business in a low-risk way, meaning without any “capital expenditure commitments.”

The tour will take place at 10 am EST, and will also discuss more advanced 3D equipment, services, and technologies. Register for the live tour here.

Ceramics Expo 2020 Webinar

This week’s second webinar on ceramics will be held at noon EST on Thursday, July 16th, by Ceramics Expo, the largest annual trade show in the US for the technical ceramic and glass industry. The webinar, “Accelerating the Commercialization Process of Ceramic Materials to Stimulate Growth in the Wake of Covid-19,” will discuss how to speed up commercialization to stimulate growth for the glass and ceramics supply chain, how regulation helps or hurts this process and if the pandemic has changed it, and how glass and ceramics manufacturers can “work with their clients to ensure continued investment in new product development.”

“By making more efficient the processes of material characterization, prototype production and material optimization, the reduction in cost and resources will help give ceramic materials an edge over those which may have a shorter and less expensive process. This session is designed to help bridge the gap between research and engineering in order to accelerate the process of scaling up new products.”

Register for this ceramics expo here, and the Ceramics Expo Connect virtual event in September here.

Do you have news to share about future webinars and virtual events? Let us know!

The post 3D Printing Webinar and Virtual Event Roundup, July 13, 2020 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Interview With Michael Steinbach on 3D Printing Technical Ceramics

Of all the materials that are currently underused but have high potential none are more exciting to me than ceramics. Ceramics itself as an age old material can give us access to many quotidian product categories through a noble material. Technical ceramics have incredibly high performance in wear, chemical resistance, temperature resistance while being incredibly dimensionally stable. These high-performance materials are relative unknowns but are used in the most demanding of industrial, medical and tooling applications. Companies such as Lithoz and ECM have been innovating extensively in 3D printing ceramics but very little is known about the potential of these materials in 3D printing. We decided to interview Michael Steinbach of Steinbach AG, a German specialized technical ceramics and high-performance materials firm. Having been active extensively in technical ceramics the company responded to clients desires for more design freedom in ceramic parts by acquiring Lithoz machines including a new Cerafab 8500 to begin making series parts in ceramics for several industries.

What kind of company is Steinbach & why should I work with you?

Steinbach AG is a joint-stock company and a mid-sized partner of industry operating in global markets. In Germany, we are one of only a few suppliers of technical ceramics. We provide our customers with up-to-date technology and apart from an extensive technical consultation and individual development we offer a quick and extremely precise production from lot size 1 onward.

A 3D printed technical ceramic part made by Steinbach for a fluid reactor.

Why did you start 3D printing ceramics?

Steinbach AG with its division „Technical Ceramics“ has specialized in additive manufacturing of technical high-performance ceramics for industrial and medical applications.

In the past, we increasingly received requests for individually manufactured complex geometries. That’s why we acquired our first 3D printer in 2016.

Do the 3D printed parts perform better or worse than conventional ones?

Based on the generative manufacturing method LCM, for the first time prototypes of 3D-ceramics can be manufactured in highest series quality. In contrast to the conventional Rapid-Prototyping-Methods where the components just transmit the spatial impression and the shape in general, the prototypes manufactured by LCM can be charged. Due to the LCM method, ceramic 3D-prototypes dispose of a quality of 0.4 Ra without any postprocessing and reach a theoretical density of more than 99 %. The tolerances are +/- 0.1 mm. Withal the components dispose of an extremely smooth surface even without subsequent finishing.

In conventional manufacturing, the designer has to take the producibility of the products into account. That leads to limitations in geometry and design so that compromises must be made. In the LCM-method, however, free design is possible determined by the application and not dependent on the manufacturing process. So for the first time even difficult structures and complex geometries such as cavities, fine channels and undercuts can be implemented. The characteristics of the ceramic components are significantly influencable even during the manufacturing process. The material qualities do not change while doing so.

What kind of customers 3D print ceramics? What are the parts used for?

Areas of application for different industries:

•High-temperature applications

•Chemistry and laboratories

•Medical technology

•Automobile industry

•Analysis and measurement equipment

•Microreactors / Microfluidic applications

•Micro-electronics

•Plasmatechnology

•Aerospace sector

For example in the field of high-temperature technology materials have to withstand high temperatures up to far more than 1000 °C without any distortion or fatigue. For most materials that is not sustainable in the long term. The technical 3D-printing ceramics can withstand operation temperatures of 1600 °C and more. Moreover, even at highest application temperatures in the ultra-high vacuum they keep stable without softening or flowing. Broad application areas for components from 3D-printing ceramics have been opened up in the industrial furnace construction, in the glass and steel industry, in control and measuring technology, in research, in the development and in the field of thermal analysis and process engineering.

What kinds of ceramics can you print in?

