Architecture Intelligence Research Lab at SUTD Installs 3D Printed Pavilion for Mid-Autumn Festival

The first fully functional 3D printed structure was designed and built in Singapore recently by students under the direction of architects and professors at Singapore University of Technology and Design (SUTD). The research group, Architecture Intelligence Research Lab (AirLab), at SUTD, created the structure—called AirMesh—and installed it for use as a pavilion at Gardens by the Bay. This site also coincides with the Mid-Autumn Festival 2019.

Airmesh has been in the works for five years now at SUTD with Professors Carlos Bañon and Felix Raspall. Employing the most classic benefits of 3D printing, the group’s goal was to create products with ‘extreme lightness’ as well as making a structure optimized for high performance. The team worked together from a common point of inspiration: a 3D neural network concept that is not only interconnected but ‘extremely redundant.’

The design makes up the world’s first space frame, following Eurocode regulations, approved by Singapore Building Construction Authority (BCA) for a short time of occupation. The ‘digitally-crafted belvedere’ will be installed and open to visitors for the following three years.

“As the first of its kind, it fosters Singapore’s design and innovation edge. AirMesh structural prowess pushes the limit of slenderness and therefore aims to inspire dare and curiosity in users,” said Bañon, Lead Designer.

The designers were able to create the lightweight structure due to the tetrahedral configuration, bearing the load of 200 linear elements coming together in 54 parametric bespoke 3D printed nodes. Described also as an ‘ethereal pavilion,’ the structure is situated on a green slope, attached in eleven points. Its convex hull is meant to connect visitors to the following four points as the breeze and sunshine flow through:

  • The Dragonfly River
  • The SG50 Dome
  • Entrance path
  • Marina Bay Sands rooftop

Two layers of white netting adorn the structure, along with LED lights illuminating it at night.

“As the first of its kind, it fosters Singapore’s design and innovation edge. Airmesh structural prowess pushes the limit of slenderness and therefore aims to inspire dare and curiosity in users,” said Bañon.

The space frames designed here required a new level of freedom, innovative tools, and progressive technology. Assembly took two days, with manpower requiring only five as they assembled the whole pavilion, which weighs 700kg.

“Over five years, we have developed a system whereby any form can be conceptualized, fabricated and assembled by means of computer code created in our lab. It unlocks immense possibilities for future architectural designs like transportation hubs, large span roofs, and even skyscrapers,” said Anna Toh Hui, Lead Researcher, Airlab SUTD.

The research team consisted of Anna Toh Hui Ping, head researcher, working with David Rosen, Vahid Hassani, Jenn Chong, Sourabh Maheshwary, Sihan Wang, Liu Chi, Huang Kunsheng, Luo Qihuan, Aurelia Chan, and Cheong Yilei.

“With this new milestone, SUTD is proud to put Singapore at the forefront of innovation in high performance 3D printing in architecture and structural design,” said Bañon.

One of the most fascinating aspects of 3D printing today is the potential offered in architecture, whether users are creating prototypes for walls and arches, homes of the future, or even creating interactive living structures. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: Singapore University of Technology & Design]

The post Architecture Intelligence Research Lab at SUTD Installs 3D Printed Pavilion for Mid-Autumn Festival appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Spain’s National Archaeological Museum and Acciona Presented The First Romanesque Arch Printed in 3D

Collections of objects are normally exhibited behind enclosed glass displays to prevent people from touching them. Considering these objects are fragile and have a great historical value, museums have to undertake the necessary requirements to protect them. With 3D printing, this is changing. Replicas are being 3D printed, allowing visitors to touch them.

Image via Factum Foundation

Replicas might spark discussions about the originality of the art pieces, since their reproductions may be considered as “fake”, or even about the right to capture and to distribute online models that anyone can later print them. However,  3D printed replicas let visitors enjoy and appreciate artworks better, and learn more about cultural heritage. For example, in 2017, Tutankhamun’s tomb in the Valley of the Kings in Egypt, was recreated by Factum Arte which allowed visitors to experience the inside of the tomb, without harming the original burial site.

This month, Spain’s National Archaeological Museum and Acciona (a global renewable energy, infrastructure, water, and services company) marked a milestone by 3D printing the Romanesque Arch of San Pedro de las Dueñas. The arch is already a part of the museum’s collection, but the 3D printed replica is now located in the museum’s garden. The arch was created to contribute to technological advances in conservation techniques, and also for the preservation of Spain’s historical heritage.

Image via Acciona

The Arch of San Pedro de las Dueñas is a lasting example of Romanesque architecture. The arch was formerly part of the San Pedro de las Dueñas Monastery, which was built in the late 10th century and the beginning of the 11th century. It stands in the Castile and León region of Northwestern Spain.

San Pedro de las Dueñas Monastery via Arquivoltas

At the presentation ceremony, the director of the National Archaeological Museum, Andrés Carretero, stated that the development “puts the Museum to the forefront worldwide in the application of new technologies to the disseminating and preservation of cultural heritage.”

