Mimaki USA and Sindoh Introduce New 3DFF-222 Desktop 3D Printer

In 2015, Mimaki USA, an operating entity of Japanese company Mimaki Engineering, announced that it would begin development of its own full color 3D printer, which was then previewed two years later. The company installed its first photorealistic, UV-cure inkjet 3DUJ-553 3D printer in the Americas last winter at print technology company Pictographics in Las Vegas, and is now venturing into the world of desktop 3D printing with its latest product launch.

Mimaki is one of the top manufacturers of wide-format inkjet printers and cutters, along with 3D modeling machines, software, hardware, and associated consumables, like cutting blades and ink. Now it’s adding the new 3DFF-222 desktop 3D printer to the mix, which is co-branded with South Korean 3D printer manufacturer Sindoh.

“The new desktop 3D printer is designed to fit the needs of modern print production environments and it is suitable for a broad range of uses. This latest product introduction demonstrates Mimaki’s commitment to driving innovation and providing our customers with profit-enhancing solutions,” said Michael Maxwell, a senior manager at Mimaki USA.

The FFF 3D printing solution by Mimaki and Sindoh, which was developed to be used as an in-house design and production tool, obviously doesn’t have the more than 10 million color combinations offered by the full-color 3DUJ-553 printer, but it’s perfect for fabricating parts, like jigs, that are used in direct-to-object printing. The desktop 3DFF-222 can also be used to manufacture tools for producing 3D signage, as well as molds for vacuum forming.

The compact 3DFF-222 makes it possible for users to cut back on costs as they work to expand into more profitable markets, and was designed to reduce noise levels during operation, making it a good system for use in an office setting. The 3D printer’s fully covered design, which helps gets rid of any disruption of contaminants that might adhere to a model during 3D printing, and its installed HEPA filter also contribute to this.

The new desktop 3D printer by Mimaki USA and Sindoh, the latter of which also created a 3D printer in partnership with Stanley Black & Decker a few years ago, prints parts up to 8.27″ x 7.87″ x 7.67″ in easily loadable PLA filament cartridges, and also provides remote monitoring of each print through a built-in camera and included app.

“Flexibility and ease-of-use are key features of the new desktop 3D printer,” Maxwell stated. “This printer also complements our industrial printers seamlessly. The 3DFF-222 is capable of inexpensively producing customized print jigs, which can be used to stabilize print quality when printing on UV-LED flatbed printers from our UJF Series. Additionally, customers can create objects for decoration as well as a variety of signage.”

Additional features of the new desktop 3DFF-222 3D printer include a heated flexible bed, which has a built-in thermostatic function for easy model removal and stable formation during 3D printing, and semi-automatic leveling, which measures the table’s horizontal error and tells the color monitor how to maintain a level position.

A 5″ full-color touch panel provides illustrated instructions to make the system easy to operate, and the filament is automatically loaded and supplied to the 0.4 mm 3D printer nozzle after installation, with no manual feeding required. The 3D printer weighs 16 kg and comes with a built-in LED lamp and dedicated 3DWOX Desktop slicing software.

The 3DFF-222, which is the latest addition to Mimaki’s 3D printer portfolio after its full-color 3DUJ-553, is now available for order.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Images: Mimaki]

3D Printing News Briefs: April 6, 2019

We’re starting off today’s 3D Printing News Briefs with a product launch announcement – 3YOURMIND launched the full version of its Agile MES software software this week at AMUG 2019. Moving on, Sintratec will present its latest SLS 3D printer at RAPID + TCT next month in Detroit, Tiamet3D has joined Ultimaker’s material alliance program, and Sciaky entered into an agreement with KTM Consultants. Xometry just announced some important certifications, and nScrypt is 3D printing titanium parts. Moving on to the world of art and theatre, the Zurich Opera House is 3D printing props, and artist Andrea Salvatori worked with WASP to create a 3D printed art collection.

3YOURMIND Launched Agile Manufacturing Execution System (MES) Software

After spending five years providing order management systems to scale for some of the industry’s AM leaders, 3YOURMIND has finally moved its software solutions to a production environment with the launch of its Agile Manufacturing Execution System (MES) earlier this week at AMUG 2019. The software uses smart part prioritization, rapid scheduling, order tracking, and custom AM workflow creation to improve machine utilization and make production more efficient, and an Early Access Program (EAP) allowed the company to receive direct feedback on its Agile MES software from representatives at companies like EOS and Voestalpine. The next step will be working to finalize machine connectivity.