Steinbach AG produces technical 3D-printing ceramics made of alumina and zirconium oxide. We generally use three ceramic materials: FormAlox 999, FormAlox 998 and FormAcon 3Y.

Do you see 3D printed ceramics expanding?

Definitely. We see this every day with growing inquiries. 3D printed parts – especially with technical ceramics – are becoming increasingly important.

Many customers try it out and are thrilled by the many advantages such as

• Outstanding hardness

• High temperature resistance (1600°C)

• Superior wear resistance

• High corrosion resistance

• Chemical resistance

• Food safe, biocompatible

• Electrical insulator

What is holding back 3D printed ceramics?

At first glance the high cost. But in contrast to conventional forming processes, in the generative LCM-manufacturing no specific tools are necessary as the processing directly follows the CAD dataset.

3D Printing News Briefs: November 13, 2018

We should really call today’s 3D Printing News Briefs the formnext 2018 Briefs, as announcements from the show are numerous this week. EnvisionTEC, XYZprinting, BASF, and DSM all introduced new 3D printing materials at the event in Frankfurt today, and in the only news not related to formnext, Imerys Ceramics has announced a new range of ceramic feedstocks.

EnvisionTEC Debuting First 4K 3D Printing System

At formnext, 3D printer manufacturer EnvisionTEC debuted the industry’s first DLP-based 3D printer that uses a true 4K projector with UV optics tuned to the 385 nm wavelength. Available in three production-ready variations, with a gray body and a 2560 x 1600 pixel projector resolution, the Perfactory P4K 3D printer delivers highly accurate parts with an ultra-smooth surface finish. Additionally, the Perfactory P4K, has access to the rest of the Perfactory line’s versatile materials portfolio for production capacity.

“The P4K is the highest resolution advanced DLP printer with the largest build envelope and deploys artificial intelligence in pixel modulation to deliver the highest accuracy parts with the smoothest available surface finish in the 3D printing space. This will deliver the next level of production-grade 3D printing solutions,” said Al Siblani, the CEO of EnvisionTEC.

The new Perfactory P4K will be on display at formnext all week.

XYZprinting Introducing New 3D Printing Materials

Another company introducing new materials at formnext this week is desktop 3D printing brand XYZprinting. In order to expand the capabilities of both domestic and professional grade 3D printers, the company is launching a new antibacterial PLA material, along with copper metallic PLA and Carbon PLA materials. The first of these can destroy up to 99% of bacteria, including E. coli and Staphylococcus aureus, and comes in four colors: white, red, yellow and neon green.

The copper metallic PLA, made of 65% copper powder, is a good alternative for hobbyists when it comes to sculpting metal for ornamental models. The material is being launched in conjunction with XYZprinting’s new nozzle, made of carbon hardened steel. Finally, the new Carbon PLA, which is also compatible with this new nozzle, is made of 10% carbon fiber, and its matte finish is ideal for showing off fine details. You can learn more about these new materials at XYZprinting’s booth D10 in Hall 3.1, where it will also be exhibiting its latest 3D printer, the da Vinci Color AiO, with a 3D scanner and optional laser engraver.

BASF 3D Printing Solutions Presents New Products at formnext

Germany-based BASF 3D Printing Solutions GmbH (B3DPS), a 100% subsidiary of BASF New Business GmbH, is also at formnext this week, to introduce several new materials for photopolymer and laser sintering methods, in addition to announcing some new partnerships and alliances. First, B3DPS is introducing flame-resistant Ultrasint Polyamide PA6 Black FR, Ultrasint PA6 Black LM X085, which is suitable for most current SLS 3D printers, and Ultrasint PP, a polypropylene with great plasticity, low moisture uptake, and resistance to liquids and gases. Additionally, B3DPS has also grouped its photopolymer materials under the new Ultracur3D brand name.

András Marton, Senior Business Development Manager at B3DPS, said, “Our Ultracur3D portfolio enables us to offer customers various UV-curable materials for 3D printing that provide far better mechanical properties and higher long-term stability than most available materials.

“These materials have been developed for functional components that are subject to high stress.”

The subsidiary also announced that it’s partnering with California company Origin and 3D printer manufacturer Photocentric to develop photopolymers and photopolymer 3D printing processes, and working with Chinese 3D printer manufacturer Xunshi Technology, which operates in the US under the name SprintRay, to open up new applications for the Ultracur3D range. Additionally, B3DPS subsidiary Innofil3D is partnering with Jet-Mate Technology in China and US-based M. Holland to distribute plastic filaments. Visit B3DPS at formnext this week at booth F20 in Hall 3.1.