Original Arch – Photo by Martius on Flickr

Acciona’s executive vice chairman, Juan Ignacio Entrecanales, expressed the importance of this joint project between Acciona and the National Archaeological Museum, which has demonstrated the “immense potential that new technologies, such as 3D printing, have for the preservation, dissemination, restoration, and accessibility of cultural heritage”.

The arch stands in the garden at 2.2m tall by 3.3m wide. It was reproduced using the D-Shape technology, which is a 3D printing technique that uses concrete binder jetting. According to Acciona, the material’s durability makes it possible to achieve the architectural reproduction they were looking for, which is suitable for outdoor locations thanks to its resistance to weather conditions.

The 3D Printed Arch via Revista de Arte

“The possibility of obtaining exact replicas means that the public can approach the reproduction while the original is preserved. This technology also makes it possible to reproduce pieces in their original locations while the original is preserved in appropriate facilities”, says Acciona.



Acciona has also digitalized 30 medieval items of Spain’s National Archaeological Museum to allow visitors to manipulate them through an interactive screen. Ranging from the 4th to the 15th century, some of these digitalized items include: the Crucifix of Ferdinand and Sancha (León), the Aquiliform fibula Alovera (Guadalajara), and the brass Astrolabe of Ibrāhim ibn Sa’īd al-Shalī (León). Acciona believes that the digital models will assist perfectly in future restorations, for technology makes it possible to replicate artwork through 3D printers.

Sources: [Acciona, Spotting History]

Interlayer Adhesion Improvements for 3D Construction Printing

Interlayer adhesion is a common problem that users often battle in 3D printing, and Swinburne University of Technology researchers Taylor Marchment, Jay Sanjayan, and Ming Xia address the topic further in ‘Method of enhancing interlayer bond strength in construction scale 3D printing with mortar by effective bond area amplification.’

Since 3D Printing builds up objects layer by layer parts will fail at the weakest point: there where the layers bond. 3D Printed parts under stress will tend to come apart at these points. Any improvement to inter layer bonding will be an improvement to the strength of the part.

The authors point out that 3D printing is still relatively new in terms of development—and especially 3D construction printing (3DCP) with numerous challenges to meet, and especially in extruding with cementitious materials. This type of weakness is attributed to localized voids within the mixture created between the time that layers are deposited by the 3D printer. The goal of the research team was to find a way to strengthen interlayer bonds with a cementitious paste.

Lack of reinforcement for providing tensile strength and weakness due to application of layers are the primary challenges in 3D printing durable structures.

“3DCP brings about many new constraints and factors that can create a weak interfacial bond or often termed “cold joint” due to the lack of intermixing between layers,” state the researchers. “Predominately major influencing factors are the stiffness/dryness of the deposited layer, and the time gap between successive layer depositions.”

Swinburne University of Technology

Interlayer strength may deteriorate by as much as 50 percent due to drying out during the process:

“As the phase change requirements of the 3D printed concrete are succumbed to shape retention and the sequential loading of fresh layers, the interlayer strength quality becomes a balancing act of the drying rate.”

Adhesion may occur either in mechanical or chemical bonds, either in relation to physical layer attributes or the hydration and bonding of cement particles, respectively. Mechanical factors causing voids are due to surface roughness and stiffness of layers. In the research study, the team used a flatbed scanner to examine layer issues further.

Because drying is such an issue, the research team realized they would have to either decrease the void structure or increase the contact area, with the hope that better moisture levels would encourage improved adhesion. Previous analysis techniques have not only been time intensive but have also proven to damage samples and sometimes cause ‘misleading results’ too. The researchers decided to use flatbed scanners for examining issues in a less invasive but also cheap and fast method.

In attempting to make a glue for stronger adhesion, the research team used four OPC-based paste mixtures, with a water to binder ratio of 0.36, used between the layers.

“The paste mixtures were developed to primarily increase the effective bond area, with a more malleable interface compared to conventional layer by layer construction,” said the researchers. “Three admixtures including retarder, viscosity-modifying agent and slump-retention agent were used in this study.”

(a) Mortar mix being extruded from 45° angle nozzle without a paste mixture between, (b) 50 mm (L) × 30 mm (W) × 30 mm (H) samples with and without a paste mixture applied between layers. (c) A schematic of the proposed twin nozzle extruder depositing the paste layer and 3D printed layer.

A customized 3D printer, developed with a piston-based extruder, was used in the research, with a time gap interval of 15 minutes in between each layer. Samples were left to cure at ambient temperature for seven days and cut into 50 mm (L) × 30 mm (W) × 30 mm (H) blocks for testing. Adhesion of bonds was tested by using clamps with two centrically loaded pin connections.

The 3D printed paste proved to have the highest resistance to flow, and the lowest average compressive strength, at 34 MPa.

“The analysis is done on the basis that the compressive and tensile strengths are strongly correlated,” state the researchers. “The 3D printed mix will have an inherently lower interlayer bond capacity therefore, samples fabricated with no paste applied at the interlayer, we must factor this difference and contact area.”

