Additive Flight Solutions Awarded AS9100D Certification for Commercial Aircraft 3D Printing

With increasingly stringent standards and regulations governing the aircraft industry, MRO providers must obtain the latest certifications in order to serve their customers, as well as to ensure compliance within their organizations and supply chains. The AS9100 certification standard governs quality management systems in the aerospace industry, and its latest revision AS9100D, updated or changed more than 98% of the previous standard. The revision had broad implications for MRO providers, and introduced a particularly strong focus on accountability, to ensure strict safety protocols and to introduce preventive risk-based thinking, and measures to prevent the use of counterfeit products.

Image courtesy of Additive Flight Solutions.

In a boost to the Singapore-based company’s growing reputation as a provider of additive manufacturing part solutions for aerospace maintenance, repair and overhaul (MRO), Additive Flight Solutions (AFS) has received the AS9100D Certification. It is also now registered with the International Aerospace Quality Group (IAQG), the global body that governs quality management within the worldwide supply chain of the aerospace industry.

This is all the more relevant as additive manufacturing solutions, such as those from AFS, increasingly transform or complement the traditional MRO business in providing parts and services that meet the quality requirements for end-use in aircrafts. A joint venture between major Asia-Pacific MRO provider, SIA Engineering Company (SIAEC), and Stratasys, AFS brings Stratasys’ additive manufacturing expertise and solutions to more than 80 international carriers and aerospace OEMs through SIAEC. AFS provides AM solutions for aerospace certification (such as the Aircraft Interiors Certification Solution), prototyping, manufacturing aids and tooling, and production parts using thermoplastics.

Composite Tooling. Image courtesy of Additive Flight Solutions

In particular, it supplies industry grade parts and services for airplane cabin interiors (sanitizer holders for example) to local and global manufacturers. The AM parts are primarily used as replacements for interior cabin parts, which are low volume, and can often be obsolescent. Regarding the certification, Stefan Roeding, DGM, AFS said,

“From individual part weight reduction to a more comfortable layout and design, the future of aircraft interiors is set to take off in innovative ways. Apart from being a competitive advantage, achieving the AS9100D is a significant milestone for AFS and our parent companies. This certification validates our commitment to drive the development of aerospace applications and deliver reliable and precisely engineered solutions. It gives us immense pride in attaining this globally recognized mark of excellence.”

With the AS9100D certification for an AM part provider, aerospace manufacturers can enable partnerships and strengthen confidence in collaborating with AFS to advance next-generation aerospace MRO solutions. AM parts have proven their improved material properties, to deliver better performance, efficiency and flexibility in aerospace manufacturing, design, and supply chains. These parts must also meet requirements from international organizations such as the European Union Aviation Safety Agency (EASA).

                                                                                                                Image courtesy of Additive Flight Solutions

In other partnerships to advance AM in aerospace MRO, Oerlikon is working jointly with Lufthansa Technik to accelerate AM in MRO applications, EOS is doing the same with Etihad Airways Engineering for cabin parts, and so is Pratt & Whitney working with ST Engineering for aero-engine components. Similarly, Air New Zealand is working with Arcam EBM to produce metal AM parts for aircraft interiors, MRO tooling and product development. Premium Aerotec and Materialise have partnered with Airbus to supply metal and polymer parts respectively. Stratasys has also partnered with Marshall Aerospace and Defense Group to 3D print flight-ready parts as well as ground-running equipment.

The post Additive Flight Solutions Awarded AS9100D Certification for Commercial Aircraft 3D Printing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Titomic Signs Agreement with Airbus to Make 3D Printed Metal Demonstrator Parts

Global aerospace leader Airbus develops, creates, and delivers innovative solutions in the commercial aircraft, defense, helicopter, space, and security sectors, and has long been a champion of using additive manufacturing to do so. Airbus installed its first 3D printer back in 2012, and used its first metal 3D printed part – a titanium bracket – in one of its commercial jetliners just two years later. Now, over 1,000 3D printed parts are used in its A350 XWB aircraft.