“For Agile Manufacturing, the Agile MES will need to both GET and PUSH data from all major AM machines and post-processing systems. We are already integrating the data from several vendors into our software and expect to support all major machines,” explained 3YOURMIND’s CEO Stephan Kühr. “Receiving and processing machine data allows us to provide the documentation that is needed for quality assurance and to increase the repeatability of additive manufacturing. Pushing data directly to machines will be the key to automating production.”

Sintratec Showcasing New SLS 3D Printer at RAPID + TCT

A few months ago, Swiss SLS 3D printer manufacturer Sintratec introduced its scalable, modular Sintratec S2. Now, the company will be presenting the printer in the US for the first time next month at RAPID + TCT in Detroit, which will also be Sintratec’s first time attending the massive event. What makes the Sintratec S2 stand out is its closed-loop workflow, as the complete system covers every process with its three modules: the Laser Sintering Station (LSS), the Material Core Unit (MCU), and the Material Handling Station (MHS). The 3D printer offers quick material changes, a 4K camera for print monitoring, improved ergonomics, and effective heat distribution through its cylindrical printing area and ring lamps.

“The Sintratec S2 will boost the design of applications and gives the user the opportunity to set foot in small series production as well. And that for an unusually attractive price-performance ratio,” said Sintratec CEO Dominik Solenicki.

“With the Sintratec S2 solution we will be opening new opportunities for companies of any size.”

The price for the Sintratec S2 starts at $39,900, and you can see it for yourself at Sintratec’s booth 1753 at RAPID + TCT from May 20-23.

Tiamet 3D Joins Ultimaker’s Material Alliance Program

Last year, Dutch 3D printing specialist Tiamet 3D, founded in late 2014, worked with Finland-based Carbodeon to develop the first nanodiamond-enhanced 3D printing filaments, which went on the market in September. Now the company has joined Ultimaker as a partner in its Material Alliance Program. Together, the two will offer end-users simple one click downloads of Tiamet’s ULTRA Diamond material profile, which is now available on Ultimaker’s Cura software. This collaboration is formally backed by Tiamet’s manufacturing partner Mitsubishi Chemical Performance Polymers (MCPP Netherlands).

Reid Larson, the Director and Co-Founder of Tiamet 3D, told us about some of the highlighted specs of its ULTRA Diamond material, including no additional nozzle wear, 6300 mpa stiffness, low moisture absorption and friction, improved thermal conductivity, and twice “the temperature resistance of normal PLA, Annealed goes to 125C HDT.” You can purchase one kg of ULTRA Diamond filament for €59.

Sciaky Increasing Sales Efforts Through New Agreement

In an effort to increase the sales efforts of its Electron Beam Additive Manufacturing (EBAM) solutions in Australia, the Middle East, and New Zealand, Sciaky, Inc. has entered into an agreement with KTM Consultants, founded by metallurgist Trent Mackenzie in 2015. In terms of sheer work envelope, Sciaky’s massive EBAM systems are the industry’s most widely scalable metal 3D printing solution, able to produce parts ranging from 8 inches to 19 feet at gross deposition rates of up to 25 lbs of metal an hour. Additionally, its Interlayer Real-time Imaging and Sensing System (IRISS) is the metal 3D printing market’s only real-time adaptive control system capable of sensing and digitally self-adjusting its deposition.

“I was immediately drawn to Sciaky’s EBAM technology because of its unique and robust capabilities. Industrial manufacturers of large metal parts need to explore the significant advantages that technologies like EBAM offer. It is truly a game-changer,” said Mackenzie.

Xometry Announces New Industry Certifications

Digital manufacturing marketplace Xometry announced that it has just received ISO 9001:2015 and AS9100D certifications – some of the most rigorous, widely-recognized quality management designations in the industry. ISO 9001 helps organizations meet the needs and expectations of their customers in terms of quality management, while AS9100 meets customer demands in the exacting aerospace and defense industries. The company went through a major audit as part of the process, and its achievement definitely reflects how committed Xometry is to providing quality.

“We are thrilled to receive this designation. Our team members have a passion for providing great customer service while following the disciplines that give our customers peace of mind regarding on-time delivery, quality, and continuous improvement. It is yet another step towards achieving industry “best in class” status and being able to meet the expanded needs of our customers,” stated Xometry COO Peter Goguen.

nScrypt Develops Proprietary Method for 3D Printing Titanium

nScrypt 3D printed titanium gear, dogbone, and block

Florida manufacturer nScrypt, which develops high-precision Micro-Dispensing and Direct Digital Manufacturing equipment and solutions, is now focusing on repeatable 3D printing of metals for the medical, defense, and aerospace industries. The company has created a proprietary method for 3D printing titanium parts, which tests have shown display densities comparable to wrought parts. This method could easily work with other metals as well, such as copper, Inconel, and stainless steel, and nScrypt’s Factory in a Tool (FiT) systems can finish or polish areas with high tolerance features using its integrated precision nMill milling head. nScrypt’s Brandon Dickerson told us that the company expects to release more details on this later in 2019.