The researchers note ‘uniform fracture’ at the interlayer for all samples, along with fractures in between both the overlay and paste layer. They also note that fractures occurred on the areas exposed to the most surface drying. Data also showed that interlayer strength increased with the paste layer:

“The addition of pastes containing additives shows and interlayer strength increase of 26% to a 59%. The highest increase was observed with the addition of superplasticiser. These results replicate similar trends observed in the flowability and compressive strength tests.”

The researchers considered the concept—and the strength—of brick and mortar as they brushed on a variety of cement pastes between the layers with different color schemes for ease in analyzing the images. In the end, they realized the following:

  • Using paste with higher, sustained flow characteristics increases strength in layers during 3D printing.
  • More reliable and consistent results were available in analysis due to the addition of color in the layers.
  • The effective bond area and interlayer strength are closely related.

“The assumption at first was that the higher flowability of the paste mixtures would allow for a greater malleable surface area, in turn creating a greater effective bond area,” concluded the researchers. “However, through this study further evidence is produced to suggest that it is not only the flowability/malleability of the paste which is critical, but the surface moisture retention is also another critical factor. The effects of this may be lack of moisture decreasing the degree of hydration and lowering of strength.”

The study of materials and strength in 3D printing is becoming a priority to researchers seeking better quality and predictability in parts, along with research into other areas like concerns about toxins and emissions. What do you think of this news? Let us know your thoughts; join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Results of application of colour thresholding. (a) Top Image before thresholding, (b) Top Image after thresholding, (c) Bottom Image before thresholding, (d) Bottom Image after thresholding.

[Source / Images: ‘Method of enhancing interlayer bond strength in construction scale 3D printing with mortar by effective bond area amplification’]

Arthur Mamou-Mani’s 3D Printed Architectural Brick Installation to be Featured at 2019 Salone del Mobile

The 58th Salone del Mobile will be held in Milan April 9-14. (Image: Salone del Mobile)

We want our designs to be magical, ethereal and trigger instant curiosity. To achieve this we use mathematics and physics through algorithmic and parametric design to maximise inexpensive materials.”– Mamou Mani Ltd Architects.

Collection of Style, most commonly known as COS—and headquartered in London—is gearing up for the 58thSalone del Mobile, in session from April 9-14 with an international focus on three different style categories: Classic (Tradition in the Future), Design, and xLux. Each year around 330,000 attendees enjoy the show, representing 165 different nations. Commissioned in collaboration with COS, Arthur Mamou-Mani will be enticing event-goers this year with an architectural installation featuring 3D printed bricks formed into pyramids. They will wind all the way from the main courtyard of the Palazzo to the back garden.

Arthur Mamou-Mani (Image: Mamou-Mani Ltd Architects)

This is not the first time we have followed the Salone del Mobile in parametric design, as they pushed design boundaries with 3D printing in previous years, but Mamou-Mani explained to Architectural Digest that this year’s installation will be centered around a repeating form that offers a “contrast between the permanence of the palazzo’s marble and stone and the impermanence of the bioplastic.” The design plan will also include an onsite 3D printer, along with other interactive items for attendees to experience.

“We wanted to create a journey from the interior to the exterior,” explains Mamou-Mani.

Mamou-Mani is famous for his Burning Man installation from 2018, featuring a vaunted central temple named Galaxia, thus garnering the attention of architectural enthusiasts around the world—and the higher-ups at fashion brand COS.

Temple Galaxia – Burning Man 2018 with all of the participants surrounding the Temple shot via a drone – Photo by Alex Medina (from Mamou-Mani Ltd Architects website)

Karn Gustafsson, creative director explained why they wanted to bring in Mamou-Mani for Salone del Mobile this year:

“The common threads of inspiration this year were new craft and innovation.

“What we liked about his work was that the process informed the end result—which is how we work as well.”

Mamou-Mani’s interest in 3D printing has not just been fleeting either. His London firm features FabPub, an open maker space where Londoners can learn about 3D printing and digital design.

His work is centered around the use of natural materials, however:

“There is an awareness of materials that is starting to come back in architecture.

“Bioplastics have a much lower carbon footprint than conventional plastics, and unlike petrol-based plastic, they are entirely compostable.”

With 3D printing of the project occurring right at the installation site, both production and pollution costs are diminished too.

“I really appreciate COS’s approach to risk-taking on this project and their openness to collaboration,” says Mamou-Mani. “That is the environment you need to truly innovate.”

Mamou-Mani’s FabPub in London (Image: FabPub)

Mamou-Mani’s architectural and design presence at Salone del Mobile will highlight more than just 3D printing but also how the study of materials science is propelling innovation today. If you have been following our stories over the years—or just recently even—you may be aware of how much research is being invested in studies comparing the now ubiquitous ABS plastics over recyclable vegetable-based PLA, or the popularity of metals, mechanical metamaterials and other alternative but extremely useful materials like concrete.