In order to deliver 3D printed aerospace solutions, the European aircraft manufacturing giant has partnered up with many big names in the industry, from Local Motors and Materialise to Premium AEROTEC and GE Aviation, and just today announced a new collaboration. Australian large-scale, industrial AM company Titomic has just reached a major agreement with Airbus, which will use the Melbourne company’s patented Titomic Kinetic Fusion (TKF) technology to demonstrate high-performance metal parts.

“We are pleased to partner with Airbus for this initial aerospace part made with Titomic Kinetic Fusion® (TKF), the world’s largest and fastest industrial-scale metal additive manufacturing process,” stated Titomic CEO Jeff Lang in a press release. “The TKF process ideally suited to produce near-net shape metal parts for the aerospace industry using our patented process of fusing dissimilar metals that cannot be produced with either traditional fabrication methods or metal-based 3D printers.”

TKF is the result of a Commonwealth Scientific and Industrial Research Organisation (CSIRO) study, when Australia’s government was looking to capitalize on its titanium resources. Titomic’s proprietary TKF technology platform uses a process similar to cold spray, and has no limits in terms of build shape and size. A 6-axis robot arm sprays titanium powder particles, at supersonic speeds, onto a scaffold in order to build up complex parts layer by layer.

Thanks to its unique AM technology, Titomic can provide its customers with production run capabilities, which helps rapidly create excellent products, with decreased material waste, that have lower production inputs.

“3D printing, of which TFK is the leading technology, has the potential to be a game changer post the global COVID-19 pandemic supply chain disruption as aircraft manufacturers look to reduce production costs, increase performance, improve supply chain flexibility and reduce inventory costs, and TKF, co-developed with the CSIRO, can be an integral part of this change,” said Lang.

“Regulations force aerospace manufacturers to provide spare parts for long periods after the sale of an aircraft, so it’s not rocket science to assume they will be early adopters of 3D printing solutions for spare-part management.”

The Titomic Kinetic Fusion process involves a 6-axis robot arm spraying titanium powder particles onto a scaffold at supersonic speeds.

TKF technology could be crucially important for aircraft manufacturers, like Airbus, as the field of aviation is one of the largest customers of titanium alloy products. That’s why Titomic has invested in further developing AM so it can meet the material, process, and design qualification system that’s required by the European Aviation Safety Agency (EASA) and the US Federal Aviation Administration (FAA). The company will work to develop TKF 3D printing material properties and parts process parameters for Airbus.

This agreement, the future delivery of the 3D printed demonstrator parts to Airbus, and a technology review process of said parts, all validate the certification process that Titomic’s government-funded IMCRC research project, with partners RMIT and CSIRO, is currently undergoing.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

The post Titomic Signs Agreement with Airbus to Make 3D Printed Metal Demonstrator Parts appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

AFRL and University Partners Used 3D Printed Composite Materials to Make Structural Parts

The Air Force Research Laboratory (AFRL), located at Wright-Patterson Air Force Base (WPAFB) near my hometown of Dayton, Ohio, has long been interested in using 3D printing and composite materials for the purposes of aerospace applications. Last year, AFRL’s Composites Branch at the Materials and Manufacturing Directorate partnered up with researchers from the University of Arkansas, the University of Miami in Florida, Louisiana Tech University, and the University of Texas at El Paso (UTEP) to work on advancing 3D printable composite materials.

The Composites Branch works on the research and development of organic and ceramic matrix composite technologies for legacy, developmental, and future Air Force system components. Together with its university partners, the AFRL branch demonstrated 3D printed composite materials, made from a combination of carbon fiber and epoxy, which had been successfully fabricated and used to make structural parts on both air and space craft. The results of this 3D printed composite material effort will soon be published in a special issue of the Journal of Experimental Mechanics that’s dedicated to the mechanics of 3D printed materials.