“The parts were printed with our SmartPump™ Micro-Dispensing tool head, which runs on any of our systems,” Dickerson told 3DPrint.com. “The parts shown in the photos were printed on our DDM (Direct Digital Manufacturing) system, also known as our Factory in a Tool (FiT) system, which can run 5 tool heads at the same time, including our Micro-Dispensing, Material Extrusion, micro-milling, and pick-and-place tool heads.  The parts were sintered after the build and the current densities are in the high 90% range.  We expect our system to appeal to customers who want to do Direct Digital Manufacturing and need strong metal parts, but cannot build them with a powder bed system (for example, if the geometry would trap powder inside) or prefer not to use a powder bed system (for example, if they want a cleaner system).”

Zurich Opera House 3D Printing Props with German RepRap

Finished tutu for “The Nutcracker”, which was produced with the help of the x400 3D printer

Switzerland’s largest cultural institution, the Zurich Opera House, puts on over 300 performances a year, but the behind-the-scenes magic happens in the studios and workshops, where the props and costumes are made. The opera house uses the x400 3D printer from German RepRap, with assistance from Swiss reseller KVT- Fastening, to support its creative work by fabricating props and molds. This affords the institution more creativity and flexibility, as they can design objects to their exacting needs in 3D modeling programs, which also helps save on time and money. The opera house currently uses PLA, which is easy to handle, offers a variety of colors, and is flame retardant – very important in a theatrical setting.

“Often, the wishes and ideas of costume and stage designers are very diverse and sometimes extraordinary. It often happens that props are not available in the way designers have it in their minds. This is where the 3D printer is perfect for,” said Andreas Gatzka, director of theater sculpture at the Zurich Opera House.

“There are a lot of great benefits. Special wishes of stage and costume designers can be realized quickly as well as a short-term change of the objects, for example larger, smaller, longer, shorter, or whatever is needed.”

3D Printed Art Collection

Artist Andrea Salvatori 3D printed the eye-catching pieces for his new collection, titled Ikebana Rock’n’Roll, using the Delta WASP 40100 Clay 3D printer – designed by WASP to be used by ceramic and clay artists. The collection just opened on stage at THE POOL NYC in Milan last week, and will be available to view until May 31st. With these 3D printed vases, Salvatori wanted to use “a miscellany of ceramic insertions” to mess with the high quality shapes 3D printing can achieve by adding asymmetry.

“The process of depositing the material and setting the spheres is a central theme in the Ikebana Rock’n’Roll collection, to the point of convincing Salvatori to name the works “Composition 40100”, as if they originated from a musical dialogue of the most varied tones. The artist upsets the algorithm reiterated slavishly by the machine with imperfect musical accents, the result from time to time of spontaneous actions and reasoned processes,” WASP wrote in a blog post.

“The ikebanes, proposed by Andrea Salvatori in the exhibition, transcend the experimental limits of an abstract investigation, representing a concrete territory in which 3D printing and ceramic art co-exist synergistically. The Master challenges the confrontation with the public, becoming also in this sector, precursor of a new genre in which WASP feels itself fully represented.”

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

3D Printing News Briefs: September 4, 2018

In the first 3D Printing News Briefs for this month, we’re starting with some education and business, followed by some how-to videos and a couple of things to ponder. PrintLab’s curriculum is going global, while the province of Victoria in Australia has invested in 3D printing. A Ukrainian company has introduced a new type of metal 3D printing, and you can learn how to cast concrete 3D printed molds and make an etched glass build surface for your 3D printer by checking out two new YouTube videos. There could be even more uses for construction 3D printing than previously thought, and a thermal view of a model being 3D printed on an Ultimaker begs an important question.

PrintLab Portal Available in Polish

3D printing curriculum provider PrintLab, based in the UK, set up an online portal in January, called PrintLab Classroom, to help teachers better integrate 3D printing into their lesson plans. Now that the English version of the learning platform has been successfully launched, PrintLab is working to offer the curriculum portal in multiple languages. Now, thanks to a collaboration with Polish 3D technology and education supplier Paxer, a new PrintLab reseller, the platform is available in Polish, with translations in Spanish and Chinese in the works.