Environmental concerns along with worries over toxicity and particle emissions continue too. Engineers, artists, and designers around the world are bringing all these interests forward in many different venues—and some, like the Salone del Mobile, are much more glamorous than others!

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source: Architectural Digest]

Google, Stratasys and CyArk Use 3D Scanning and 3D Printing to Preserve Cultural Heritage

Google Arts and Culture is collaborating with Stratasys and non-profit CyArk to preserve 3D scans and 3D prints of some of the world’s most cherished heritage sites. Google’s Open Heritage Project lets you virtually explore sites from all over the world through a fun and immersive experience. Myanmar’s Bagan, the Brandenburger Tor in Berlin, Chichén Itzá you can be an armchair explorer in each of them. Test it out by flying through some of the sites here

Wat Yai Chai Mongkhon Temple Thailand.

What’s more, the files are available for download so that teachers in classrooms or museums worldwide can show them off. Kinesthetic learners, the curious and the idle can use them to play with and touch some of the world’s most notable sites. The parts have been crafted for the J750 3D printer which can do multi-color and multi-materials.

The company says that,

Google Arts and Culture is the restoration of rare plaster casts initially discovered by A.P. Maudslay during the late 1800s in Guatemala. For more than 100 years, these relics were housed across storage facilities in the British Museum. By leveraging 3D laser scanners to virtually re-assemble each, designers successfully reconstructed these items in physical form with Stratasys 3D printing – later allowing representations to be easily viewed by a wider audience online.”

An impression of Stela E of  the Mayan Quirigua site in Guatemala taken by Alfred Maudslay

Alfred Maudslay went to Quirigua in 1881 and was enthralled by the Mayan civilization and the remote Quirigua site. In total, he would undertake six Mayan expeditions. Above in the image, we can see an impression of Stela E of the Quirigua site. Over ten meters tall it was erected on the 22nd of January in 771 AD. From then on it let all passers-by know that the ruler K’ak’ Tiliw Chan Yopaat ruled here.

“From the beginning, Maudslay understood that a three-dimensional record would be needed if the surviving Maya remains were to be fully analysed by future generations of archaeologists and epigraphers. To this end, he set about producing a complete set of moulds of the monoliths. Once shipped back to London, the moulds and resulting plaster casts were used to produce exact drawings of the glyphs, which were published with the photographs in his Archaeology (1889–1902), later bound to form a comprehensive record of the Maya ruins of Central America. The result was a magnificent work of documentation which, in the words of Maudslay’s biographer, is ‘valued as highly by modern scholars as it was by their predecessors a century ago’.

In the 1880s archeology, especially of a remote foreign site was far more Grand Theft Auto than it is today. At the time Mayan culture was little understood in the West and Mandalay’s exploration of the site, excavation and impressions were instrumental in our understanding Mayan language and culture. Mayan stelae can be found throughout Mayan lands sometimes standing ten meters or more these objects are thought to tell histories and reinforce Mayan rule. Celebrating kings and commemorating events these stelae gave real insight into the politics of Mayan life. The important Quirigua site also held squat zoomorphs or animal inspired shapes that show gods in the Mayan world. By taking their impressions and cataloging them in his tome; an impression of the site was transported around the world to be studied. Stratasys, Google, and CyArk are now doing a very similar much more high tech thing with 3D scanning and 3D printing. In Maudlays footprints they are finding a way to let us all study impressions of an unfathomable past.

Alfred Maudslay at Chichên Itzá.

Bryan Allen, a Design Technologist at Google, said: 

“The project was to explore physically making these artifacts in an effort to get people hooked and excited about seeing pieces in a museum or research context. That’s when we turned to 3D Printing.” “With the new wave of 3D Printed materials now available, we’re able to deliver better colors, higher finish, and more robust mechanical properties; getting much closer to realistic prototypes and final products right off the machines. When we talk to arts and culture preservationists, historians, and museum curators, they’re all absolutely amazed by the ability to fabricate these things with such high fidelity via 3D printing technology,”

Rafie Grinvald, Enterprise Product Director of Rapid Prototyping, Stratasys, said:

“Combining rich colors and translucency in a single print, designers and engineers can build models with heightened levels of accuracy and realism – mirroring opaque or transparent structures, and even complex materials like rubber.”

CyArk has already done some amazing work worldwide in 3D scanning many of the world’s most well-known objects. Will more 3D scans mean that one could at one point download a museum? In the past, we’ve written about 3D Printing being used to let the visually impaired feel exhibits, and how exhibits could be touched by everyone, seen how Berlin’s museums have used 3D printing and 3D scanning and seen how you can restore things through 3D scanning and printing,  We’ve also delved much deeper, looking into the ethics of 3D scanning exhibits. Could we open up a 100 3D printed British Museums worldwide? Could every classroom have access to many of the world’s most important objects? What do you think?