Dr. Jeffery Baur, leader of the Composite Performance Research Team, said, “The potential to quickly print high-strength composite parts and fixtures for the warfighter could be a tremendous asset both in the field and for accelerating weapon system development.”

Composite materials are made up of two, or sometimes more, constituent materials that have very different chemical or physical properties. When combined, these components produce a new material that has characteristics which are different from the originals. The individual components that make up the composite will remain distinctly separated within the final material structure.

When compared to the more low-quality polymers that are typically used in 3D printers, the composite materials demonstrated by AFRL and its partners are the same type that are already being used to make Air Force system components. These materials are very strong, while also lightweight, and have higher thermal and environmental durability than most.

Most traditional epoxy and carbon fiber composites are made by layering carbon fiber sheets, coated with epoxy resin, on top of each other. Then, the whole thing is cooked for hours in a costly pressure cooker to finish. The major downside to this method is that it’s more difficult to create parts that have complex shapes when sheets are being used.

This is where additive manufacturing comes in. Composite materials that are 3D printed are able to create parts with those complex shapes, and additionally don’t require the use of long heating cycles or expensive pressure cookers. On a materials level, there aren’t a whole lot of downsides to using composites for the purposes of producing, assembling, or repairing parts for the Air Force, whether at the depot or out in the field.

Military branches in other countries are also seeing the benefit of 3D printable composite materials. For example, engineers in India are manufacturing complex core structures using the composite 3D printing process; when combined with top and bottom face sheets, these structures will create lightweight sandwich structures that have properties tailored specifically to, as AFRL put it, “the physical forces that need to be carried.”

Conventionally fabricated sandwich structures use the same core geometries over the entire area of an aircraft skin, but a 3D printed version would be able to stand up under heavier forces when necessary, while also remaining lightweight in other parts of the skin.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Source: Dayton Daily News]

3D Printing News Briefs: October 13, 2018

We’ve got business and education news galore in today’s 3D Printing News Briefs. First, Voodoo Manufacturing has launched its new Shopify app, and BeAM Machines is partnering with Empa, while Sculpteo is working with a property developer to provide 3D printed apartment models. VSHAPER has signed an agreement with educational publisher Grupa MAC, and the United Arab Emirates is introducing 3D printing into over 200 of its primary schools. The US Navy will be testing the first 3D printed ship component, and Lufthansa Technik has established a new Additive Manufacturing Center. Finally, maker Thomas Sanladerer shared on YouTube about his recent visit to the Prusa headquarters.

Voodoo Manufacturing Launches Shopify App

This spring, high-volume 3D printing factory Voodoo Manufacturing began its full-stack manufacturing and fulfillment service for 3D printing entrepreneurs, which allows users to outsource work like quality control and assembly for their products through its easy shopfront integrations with online marketplaces like Shopify. Now, the company has launched its own Shopify app, which will allow online sellers to create and customize 3D printed products and sell them on their own Shopify stores. Once the app is installed, users can make their first product in less than 5 minutes, which is then automatically added to their store, ready for purchase.

“We wanted to make it ridiculously easy for ecommerce stores to diversify their product offering with 3D printed products. By applying 3D printing to the print-on-demand business model, we are opening up an infinite range of product categories for Shopify merchants,” said Max Friefeld, the Founder and CEO of Voodoo Manufacturing. “The Voodoo app provides a new source of high quality, customizable, on-demand products, that don’t require any 3D design experience.”

Before the official launch this week, Voodoo piloted the service with a group of beta users, including It’s The Island Life by graphic designer and Guam native Lucy Hutcheson. She is already successfully selling six different products made with the help of the new Voodoo app.

BeAM Machines Partnering with Empa

BeAM, recently acquired by AddUp, has signed a research and development agreement with Empa, the Swiss Federal Laboratories for Materials Science and Technology. Together, the two will develop novel applications for BeAM’s powder-based Directed Energy Deposition (DED) technology, which uses focused thermal energy to fuse materials by melting them while they’re deposited. This makes parts manufacturing much faster. The partnership has come on the heels of Empa’s acquisition of a BeAM DED 3D printer, which is located at its Laboratory for Advanced Materials Processing in Thun and is used to integrate and test out innovative components.