“After a great deal of initial interest and success, we are very pleased to be able to offer our curriculum to Polish students and educators. Our mission has always been to prepare the next generation for their future careers by addressing the widening skills gap and we are now able to do this across multiple regions. Our focus is on finding partners that share our belief and vision and in Paxer, we have found a motivated team that has technology in education at its core,” said Nick Mayor, Co-Founder at PrintLab.

“The aim is to inspire students and teachers around the world to adopt technology into lessons. We have started with Polish, however that is just the beginning. Spanish and Chinese translation is currently being undertaken which is part of our plan of inspiring minds on a global scale and providing teachers worldwide with comprehensive lesson packages, developed alongside teachers.”

New Virtual 3D Printing Hub in Victoria

The manufacturing industry in Victoria, the second most populous state in Australia, contributes $27.7 billion to the Victorian economy. Now, businesses there will be able to connect with additive manufacturing technology and produce products more easily and quickly, thanks to a new dedicated virtual hub. Ben Carroll, the Minister for Industry and Employment, joined Member for Carrum, Sonya Kilkenny, at the Carrum Downs facility of 3D printing company Objective3D to make the announcement this week. The hub, supported by $2 million from the Victorian Government and delivered by Australian Manufacturing Technology Institute Limited – a national body representing manufacturing technology suppliers and users – should improve access for local companies to the state’s 3D printing infrastructure.

Carroll said, “3D printing is a game changer for manufacturing – which is why we’re backing the technology so more local companies can reap the benefits.

“This new hub will help local manufactures innovate, become more productive and excel in future industries.”

xBeam Metal 3D Printing

Ukrainian company NVO Chervona Hvilya has a new form of metal 3D printing it calls xBeam, which it says “was born to make the best features of Additive Manufacturing available for wide industrial community and to prove that definition of Additive manufacturing as the Third Industrial Revolution is reality.” The company has spent roughly four decades developing electron beam technologies for multiple applications, and its exclusive xBeam technology was born from this experience.

With xBeam, the company says you won’t have to decide between high productivity, accuracy, and a defect-free metal structure – its patented solution delivers all three. xBeam is based on the ability of a gas-discharge electron beam gun to generate a hollow, conical beam, which can offer “unique physical conditions for precisely controllable metal deposition and forming of desired metal structure in produced 3D metal part.”

Using 3D Printed Molds to Create Cast Concrete Products

Industrial designer Rob Chesney, the founder of New Zealand-based bespoke design and fabrication studio Further Fabrication, recently published a tutorial on the studio’s YouTube channel about creating cast concrete objects and products with 3D printed molds and no silicone at all. For the purposes of the video, Chesney used 3D printed molds for faceted candle holders.

“In the first half of this video we’re gonna deal with the design and the creation of the molds using the computer and 3D printing,” Chesney said. “In the second half we’ll show you how you go about casting products with some tips and tricks thrown in there along the way.”

To learn how to make your own cast concrete candle holder with a 3D printed mold, check out the Further Fabrication video:

Etched Glass Build Plate

Another new video tutorial, this time by YouTube user MrDabrudda, shows viewers how to make an etched glass build surface for a 3D printer. What’s even better, the plate does not require you to use tape, a glue stick, or even hairspray to get your prints to adhere to it.

“So I’m tired of having to respray the hairspray on my glass bed for my 3D printer, so what I’m doing is taking a 180 grit diamond stone and a tub of water, and I’m going around on here and roughing this up,” MrDabrudda said.

To learn the rest of the process, check out the rest of the video:

Construction 3D Printing Uses

A 3D printed Volvo CE workshop tool

While there are still those who may think that construction 3D printing is all hype, that’s not the case. Sure, maybe it’s not possible to create a fully 3D printed house in a day in every country in the world, but we’re already able to create large-scale, 3D printed objects, with impressive lifespans and tensile strengths, out of a multitude of materials. There are also other applications in construction 3D printing than just houses. Caterpillar has long been interested in 3D printing, and thanks to its early work in research engineering cells, prototyping, and 3D printing tools for the assembly line, it’s now moved into commercial production of nearly 100 components; however, all but one were made of polymers.

“We’ve made a lot of progress with this technology, but not to the point where we are comfortable putting it into, for example, safety equipment or the manufacture of large metal parts, although we are doing a lot of research in that area,” said Don Jones, Caterpillar’s General Manager, Global Parts Strategy and Transformation.