An Assessment of the Conditions Needed for 3D Printing A Village on the Moon

For a few years now, the European Space Agency (ESA) has been talking seriously about building a habitable village on the moon, and 3D printing is a big part of that plan. Because construction supplies can’t be feasibly transported in a spaceship, building habitats on the moon would involve 3D printing them from materials found on the moon’s surface. In a paper entitled “Additive Manufacturing for a Moon Village,” a group of researchers examines the feasibility of 3D printing structures on the moon, and what 3D printing technologies might be used to do so.

Five different structure concepts are presented in the paper:

  • Spherical inflatable, a spherical pneumatic envelope with an interior structural cage to support the floors, walls and equipment
  • Tuft-Pillow, a structural concept that consist of quilted inflatable pressurized tensile structures using fiber composites
  • Lunar base cable structure in a crater, which would use natural features on the moon to reduce excavation and the amount of shielding that is needed
  • Three-hinged arch main structure, an efficient way of coping with structural requirements
  • Lunar lava tubes, which would involve building below the moon’s surface

The researchers discuss the idea of using in-situ resources, or regolith, the material found on the moon. Many simulations have been carried out already, with 3D printed structures being built from materials similar to those that naturally occur on the moon’s surface.

“Additive manufacturing techniques are required to be tested in analogues, because the Moon environment may affect both its operation and performance,” the researchers point out. “In particular, successful operation in vacuum with reduced gravity (approximately 17% of the Earth’s one) is crucial for the installation and later use of the machinery. In addition, the permanent exposition of the building to a harsh radiation environment as well as the micrometeorite striking should be assessed.”

The main characteristics that need to be reproduced for testing are chemical composition, mineralogy, particle size distribution and engineering properties. Moondust varies in constitution depending on where it is found on the moon, so those variations also need to be taken into consideration. The researchers then discuss the different types of additive manufacturing and how they could be applied to use with moon regolith, rejecting stereolithography, for example, as non-feasible with that kind of material. Powder bed fusion is highlighted as the best method, with lenses capturing solar rays replacing laser beams.

The researchers point to an experiment performed by Markus Kayser in 2010, in which beams of sunlight were used to 3D print sand in the desert. Using this method on the moon would require strategically locating the moon base in a highly sunlit area, such as the south pole, which has been proposed by the ESA.

“The Moon Village mission aims for the construction of a permanent base on the Moon surface capable of providing life-support for a long mission duration,” the researchers conclude. “Additive manufacturing techniques using in-situ resources have been considered an alternative to help the construction of the permanent base, because of the huge cost of sending mass to the lunar surface. The raw material to be used is the regolith, which can be broadly described as the dust obtained after centuries of micrometeorite striking. The Moon Village can be a suitable frame to further develop additive manufacturing, adapting it to solve the new challenges.”

Authors of the paper include Nuria Labeaga Martínez, M. Sanjurjo-Rivo, J. Díaz-Álvarez and J. Martínez-Frías.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

MX3D Metal 3D Printed Bridge on Display in Eindhoven During Dutch Design Week

MX3D has been working for a number of years on a metal printing technology specifically for bridges and large metal items. Incorporating machine learning and AI into the build process the company uses robot arms to layer by layer deposit metal. The company is using off the shelf robots and welding technology in combination and they can deposit over one Kilogram per hour per robot arm. By using six axis robots they tout their degrees of freedom they will have with these robots but they could potentially not be accurate (stiff as well as positioning accuracy) enough to give really stellar results.

What is very interesting is that they say that their printers are significantly cheaper and that they also use steels that are $5 per kilo. Started by Joris Laarman and supported by Autodesk MX3D is a very interesting technology for large outdoor objects. I really like it as a technology for printing rebar like structures for reinforced concrete and think that this is a great application for it. In addition to Autodesk, the company also works with Lenovo, Arcelor Mittal, ABB, Air Liquide and Arup the engineering company that makes starchitect’s dreams come true. Especially that partnership and the one with ABB who are giants in robot arms and other industrial automation give MX3D a real leg up on the competition. Dutch Design Week is one of the largest design events in the world, taking place every year in Eindhoven it has over 300,000 visitors attending the hundreds of design events and showcases each year.

MX3D today has showcased its bridge on the Ketelhuisplein in Eindhoven so people can see the future of construction up close. It is not huge but it is very impressive. Competition in house and outdoor printing will be heating up over the next few years. Many more players want large-scale objects that are not viable with current industries. Especially in shipbuilding, industry, construction and oil and gas, this is a wish. Few 3D printing technologies are designed to be economical as well and this will greatly increase application areas for this technology. For large scale printing, the most players either seem to be focussed on polymers, metal welding or concrete.

The problem with the polymers is shrinkage, lack of control, rough and ugly objects and reinforcement. Essentially they’re using off the shelf materials to try to make outdoor structures which is silly. Instead they need to make materials specifically for outdoor 3D printing applications. In that way, they can insulate, build faster and build more functional objects. In welding process control is a real problem and objects are barely held together cheez whiz metal kinds of things.