DSM Announces 3D Printing Product Launches

Vent cover used for PIV windtunnel testing, printed in Somos PerFORM Reflect

In today’s final formnext news, science-based company DSM has unveiled two new high-performance materials for 3D printing structural parts. Somos PerFORM Reflect is a groundbreaking new stereolithography material for wind tunnel testing with PIV (Particle Imaging Velocimetry), and saves more than 30% post treatment cost by eliminating the need to apply PIV coatings to printed parts. In addition to helping customers conduct iterations and collect data more quickly, the resin could actually help break speed records for wind tunnel testing.

“Speed is crucial, whether in automotive, aerospace or other transportation design. Eliminating the need to apply PIV coatings is a major breakthrough for customers who are using PIV wind tunnel testing. It allows them to speed up their aerodynamic design optimizations. We are thrilled that our strategy of focusing on helping customers create their applications have enabled us to deliver such tremendous value. Overnight, Somos® PerFORM Reflect will not just set new speed records but new industry standards,” said Hugo da Silva, Vice President of Additive Manufacturing at DSM.

The company’s second new material is the thermoplastic copolyester (TPC) Arnitel ID2060 HT, which is perfect for the FDM 3D printing of structural parts for automotive applications. The material features a balance of prolonged high temperature resistance, flexibility, and chemical resistance against exhaust gas recirculation (EGR) condensate.

Imerys Ceramics Introduces EZ Print 3D Range of Ceramic Feedstocks

As part of the Imerys group, Imerys Ceramics designs, produces, and markets high-performance mineral solutions for the ceramic industries, and is making ceramic 3D printing easy with its new, unique range of ceramic materials called EZ Print 3D.

EZ Print 3D is available as a plug & play cartridge, so users can enjoy efficiency and ease of use when it comes to 3D printing. The materials are also available as a “ready to fill” ceramic feedstock, and have been tested on several 3D printers currently on the market. EZ Print 3D has a low firing temperature of 1220°C that’s compatible with most kiln temperature limits, and the genuine low porosity (<0,5%) of a porcelain. The technology is perfect for tableware and giftware applications, and the company plans to expand EZ Print 3D accordingly as 3D printing adoption grows. Imerys Ceramics also provides technical support and a dedicated team that’s competent in 3D printing to help customers.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

Interview With Kevin Eckes of Selective Powder Deposition Firm Aerosint

Most new startups in 3D printing are rather boring. There’s lots of whizzbang but very little fundamental innovation. Most of them are looking to score not looking to improve 3D printing as a whole. Aerosint may very well be one of the few startups that could bring true innovation to 3D printing. The startup is looking to change how powder bed systems recoat themselves, how they deal with supports and in the process open up a whole host of new materials and applications while also reducing the cost of parts. We interviewed Kevin Eckes of Aerosint to find out more about this potentially very exciting startup.

What is Aerosint?

Aerosint is a company founded in 2016 on the idea that selective powder deposition will make additive manufacturing more capable, scalable, and less expensive. We have developed a mechanical system that replaces the normal powder recoater in SLS/SLM systems so that multiple powders can be deposited in a single layer with spatial selectivity.

What challenges do you hope to solve for people?

We believe our technology will allow for the scaled production of advanced parts that are topology-, material-, and cost-optimized. Most powder bed fusion AM techniques currently are focused primarily on geometric capability, far less on part cost, and almost not at all on efficiency gains through the use of multiple materials. In short, we want to help additive manufacturing live up to its hype and be able to build the best parts possible at the lowest cost.

How does your technology work?

The system we have developed deposits small ‘voxels’ of powder in a line-by-line fashion from rotating drums that pass over a build platform in an SLS or SLM machine. Unlike the single-material recoating process used in SLS/SLM/MJF/binder-jetting processes, in using our system one has full three-dimensional control over powder material placement, which is required for building multi-material parts.

Why is the rotating drum essential?

It’s the most efficient geometry for the application. With a rotating drum the only limits of the X and Z dimensions are the size of the machine enclosing the Aerosint recoater system. The length of the rotating drum (i.e. axial dimension) limits the Y-dimension of the build.

What do you mean with multi-material?

We mean, quite literally, more than one material. Our system can pattern two or more powdered materials side by side. Of course, sintering them together is an altogether different matter, and we cannot circumvent fundamental physical limitations. Therefore, two polymers or two metals with similar thermal processing temperatures can realistically be incorporated into a single part using the Aerosint powder deposition system to structure the constituent powders prior to sintering.

There’s also a possibility of making what we call “pseudo multi-material” parts. These would be parts in which the bulk of the part is a base polymer, and certain regions include composite materials composed of the same base polymer with an additive, such as glass fiber, carbon fiber, or even nanoparticles to locally enhance the part’s mechanical, electrical, or magnetic properties.

Recently we’ve demonstrated the co-deposition and sintering of flexible TPU with rigid polystyrene (left) as well as multiple colors of TPU (right).