Another OEM with developed 3D printing capabilities is Volvo CE, which stands for Construction Equipment. As of right now, the company has 3D printed spare parts such as plastic coverings, cab elements, and sections of air conditioning units.

“It’s especially good for older machines where the parts that have worn out are no longer made efficiently in traditional production methods,” said Jasenko Lagumdzija, Volvo CE’s manager of Business Support. “Producing new parts by 3D printing cuts down on time and costs, so it’s an efficient way of helping customers.”

Can Thermal Imaging Improve 3D Printing Results?

Usually when I think of thermal imaging, the movie Predator immediately comes to mind – the alien creature tracked its human prey by their body heat signatures. But this technology can also be applied to 3D printing. About two years ago, CNC machine manufacturing company Thermwood Corporation added real-time thermographic imaging as a standard feature on its LSAM (Large Scale Additive Manufacturing) systems. This imaging makes it far easier to adjust and control the entire 3D printing process, which will result in excellent 3D printed structures as a result.

Using thermal imaging can help create high-quality, large tools that are solid and void-free enough to maintain a vacuum, without any necessary surface coating or sealing. To ensure good prints, the temperature of the print surface needs to be controlled, which is tricky to do. But thermal imaging can help operators remain in the optimal range of temperatures. Thermwood seems to be ahead of the times with its thermal imaging capabilities.

A new video was recently posted by YouTube user Julian Danzer showing a large BFR winged rear section model being fabricated on an Ultimaker 3D printer; the video switches about 30 seconds in to a thermal view of the print job. The quality isn’t great, but it makes me think – should all 3D printers come standard with FLIR cameras now? If thermal imaging can really help improve the results of 3D prints, my answer is yes. What do you think?

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

3D Printing News Briefs: July 10, 2018

We’re starting things off with a little business in today’s 3D Printing News Briefs, then moving on to news from the medical and construction industries, and finishing up with a few fun stories to make you smile. First up, Jeff Immelt, the former CEO of General Electric, has joined the board at Desktop Metal, and an industrial 3D printer distributor is offering a new cleaning unit by Omegasonics to its customers. Moving on, Insight Medical and Onkos Surgical are exploring the use of augmented reality in musculoskeletal oncology together, while Australian researchers introduced a new model for large-scale 3D facial recognition and a family has officially moved into the Nantes 3D printed house. Finally, a vegan confection startup is selling its popsicles, made with 3D printed molds, at select Starbucks locations in Los Angeles, and an EnvisionTEC 3D printer is being used to create characters for a stop motion series about superheroes.

Desktop Metal Board Welcomes Jeff Immelt

Jeffrey Immelt

Leading metal 3D printing company Desktop Metal, located near Boston, was founded three years ago with the goal of making metal 3D printing an essential tool for engineers and manufacturers. The company announced today that it has elected a new member to its Board of Directors – Jeffrey Immelt, the Chairman and CEO of GE until he retired from the company last year after 16 years. Immelt, who began his tenure only days before 9/11 and skillfully led GE through the crisis, has decades of experience, and is regarded as one of the most accomplished, innovative business technology leaders in the world. This makes him a valuable asset as Desktop Metal continues to grow.

“I am excited and honored to join the Desktop Metal board and work with this exceptional team of visionary entrepreneurs. Since it was founded nearly three years ago, Desktop Metal has become a trailblazer across the additive manufacturing landscape and I have a tremendous respect for the company’s ability to innovate,” said Immelt. “I look forward to sharing my experiences and contributing to the future direction and growth of this emerging metal 3D printing pioneer.”

Dr. Ken Washington, CTO and Vice President of Research and Advanced Engineering at the Ford Motor Company, was also recently appointed to the Desktop Metal board.

Industrial 3D Printer Distributor Offering Customers New Omegasonics Cleaning Unit

815BTX

Plural Additive Manufacturing, which is the exclusive North American distributor for industrial 3D printers by 3ntr, is offering the new 815BTX cleaning unit from ultrasonic cleaning systems leader Omegasonics to customers who purchase its 3D printers. The versatile and cost-effective unit is the 3D printing market’s first dual tank/dual action bench top ultrasonic cleaning machine, and can help easily remove water soluble support material.

The left tank of the 815BTX uses a biodegradable cleaning detergent developed by Plural, called BioSolv, while the right tank uses hot water; the model’s dual action then ensures the safe and efficient cleaning of 3D printed parts. The 815BTX also has programmable alternating cycles for hands-off cleaning.