Better closed loop type things and advances in machine vision and controlled cooling need to happen here. In concrete 3D printing, there are more liars than actual practitioners and we will need to lose the tricksters for that market to advance. Apart from that lack of good layer adhesion is an issue here. If this is the year of metal printing can 2020 be the year of large-scale printing?

Branch Technology and Techmer PM Unveil a 3D Printed Band Shell and Hanging Gardens

Branch Technology has been on the radar for a few years, since it introduced its patented Cellular Fabrication, or C-Fab, technology. The company’s motto is “Build Like Nature,” and it takes inspiration from the way that nature fabricates to create its strong walls. Its 3D printer utilizes a large robotic arm to build freeform in open space, which allows it to create massive structures such as buildings.

Branch Technology has worked with Techmer PM, a manufacturer of polymer colorants and additives, in the past; the two companies teamed up for the NASA 3D Printed Habitat Challenge and were among the winners in more than one round. Now Branch and Techmer have worked together again for a new pair of projects that demonstrate both the strength of Techmer PM’s materials and the effectiveness of Branch Technology’s building methods.

The latest project is an outdoor band shell in Nashville that measures 42 feet in diameter and is more than 19 feet tall. According to Techmer PM, it’s the largest free-form 3D printed structure in North America. The shell is made up of 36 parts, is more than 18 feet long and fills a volume of 61.5 cubic feet. The project, called One City, involved Branch Technology 3D printing its longest unsupported component yet – a 42-foot-long span that gains its strength from optimized geometry and requires no structural steel.

“The pavilion at OneCity embodies the potentials of large-scale 3D printing. It represents an intersection of design freedom, structural optimization and resource stewardship,” Melody Rees, Designer, Project Management for Branch Technology, told 3DPrint.com.

The band shell is 3D printed from Techmer PM’s Electrafil material, a carbon fiber-reinforced engineering plastic that is both lightweight and high-strength.

“Electrafil provides the highest strength and stiffness performance available in thermoplastic compounds, and those were the most important properties for this project,” said Alan Franc, Product Development Manager for Techmer PM.

Another recent project by the two companies is called Nature Clouds and was created for the Chicago Field Museum of Natural History’s 125th anniversary. According to Techmer, it’s the first free-form hanging garden installation created through 3D printing; the “clouds” are actually four hanging gardens comprising 3,940 pounds of 3D printed material and steel. They support vegetation, hydroponics, lighting, theatrical fog and sound equipment for a combined weight of 12,270 pounds. Each of the clouds can be raised or lowered if needed. They are part of a larger installation that includes several life-size dinosaur installations.

Branch Technology used a biopolymer formulated by Techmer PM to 3D print the structures.

“We created a compound specifically for the Field Museum’s Nature Clouds to meet their requirements for strength, flammability, and bio‐sourced resin,” said Franc.

Nature Clouds’ total volume is 756 cubic feet, with 279 total parts. The project was created as a kit of repeating parts capable of supporting more than 1,000 plants and plant life systems.

“Typical construction methods are constraining,” said Branch Technology founder and CEO Platt Boyd. “Custom complex form is prohibitively expensive and often inconceivable to manufacture. With C‐Fab, cost‐effective design freedom is democratized for all.”

C-Fab technology uses industrial robotics, carbon composite materials, and sophisticated algorithms to 3D print open-cell structures. It prints volumes as cellular matrices, which sets it apart from other 3D printed construction technologies, and uses a patented 3D printing head attached to a Kuka Robotics arm. The arm travels along a horizontal track, creating a build volume of 3,000 cubic feet. The process can 3D print components that are 8′ x 12′ x 30′, and individual components can be combined for virtually unlimited-size structures. It can also print with a wide variety of materials, many of those which have been supplied by Techmer PM.

“Branch Technology AM print-in-air process is unique. It’s capable of using various resin types and compounds but like most 3D printers, optimizing the material viscosity, flow rate, and crystallization rates are important factors for a successful print,” Tom Drye, VP Emerging Markets and Innovations for Techmer PM, explained to 3DPrint.com. “Techmer PM gathers necessary information up-front on the application: end-use requirements, print rate, and cooling speeds then designs a material to match those needs. Specialty compounds based on: ASA, ABS, PA12, PC, PETG, and others have been successful with the Branch Technology print process. Techmer’s 3D material portfolio and expertise extends broadly amongst the many differing printer types. It’s anticipated many could be customized to work on the Branch process in addition to those already listed.”

As 3D printed construction matures, it’s fascinating to see the different types of processes that emerge from different companies. Branch Technology doesn’t claim to be the fastest, but that’s refreshing in an atmosphere of competitors each claiming they can put up a 3D printed house faster than anyone else. Branch Technology, with help from Techmer PM, has certainly created an interesting variety of structures, showing off the versatility of its technology.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Images provided by Techmer PM]

 

Live Demonstration of ACES Concrete 3D Printing Technology at CERL to 3D Print Barracks: Part 3

As part of a three-year program called Automated Construction of Expeditionary Structures (ACES), last year the US Army 3D printed a complete barracks, also known as a B-Hut, out of a patented concrete mixture. The program is researching 3D printing as a way to build semi-permanent structures out of concrete, made from locally available materials – the goal is to reduce the amount of building materials that need to be shipped out by half, and decrease construction manpower requirements by 62%, when compared to expedient plywood construction.