Patrik Hoffmann, who leads the laboratory, said, “We are very excited to collaborate with BeAM’s engineers to push the boundaries of this innovative additive manufacturing technology and to develop a whole new range of applications for Swiss industries and beyond.”

Sculpteo 3D Printing Apartment Models

Together with Sculpteo, French property developer Valoptim is working to improve customer experience by providing clients with miniaturized 3D printed models of their future apartments when they sign their contracts, so they can better visualize and prepare for moving into their new home. These small, exact replicas give new owners an immersive experience, which is a definite value add. In addition, production of the 3D printed models is local, and can be done fast.

“Sculpteo uses the best machines and 3D printing processes on the market today. At first, we had the ambition to test the feasibility of 3D printing in the real estate sector. This innovative process has proven to be extremely interesting: the realistic rendering, with high-end finishes, allowed our clients to discover a miniaturized version of their future apartment enabling them to realistically imagine themselves living in it,” said Edouard Pellerin, CEO of Valoptim. “This innovation contributes to our business dynamic: constantly improving the customer experience.”

VSHAPER and Grupa Mac Sign Agreement

Polish 3D printer manufacturer Verashape has signed an agreement with Grupa MAC, the country’s top educational publisher, in front of Poland’s education curators at the recent Future of Education Congress. Per the agreement, Grupa MAC will use a network of educational consultants to distribute the VSHAPER GO 3D printers to kindergartens and other schools in the country. Grupa MAC recognizes that 3D printers are a good way to quickly present the effects of students’ learning, and the VSHAPER GO is the perfect choice, as it is easy to use and comes with an intuitive interface of SOFTSHAPER software.

“Classes with students are a perfect environment for the use of 3D Printing. Creating a pyramid model for history lessons, the structure of a flower or a human body for biology lessons are just a few examples, and their list is limited only by the imagination of students and teachers,” said Patryk Tomczyk, a member of the Grupa MAC Management Board. “We are happy that thanks to our cooperation with VERASHAPE, 3D Printers have a chance to reach schools through our network of educational consultants.”

3D Printing to be Introduced in UAE Primary Schools

Speaking of 3D printing in education, the Ministry of Education (MoE) for the UAE has announced that in early 2019, a country-wide introduction of 3D printing into over 200 primary schools will commence. As part of this new technology roll out, Dubai education consultancy company Ibtikar is partnering with Makers Empire, an Australian education technology company, to deliver a program that implements 3D printing and design. Makers Empire will supply 3D software, curriculum, teacher resources, training, and support to Ibtikar, which will in turn train MoE teachers to deliver the program.

“Through this rollout of 3D technology, our students will learn to reframe needs as actionable statements and to create solutions to real-world problems,” said HE Eng. Abdul Rahman of the United Arab Emirates Ministry of Education. “In doing so, our students will develop an important growth mindset, the skills they need to make their world better and the essential ability to persist when encountering setbacks.”

US Navy Approves Test of First 3D Printed Shipboard Part

USS Harry S. Truman

The US military has long explored the use of 3D printing to lower costs and increase the availability of spare parts. Huntington Ingalls Industries, the largest military shipbuilder in the US, has also been piloting new technologies, like 3D printing, as part of its digital transformation. In collaboration with the US Navy, the company’s Newport News Shipbuilding division has worked to speed the adoption of 3D printed metal components for nuclear-powered warships. This has led to an exciting announcement by the Naval Sea Systems Command (NAVSEA): a metal drain strainer orifice (DSO) prototype has officially been approved as the first 3D printed metal part to be installed on a US Navy ship. The assembly is a component for the steam system, which allows for drainage and removal of water from a steam line while in use. The 3D printed DSO prototype will be installed on the USS Harry S. Truman in 2019 for evaluation and tests. After one year, the assembly will be removed for inspection and analysis.