“3ntr manufacturers’ of 3D printers utilize a variety of support materials, some require chemicals for support removal, while others need only hot water. The 815BTX eliminates the need to have two separate cleaning machines or deal with the cost of frequent cleaning detergent changes to get the job done,” explained Frank Pedeflous, the President of Omegasonics. “It’s an all-in-one solution.”

Onkos Surgical and Insight Medical Exploring Augmented Reality in Musculoskeletal Oncology

California medical device company Insight Medical Systems has partnered with Onkos Surgical, Inc. on a pilot project to explore different applications and opportunities for using Insight Medical’s ARVIS (Augmented Reality Visualization and Information System) headset in musculoskeletal oncology, and possibly tumor surgery. Still under development, ARVIS uses its tracking and visualization capabilities to deliver efficient and precise surgical plan execution. The headset can project virtual models of a specific patient’s anatomy and implants into a surgeon’s field of view during a procedure, in order to show hidden anatomical structures and important measurements.

“Onkos Surgical is investing heavily in capabilities and technology to bring innovation to musculoskeletal oncology surgeons,” said Onkos CEO and Co-Founder Patrick Treacy. “Augmented reality technology has the potential of simplifying the complex and providing surgeons with input and feedback that may improve the precision of surgical planning and interoperative workflow. This technology fits well with our portfolio of Precision Oncology solutions.”

University of Western Australia Introduces New Model for Large-Scale 3D Facial Recognition

2D facial recognition is used often for applications in the IT, security, and surveillance industries, and relies on a computer model to know whether a person is legitimate or not. But this method has several issues, such as data being easily accessible online, which aren’t the case with more advanced 3D models. 3D models can address changes in facial expression, poses, scale, and texture, but the data can be hard to gather. Now, researchers from the Department of Computer Science and Software Engineering at the University of Western Australia (UWA) have developed a first of its kind system that can complete large-scale 3D facial recognition. The researchers, who published a paper on their work in Computer Vision and Pattern Recognition, analyzed 3.1 million 3D scans of over 100,000 people, and trained the innovative new 3D Facial Recognition model (FR3DNet) to learn the identities of a large dataset of ‘known’ persons, then match a test face to one.

Dr. Syed Zulqarnain Gilani, who created the 3D model, said, “With off-the-shelf 3D cameras becoming cheap and affordable, the future for pure 3D face recognition does not seem far away.

“Our research shows that recognition performance on 3D scans is better and more robust. Your 3D scan could be in any pose, wearing glasses or a face mask, and laughing or just smiling and the deep model can recognise you in an instant.

“We hope that this research will help improve security on devices that use facial recognition to grant access to networks and systems.”

Nantes 3D Printed House Welcomes First Tenants

In 2017, a collaborative team of researchers in France began an ambitious project where an industrial 3D printer and a patented concrete construction process called BatiPrint3D were used to build a five-room house in just days. This spring, after 54 hours of 3D printing and four months of contractors adding the roof, windows, and doors, the team finished the 95-square-meter, environmentally-friendly YHNOVA house in the district of Nantes Bottière. The house features wheelchair access and digital controls, and its curved walls are said to reduce the effects of humidity. But it still only cost around £176,000 to build – 20% cheaper than an identical house manufactured with traditional methods. Now, the NMH Housing Award Committee has allocated the house to a French family, and Nordine and Nouria Ramdani, along with their three children, are being hailed as the world’s first family to live in a 3D printed house.

Nordine said, “It’s a big honour to be a part of this project.

“We lived in a block of council flats from the 60s, so it’s a big change for us.

“It’s really something amazing to be able to live in a place where there is a garden, and to have a detached house.”

The THNOVA team now believes they can 3D print the same house in just 33 hours.

Dream Pops Selling 3D Printed Popsicles at LA Starbucks

Vegan confection startup Dream Pops, headquartered in Los Angeles, creates organic, gluten- and soy-free, and vegan popsicles that are tasty, healthy, and made using 3D printed molds. These premier dairy-free popsicles consist of fruit and superfoods pureed together and cooled inside the molds at an accelerated rate with liquid nitrogen. Now, the startup has announced that its sweet treats are now available at five select Starbucks locations in the city – Third Street Promenade, La Brea and 4th, San Vincente and Barrington, Melrose and Stanley, and Wilshire and Santa Monica. The vegan ice cream pops, each of which contain fewer than 100 calories and seven grams of sugar, comes in five distinct flavors: Berry Dreams, Coconut Latte, Mango Rosemary, Vanilla Matcha, and a Dream Flight, which includes all four flavors.