Last week I was invited out to the Engineer Research and Development Center’s Construction Engineering Research Laboratory (CERL) in Champaign, Illinois for a live demonstration of the ACES technology…an invitation I was happy to accept. Last year’s B-hut took 21.5 hours to print, but that’s the total number of print hours, and wasn’t continuous. This time, the ACES team, with assistance from its project partner – Chicago-based architectural and engineering firm Skidmore, Owings, and Merrill (SOM) – and Marines from the 1st Marine Expeditionary Force, was going to attempt something new.

The ambitious plan was to complete the two halves of another barracks structure, completely out in the open and not covered by a tent, in 24 hours of continuous 3D printing. What moves the demonstration from ambitious to brave was the team’s decision to invite journalists to see the live print, and I’m not just talking about myself – I saw cameramen and reporters onsite from at least two different local TV stations.

The Marines were briefed on the specifics of the technology ahead of time, and ran the equipment themselves this week, as they will be the ones actually 3D printing the structures in the future if the program is successful. However, the ACES team and SOM were onsite in case they needed to offer any assistance, and that assistance was needed a time or two during the live demonstration.



Program manager Michael Case, PhD, told me that an issue with concrete is evaporation drying, so when the forecast showed rain, the start time was moved up a few hours, only to halt again pretty quickly once the team realized that they needed a new pump – the interior of the original one had been torn up by the sharper materials used during a live demonstration at Fort Leonard Wood a few months ago. Then the kinks needed to be worked out of the hose, and when the material didn’t extrude properly after the print began, the team removed the nozzle and discovered that a rock was inside messing up the flow.

The material mixture had to be adjusted after the first layer because it was too sloppy, at one point the nozzle was accidentally sent over to the side that wasn’t being worked on yet, and when steel dowels were added for initial reinforcement to the first several layers of 3D printed concrete, work began on the wrong side. But in spite of these minor setbacks, work continued through the night and Public Affairs Specialist Mike Jazdyk told me that there were very few clogs.

[Image: Mike Jazdyk]

On the morning of the second day of printing, Jazdyk told me that the ACES team would not make its original goal of a continuous, 24 hour 3D printed concrete barracks. A lot of this was due to concrete curing inside of the pump, which caused the equipment to shut down and cause some overnight delays. By the time I had to head for home, the team had nearly completed the first half of the structure and was planning to take several hours of much-needed rest before starting in on the second half. Jazdyk informed me that work would begin again around midnight.

I received a call from Jazdyk on Friday afternoon, and he told me that the ACES team had to stop the print due to equipment failure, but that they had managed to complete roughly 80% of the structure before this happened – this is easy to see in the image below.

[Image: Mike Jazdyk]

“What you see is 40 hours of printing,” Jazdyk told me about these four photos he sent, noting that this number does not denote a continuous job, but rather is the total number of print hours.

Jazdyk explained that had the equipment not failed, the ACES team at CERL would have finished the structure in less than 48 hours, which is still an extremely impressive feat. As previously mentioned, the fact that the team was willing to have the press onsite for the live demonstration, without knowing for certain if they would make their goal, was valiant.

A closer look at a completed section.So often with 3D printed construction projects, we are assaulted with people and companies saying, “Look, I’m the first!” or “I did it the fastest!” or “I built the biggest thing in the world!” At CERL this week, everyone I spoke to was very candid with the issues the project was running into, and no one tried to pull the wool over my eyes or move me away if something went awry. People answered every question I asked openly and honestly, even if it was a question relating to something that was currently going wrong – this is admirable.

“No one shows you under the skirts of large-scale concrete 3D printing – all you see are the videos that are posted online of just what people want you to see, and nothing else,” project manager Megan Kreiger told me. “You don’t see all the problems that you have to overcome. They make it look like they’re doing it super fast, super easy, and that they’re doing it under 24 hours, but none of it’s true.”

Team members also shared their hopes for the program with me, like ultimately lowering the cost of materials and the amount of manpower needed, and the potential applications the ACES technology could eventually be used for other than 3D printing buildings, such as culverts, barriers, and bridges, and more humanitarian efforts, like schools.

“There’s a tremendous number of uses,” Dr. Case told me.


Jazdyk told me today that they will attempt to complete the 3D printed concrete structure next week at CERL. I am confident that they will succeed, but, knocking on wood and knowing that sometimes things just go wrong, I am also confident that should more problems arise, the ACES team will handle them with grace, learn from them, and keep on trucking.