“This install marks a significant advancement in the Navy’s ability to make parts on demand and combine NAVSEA’s strategic goal of on-time delivery of ships and submarines while maintaining a culture of affordability. By targeting CVN 75 [USS Harry S. Truman], this allows us to get test results faster, so-if successful-we can identify additional uses of additive manufacturing for the fleet,” said Rear Adm. Lorin Selby, NAVSEA Chief Engineer and Deputy Commander for Ship Design, Integration, and Naval Engineering.

Lufthansa Technik Opens New Additive Manufacturing Center

Lufthansa Technik, a leading provider of maintenance, repair and overhaul (MRO) for civil aircraft, has established a new Additive Manufacturing Center. The goal of the new AM Center is to bundle and expand the company’s experience and competence with the technology, which can be used to make individual parts more quickly and with more design freedom. As the world of aircraft is always aware of weight, making more lightweight parts is an excellent benefit of 3D printing.

“The new AM Center will serve as a collaborative hub where the experience and skills that Lufthansa Technik has gained in additive manufacturing can be bundled and further expanded,” said Dr. Aenne Koester, the head of the new AM Center. “The aim is to increase the degree of maturity of the technologies and to develop products that are suitable for production.”

Tom’s 3D Visits Prusa Headquarters 

Maker Thomas Sanladerer, who runs his own YouTube channel, recently had the chance to tour the Prusa Research headquarters in Prague. Not only did he get the opportunity to see how the company makes its popular MK3 and and MK2.5, but Sanladerer was also able to see early models of the company’s recently announced SL1 resin 3D printer, as well as the Prusament filament production line.

“I always find factory tours like this super interesting because it’s the only chance you really get of seeing behind the scenes of what might really just be a website, or you know, a marketing video or whatever,” Sanladerer said in his video.

Sanladerer took the tour of the Prusa factory right after Maker Faire Prague, which the company itself organized and sponsored. To see behind the scenes of Prusa for yourself, check out the rest of the video below:

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

GE Aviation 3D Prints 30,000th Metal 3D Printed Fuel Nozzle at Auburn, Alabama Plant

GE Aviation will always be known for its 3D printed fuel nozzles, which it began producing in 2015. The complex components became something of a symbol for how 3D printing can change manufacturing, and this week GE Aviation hit a milestone – it produced its 30,000th 3D printed fuel nozzle at its Auburn, Alabama plant.

“This milestone isn’t just about reaching production of 30,000 fuel nozzle tips,” said Ricardo Acevedo, plant leader for GE Aviation Auburn. “The team should also be proud for their role in helping prove additive technology works in mass production for our business and others who buy GE technology.”

In 2014, GE announced plans to invest $50 million into its existing 300,000-square-foot Auburn facility, in preparation for taking on more additive manufacturing. The facility now has more than 40 3D printers churning out parts, and 230 employees currently work at the plant, which is continuing to grow. The number of employees is projected to grow to 300 in 2019.

A fuel nozzle is part of any engine that runs liquid fuels. It is responsible for spraying fuel into the engine, and it needs to be strong and capable of withstanding high temperatures, not to mention precise so that it can release the right amount of fuel at the correct rate. It’s a complex component, one that used to be made up of many parts – about 20, in fact, and those parts had to be separately manufactured and then welded together. By using 3D printing, GE Additive was able to produce the entire component, with all of its twisting geometry and interior chambers, in one single part.

Not only did 3D printing save an incredible amount of labor and time, but it also reduced the weight of the fuel nozzle by 25% and made it about five times stronger. Both the 3D printing and aviation industries, understandably, lost their minds a little bit when they learned about what GE Aviation had done. Thousands of orders immediately poured in for GE’s LEAP engine, which was equipped with the 3D printed nozzles, and the component became part of countless presentations as a tangible example of what 3D printing could do.