“Our aim is to become the Willy Wonka of plant-based confections starting with our first product the Dream Pop and extending into adjacent better-for-you desserts,” said Dream Pops Co-Founder and CEO David Greenfield.

Dream Pops’ popsicles will be available at these Starbucks locations until October 5th.

3D Printed Stop Motion Characters

3D printing has been used many times to help create characters and backdrops for ads and commercials, music videos, and even movies that use popular stop motion animation. If you’re a fan of the stop motion show Robot Chicken, then you might also recognize the name of the full-service production company that creates it. California-based Stoopid Buddy Stoodios specializes in developing and producing stop-motion, CG, and 2D animated content, and also creates an animated stop motion comedy series called SuperMansion. The studio fabricates most of the show’s characters with a Perfactory 3D printer from EnvisionTEC.

“By utilizing 3D printing, we’re able to tell a story about superheroes and love and conflict and action and adventure,” said Kei Chong, Digital Design Supervisor at Stoopid Buddy Stoodios.

To learn more, check out the video below.

3D Printing for Animation | Stoopid Buddy Stoodios from EnvisionTEC on Vimeo.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

Nano Dimension and Mayku Announce New Strategic and Distribution 3D Printing Partnerships

Israeli additive electronics provider Nano Dimension announced in April that it would be expanding its coverage in the Asia Pacific (APAC) region, and today has made good on that announcement. The award-winning company has officially entered the Chinese market now, thanks to its strategic partnership with top 3D printer distributor the AURORA Group.

The AURORA Group is the majority shareholder of 3D software and 3D printer provider General Integration Technology (GIT), which recently purchased and installed a DragonFly 2020 Pro PCB 3D printer from Nano Dimension for its Taiwan showroom. In addition to this new partnership, AURORA has also purchased a second DragonFly 2020 Pro.

“China is one of the world’s largest and most important electronics manufacturing and design markets, and establishing the correct foothold in the market is key for Nano Dimension. AURORA has years of operating experience in the manufacturing sector, and with its extensive resources and unique network of 1,500 offices, 300,000 customers, including more than 3,000 customers in electronics industries, we believe it is very well positioned to give us fast market access to realize the full potential of the DragonFly 2020 Pro in China,” said Amit Dror, CEO of Nano Dimension. “We look forward to developing the Chinese market together by leveraging AURORA’s significant presence.”

As a result of the partnership, AURORA will market and sell the DragonFly 2020 Pro to customers in China, which will help grow Nano Dimension’s market coverage in APAC.

“Providing our customers with the very latest in high-quality, innovative 3D printing solutions is key to the success of our company,” said Daniel Chi, GM of 3D Business Unit, AURORA Group. “Forming a strategic relationship with Nano Dimension helps us expand our offering to now include capabilities for 3D printing electronics. The Nano Dimension DragonFly 2020 Pro is a groundbreaking technology that opens unimagined possibilities for electronics designers and manufacturers.”

A January 2018 market research report from the International Data Corporation (IDC) shows that the quickly growing Chinese 3D printing market is leading Asia. 3D printing in the country benefits from both industrial and private consumer investments and government support, so partnering with AURORA for additional APAC coverage is a smart move on Nano Dimension’s part.

“This is an important moment for our recently established Hong Kong office,” said Nano Dimension’s APAC Director Gilad Reshef. “We are proud to partner with AURORA as our leading partner in China. The partnership with AURORA deepens AURORA’s exposure to additive manufacturing by expanding into 3D-printing electronics, paving the way for new markets and applications.”

This news from Nano Dimension and AURORA isn’t the only newly announced 3D printing partnership. London startup Mayku has just released its innovative desktop vacuum former, the FormBox, for sale in the UK and the US, with help from its own new partner – 3D printing specialist GoPrint3D.

The FormBox

“We’re really excited about it as we think a lot of 3D printer owners will want one to complement their existing 3D printer,” GoPrint3D’s David Whitehouse told 3DPrint.com.

A drone case being removed from the mold.

GoPrint3D, which is also a distributor for EnvisionTEC and learnbylayers, was launched six years ago as a part of Express Group Ltd, which has provided 2D printer repair and spare parts to the UK for three decades. The company sells, repairs, and hires 3D printers, in addition to providing professional services.

“We were so impressed when we first saw the FormBox that we immediately backed it on Kickstarter,” explained Jo Young, Managing Director at GoPrint3D. “Now we are a partner as well as a backer. It’s the perfect accessory to 3D printers like the Form 2 so we are delighted to add it to our range.”