Stay tuned to 3DPrint.com for more news about my recent visit to CERL, including plenty of information that I did not previously know about concrete and the importance of the shape of these 3D printed walls.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Images: Sarah Saunders for 3DPrint.com, unless otherwise noted]

Live Demonstration of ACES Concrete 3D Printing Technology at CERL to 3D Print Barracks: Part 2

One half of the 3D Printed Strcture.

I was recently invited to the US Army’s Engineer Research and Development Center’s (ERDC) Construction Engineering Research Laboratory (CERL) in Illinois to see a live demonstration of its Automated Construction of Expeditionary Structures (ACES) technology. Last year, the US Army used ACES to 3D print a complete barracks, or B-Hut, in 21.5 hours with the Army’s patented concrete mixture.

Having only seen still images and video of this unique technology, I knew I couldn’t pass up the opportunity to see a 512 square foot barracks 3D printed live in front of my very eyes within 24 hours. So yesterday afternoon, I hopped in my car for the roughly four-hour drive out west to Champaign.

A closer look at a completed section.

A closer look at a completed section.

The goal for this ACES demonstration is to successfully 3D print the exterior concrete walls of a 8 foot building in 24 hours. While the ACES team and its project partner, Chicago-based architectural and engineering firm Skidmore, Owings, and Merrill (SOM), are both onsite, Marines from the 1st Marine Expeditionary Force are running the equipment; obviously, if the project is successful and this technology is able to be deployed overseas to our troops in the future, they will be the ones actually 3D printing the structures.

Benton Johnson, PE, SE, the Associate Director at SOM, told me yesterday that the Marines were briefed on the ACES technology and equipment via conference call and email. From the looks of things, they seemed to have gotten the hang of everything – preparing and mixing the materials, running the computer, cleaning up the printed layers by hand and clearing away material from the bolts, etc. Johnson pointed out that the main coder of the project was onsite, but only to offer assistance if needed.

A close up of the nozzle 3D printing the barracks. Image Sarah Saunders.

“I think part of this is a learning curve, because all the Marines that were out there operating the machinery had never seen this or touched it before,” Captain Matt Friedell told me.

“But they took to it, and once they learned it, they started to get in their groove and really pick up the pace. And we knew when we were going to attempt this that it was going to be a challenge.”

Obviously, there were a few glitches, as people rarely get the hang of new technology perfectly the first time out. The barracks is being 3D printed in two halves, and at one point the Marine running the computer accidentally sent the nozzle over to the side that wasn’t being worked on yet; later, when steel dowels were being added for initial reinforcement to the first 18″ or so of 3D printed concrete, work began on the wrong side. But none of this seemed to slow the process down.

However, as I mentioned yesterday, things did not start off swimmingly. Program manager Michael Case, PhD, told me that one of the issues with concrete is evaporation drying. So when the forecast showed rain today, the start time of the demonstration was moved up a few hours, only to halt again pretty quickly. Dr. Case explained that the material used at the Fort Leonard Wood demonstration a few months ago was sharper and more angular than it is here at CERL, and tore up the inside of the pump.

By the time the team finished replacing the pump and working the kinks out of the hose, it was almost the original start time of 5 pm. it looked like things were going to start moving, until the material didn’t extrude properly and some team members removed the nozzle to find that a rock inside was jamming things up. When the concrete finally started to print, the material mixture had to be adjusted after the first layer because it was too sloppy. But once this was fixed, things really took off, and work continued through the night, with very few clogs.

Spoiler alert: when I arrived back at CERL this morning, I learned that the team would not be able to make its original deadline of 24 hours. Dr. Case explained that “a big part of this is to figure out how long you can continuously use the equipment.”

“So we learned a lot about things…If you operate this type of concrete printing equipment long enough, you have to stop and service some of the equipment.”

Dr. Case said that if you don’t clean out the equipment, you can get concrete curing inside of the pump, and that it will eventually shut down, which caused some delays overnight. So by about 9 am this morning, the team had nearly completed the first half of the structure, and was planning on taking a few hours of much-needed rest before starting in on the second half.

While the ACES team won’t make the original goal of a continuous 24 hour print, the work they’ve completed and will continue throughout the rest of the day, is extremely impressive. Capt. Friedell told me as I was leaving CERL that he was certain this project is the tallest continuous 3D print in the US.

Stay tuned to 3DPrint.com for a more in-depth look at my visit to CERL this week! So far it has been very exciting to be able to have unfettered access to the site and to have been given access to all of the people involved. Issues with extrusion, rain and the weather that this team had actually made me question more the validity of some “3D printing a house in a day” claims. What this team ancountered were real-life challenges brought on by equipment and the weather that slowed them down. I think that CERL’s effort, undertaken with a journalist present, was much more transparent, open and honest than the commercial house printing initiatives who somehow always tell us after the fact the great feats that they’ve accomplished. I can now really see the value that house 3D printing could have for the Marine Corps, Army and for civilian use. Most of all I’m grateful that I got an up close and personal look at what it actually takes to 3D print a structure.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Images: Sarah Saunders for 3DPrint.com]