Can you do gradient materials as well? Gradient and multiple materials at the same time?

You can think of the powder images we create as physical versions of binary (i.e. black and white) images. So, while we can’t pattern truly continuous gradients we can do dithered ‘digital’ gradients to form interfaces between two materials (see above, left). In our system, theoretically, you can pattern as many materials as you have rotating drums. In practice, there is, of course, a limit based on the machine size but 2, 3, or 4 drums per machine could be realized.

How can this be used to optimize surfaces?

Surfaces can be optimized in terms of material properties and material savings. One useful application is to be able to create parts that have a hard surface material to resist wear and abrasion combined with a tough inner material to resist brittle fracture (left). This strategy is even more attractive if the cost of the surface material is high relative to the bulk material. In another example, a copper part with high thermal conductivity can be made stronger and more resistant to stress with a steel surface (right).

What are the advantages of this (relative to other AM techniques)?

The most mature multi-material 3D printing processes are dependent on the curing of multiple expensive polymer resins, sometimes containing nanoparticles (as is the case for conductive resins). These resins are often quite expensive, and they tend to age and become brittle after printing. Because of these and other disadvantages, this resin jetting and curing process is better suited for prototyping rather than production-scale AM.

Powder bed AM processes have proven to be the fastest, most cost-effective, and scalable of all the various AM methods. We wanted to develop a process that builds on existing powder bed technology to make it able to process multiple materials. Our powder deposition system is also material-agnostic — we can handle polymer, ceramic, and many metal powders.

What are the cost advantages of your technology compared to SLS?

SLS of polymers is rather wasteful because unfused powder that has undergone an hours-long heated build process changes chemically in ways that prohibit its direct re-use in a subsequent build. Some amount can be reused when mixed with virgin powder, but there is almost always an amount which is thrown away.

The problem is worse for high sintering temperature materials, such as PEEK and other high-performance thermoplastics. It happens that these materials are also quite expensive to begin with, so any powder savings translates to significant cost savings. Our system allows for the deposition of expensive build powders only where needed, because a cheap, non-fusing support powder (such as ceramic) can be co-deposited in each layer.

By using ceramic powders as reusable support how much money would I save? 

With conservative assumptions for build density and powder refresh rate based on data provided to us by a major service bureau, we estimate that the value of material wasted in a full build of PEEK powder printed in an EOS P800 system is about 32,000 USD. After only 38 full builds, the cost of powder waste would exceed the cost of the EOS P800 machine itself!

For PA12 and similar conservative assumptions, for a full build in an EOS P760 system the powder waste cost amounts to nearly 3,000 USD.

With an Aerosint recoater depositing both non-fusing ceramic support powder and polymer build powder, we believe the powder waste rate could be reduced to less than 1% of the overall amount of powder input in the process. For PEEK this represents less than 500 USD/build, or a savings of over 31,500 USD savings per build. In the case of PA12 the waste would be reduced to 74 USD/build, corresponding to a savings of 2,926 USD/build. Considering the hundreds of builds a major service bureau would do per year per machine, the cumulative savings can easily amount to millions of dollars per year.

A more detailed analysis is here

What materials are you working on?

For the multi-material case, we have active projects to combine flexible and rigid polymers like TPU and PA12, multi-colored polymers, and steel and copper. For the powder savings case we are focused almost exclusively on PEEK, and we’re developing a powder deposition system that will withstand the extreme operating conditions needed for PEEK SLS.

I don’t see how you could use this to combine 3D printing circuits and polymers in one step. Won’t you melt or deform the polymer?

For circuits, indeed an approach cleverer than simply melting copper and polymer side by side is needed since bulk copper has a much higher melting temperature than any thermoplastic. We know of some interesting work being done to develop sinterable polymer composite materials that can be made selectively conductive in a post-processing step. As long as the matrix polymer of the conductive precursor material has a similar melting temperature as the surrounding bulk material, it should be possible to print conductive paths and insulating material at once using our system.

What kind of metals can you combine with each other?

Our first efforts are focused on steel and copper. With the same prototype system other metal-metal combinations should eventually be possible to validate.

How mature is your technology?

Our technology is maturing quickly but many aspects still need to be validated. In particular we need to combine our powder deposition expertise with the materials processing expertise of others to push our technology closer to the market.

What kind of partners are you looking for, and why should they work with you?

Our technology should enable multi-material AM, but we have limited in-house experience and resources to explore the space of material combinations that might be possible. We’re interested in working with research institutions and especially R&D departments of companies that have identified a need for multi-material additive manufacturing for improving their products and market position.

We’ll have a booth next week at Formnext in Frankfurt among the other startup challenge winners, and we welcome anyone to stop by to discuss applications and collaboration possibilities.