In 2016, Mayku crushed its original $50,000 Kickstarter campaign goal for the FormBox by over 1,000%. The desktop vacuum forming machine, which can be powered by a vacuum cleaner, lets makers and designers create items in all sorts of materials, ranging from concrete, ice, and plaster to soap, chocolate, and wax, and others as well.

The machine is user-friendly, and fast as well – able to make molds in just minutes without having to rely on any additional software or digital model manipulation.


“Vacuum forming was previously something found in makerspaces and in schools due to their cost and size,” explained Ben Redford, Mayku’s Co-Founder and CPO. “We are thrilled to have the support of the 3D printing industry and have been blown away with what makers have been designing.”

The FormBox is a complementary new hardware addition for 3D printer owners. Users can easily vacuum form a 3D print using the FormBox, which can then be used as a mold for fast replication in multiple materials that are not able to be directly 3D printed at this time.

GoPrint3D now has the FormBox in stock and available for purchase for a price of £499 excluding VAT.

Discuss partnerships and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

 

ETH Zurich Students Cast Elaborate Metal Architectural Structures with 3D Printed Molds

The innovative researchers at ETH Zurich in Switzerland are becoming quite well-known for their advanced design and construction techniques, especially when it comes to their work with molds. 3D printed molds can be used to help fabricate everything from jewelry and chess pieces to medical implants and wind turbines, but a group of masters students from the university’s Architecture and Digital Fabrication course are currently interested in creating 3D printed molds for the architecture field.

Together with ETH Zurich senior researcher Mania Aghaei Meibodi, they have developed a new method for casting complex metal architectural structures using 3D printed molds.

Aghaei Meibodi, who researches how 3D printing can help create bespoke metal building elements, said, “Cast metal parts have a long tradition in architecture due to their extraordinary structural properties and possible 3D form.

“Today the amount of manual labour involved, especially in the mould-making process makes them too expensive.

“With our approach using 3D-printed moulds, we make it possible and affordable again to fabricate bespoke structural metal parts — parts with unseen richness of detail and geometric complexity.

“This approach can unlock an entirely new vocabulary of shapes for metal structures in architecture, previously unavailable with traditional mould-making systems.”

The one-off aluminum structure created by the Digital Building Technologies (DBT) group, called Deep Facade, is the first metal facade to be cast in 3D printed molds. Standing six meters high and four meters wide, the structure features ribbons of metal organically looped in a way that resembles the human brain’s cerebral cortex folds, and is a follow-up to a project by last year’s students called the Digital Metal Pavilion.

Aghaei Meibodi told Dezeen that the aluminum Digital Metal Pavilion, a space-frame structure made up of 240 non-repetitive joints, was the very first architectural structure to use 3D printed molds.

It only took a week to make these joints, which Aghaei Meibodi, who also chairs the DBT group, explained is 80 times faster than the more conventional processes used to fabricate complex metal parts. Using 3D printing for this type of application is obviously a far more cost-effective way to produce complex structures and forms for custom architectural projects.



It is possible to 3D print metal directly, but it’s not always the best option – it can be expensive, and can only be used with a limited range of metals with limited material properties. That’s why the DBT group uses 3D printed sand molds in casting molten metal.

Aghaei Meibodi explained, “In this synergy we benefit from the geometric freedom offered by 3D printing and the structural stability of cast metal.”

The Deep Facade structure is made of 26 articulated panels. A differential growth algorithm, which replicates the development of some living organisms, was used to fabricate the structure, which features some sections that would have been too fragile to make with concrete or sandstone.

Topology optimization, which allows for designers to take advantage of the geometrical freedoms made possible through additive manufacturing, also came into play in the DBT group’s creative process.

“Computational techniques such as topology optimisation allow designers to design lightweight parts, but the parts optimised with this technique are often difficult to manufacture through traditional methods.

“Our proposed fabrication approach doesn’t encounter the same limits as traditional manufacturing methods and can go further with shape optimisation thanks to the ability of 3D printing to print complex moulds that could be used to fabricate more efficient structures,” said Aghaei Meibodi.

Aghaei Meibodi is hopeful that her student group’s new method can one day be applied to a unique, large-scale project.

“With this new approach of casting metal, one can imagine a return of 3D detailing and 3D articulation, perhaps a fusing of ornament and structure,” she said.

“My dream application of it would be in the building envelope and interior structure of large spaces as large-span supporting structures.”

Discuss this story and other 3D printing topics at 3DPrintBoard.com or let us know your thoughts in the Facebook comments below.

[Images via Dezeen]