The LEAP engine is the best-selling engine in the aviation industry, and the 3D printed nozzles saved a remarkable $3 million per aircraft. LEAP engines are known for their fuel efficiency, which is up to 15 percent better than the best CFM56 engines. Total LEAP engine orders are currently at over 16,300. The engines are a product of CFM International, a joint venture between GE and Safran Aircraft Engines.

“We’re leading the way of mass producing additive parts for the industry,” said Acevedo. “We’re continuously looking at ways of expanding the possibilities for the business.”

And the business will be expanding. Earlier this year, GE Aviation opened a new $200 million factory complex in Huntsville, Alabama that will be America’s first production center for unique materials used to manufacture ceramic matrix composites, or CMCs. CMCs are extremely lightweight and can withstand very high temperatures, so they’re a major source of excitement for the aircraft industry right now. GE Aviation might be taking a moment to celebrate its 30,000 fuel nozzle milestone, but it certainly isn’t pausing its work.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Source: Made in Alabama/Images: GE Aviation]

 

 

US Air Force Base in Utah Creating 3D Printed Replacement Parts for F-35 Fighter Jets

The US military has not shied away from implementing modern manufacturing methods such as 3D printing, but has actually embraced the technology. In fact, the US Air Force has used 3D printing for multiple projects, including components for aircraft and fighter jets, such as the F-35. This is what’s known as a next-generation fighter, and the 388th Maintenance Group of the Hill Air Force Base in Utah recently began 3D printing specific replacement parts for the F-35. Base officials are hoping that the technology will help to lower costs and increase availability.

Many branches of the military have turned to 3D printing to make replacement parts for those very same reasons.

“We’re always driving for speed, safety and quality. But cost-effectiveness is also a priority,” said 388th MG commander Col. Michael Miles. “This new tech has great cost-avoidance potential and provides rapid repair capabilities.”

Tech Sgt. Scott Mathews, assistant manager of the 388th Maintenance Group’s Air Force Repair and Enhancement program, makes adjustments to a 3-D printer the unit is experimenting with to create pieces and parts faster and more cost-effectively. [Image: Todd Cromar]

According to Tech. Sgt. Scott Mathews, assistant manager of the 388th MG’s Air Force Repair and Enhancement Program, early returns are showing that when his shop gets in damaged parts that are able to be reproduced through 3D printing, they are then able to be introduced into the supply chain with greater speed and at lower cost.

Tech. Sgt. Mathews explained, “It’s much more cost effective for the Air Force than buying new parts.”

One of the first items the team at the 388th MG created was a small-scale replica of the F-35 fighter jet. But now they’ve moved onto 3D printing simple plastic replacement parts, such as cable splitters, fasteners, grommets, housing boxes, and wiring harnesses. Tech. Sgt. Mathews said that many areas of the shop have figured out how to make the 3D printing easier to work with by “getting away from a lot of fancy metals and getting into composites and plastics.”

F-35 [Image: Lockheed Martin]

However, the technology is still young in the shop at Hill AFB, and the unit’s airmen are using trial and error to refine things, including using computer software to make their own in-house designs. There are even signs that they could manufacture more complex parts out of stronger materials in-house one day.

“There’s one printer (where) you can print with aluminum. That opens up a whole new world of opportunities,” said Tech Sgt. Matthews. “When you look at all of the different parts we could manufacture … it just boggles the mind, the things we could (make) on base. It’s just insane.”

The first two F-35 fighter jets arrived at Hill AFB in September of 2015. But, by the end of 2019, there will be three whole fighter squadrons, made up of a total of 78 jets, on the base. The active duty 388th Fighter Wing and the reserve 419th both fly and maintain the jets, while the Ogden Air Logistics Complex on base performs maintenance on all of the F-35s. Hopefully, 3D printing can soon be used to help with all of this maintenance.

Tech Sgt. Matthews said, “There’s a sense of pride knowing you played at least a minuscule role of getting them airborne.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Source: Standard Examiner]