3D Printed Car Parts: Porsche Introduce 3D Printed Pistons for GT2 RS

German sports car manufacturer Porsche has been using 3D printing for several years in a variety of applications. For instance, it’s fabricated prototypes with the technology, along with using it to make steel, plastic, and alloy spare parts, such as a clutch release lever for the Porsche 959, that hadn’t been previously available. In spring 2020, the manufacturer introduced a bodyform full bucket seat featuring cushion and backrest surfaces that are partially 3D printed. While it wasn’t considered a production part at the time, the seats, which allow customers to select one of three firmness levels (soft, medium, or hard), are now available for the Porsche model series 911 and 718.

3D printed pistons for the high-performance engine of the 911 GT2 RS

The technology is interesting in both economic and technical terms for Porsche in its motorsports, special, and small series vehicles, and the manufacturer clearly recognizes the potential of 3D printing for giving its customers innovative and customized products. Now, it is increasing the efficiency and power of the high-performance engine pistons for its 911 flagship model, the GT2 RS, by cooperating with two important industry partners to 3D print these high-stress drive components.

Porsche took on this joint project with MAHLE, an international development partner and supplier to the automotive industry, and German family-owned company TRUMPF, which offers both laser metal fusion (LMF) and laser metal deposition (LMD) AM technology. In this case, LMF technology was used to print the pistons out of high-purity metal powder, which MAHLE identified as an aluminum alloy, and the pistons now feature a structure that’s been optimized for the high-stress loads acting on the pistons while driving.

Laser metal fusion (LMF) technology

MAHLE explained that bionic design, which only adds material in loaded areas, was used to develop the pistons for the GT2 RS. This technique allowed the partners to waste less material, and make the 3D printed pistons more rigid, and up to 20% more lightweight, than the traditional forged series production pistons.

“This project involved multiple challenges. From the design of the piston through the specification of the material and the development of the appropriate printing parameters, we had to make many fine adjustments to achieve the optimum result. We have now not only mastered the technical side of things, but can also assess how the method can be embedded into existing manufacturing processes,” said Volker Schall, Head of Product Design in Advanced Engineering at MAHLE.

These new pistons also feature an integrated, closed cooling duct, with a special shape, near the piston crown, which would not have been possible to make with traditional manufacturing technologies. The design of the cooling gallery was based on MAHLE’s work with piston thermal processes, and the duct actually optimizes combustion by lowering the temperature load at this part of the piston, which undergoes significant stresses.

Additionally, an extra 3D printed charge air cooler, which optimizes flow control and cooling, was added to an air pipe between the turbo and original cooler. This ensures a much larger heat transfer, lower fuel consumption, and more efficient engine performance.

“Thanks to the new, lighter pistons, we can increase the engine speed, lower the temperature load on the pistons and optimise combustion. This makes it possible to get up to 30 PS more power from the 700 PS biturbo engine, while at the same time improving efficiency,” explained Frank Ickinger, Project Manager, from the advance drive development department at Porsche.

The piston blanks were analyzed at MAHLE, and engineers paid plenty of attention to the piston skirt and the pin bore, which is where it’s connected with the conrod. Then, the components underwent 200 hours of endurance testing to determine performance capability and quality using measurement technology from Zeiss. The results found that the 3D printed piston offers the same high quality as pistons made with conventional manufacturing.

“The project illustrates how 3D printing can be used to further improve components whose performance potential has already been exhausted by decades of development,” stated Steffen Rübling, Project Manager at TRUMPF. “This will benefit many other industries, such as aerospace and energy.”

(Images courtesy of Porsche AG)

 

The post 3D Printed Car Parts: Porsche Introduce 3D Printed Pistons for GT2 RS appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Jaguar’s Engineers Use 3D Printing for their Fastest Sedan, XE SV Project 8

Last October, the XE SV Project 8 became the first production vehicle made by Jaguar Land Rover to include multiple 3D printed parts, with more than a dozen components created at the company’s Additive Manufacturing Centre (AMC) housed at the Gaydon Advanced Product Creation Centre, in the UK, were used. The luxury vehicle brand is one of many automotive companies fiercely adopting the technology to reduce costs and waste during manufacturing processes. For over two decades Jaguar Land Rover has been using additive manufacturing, and the new center is home to one of the largest 3D printing facilities in the country. Their engineers are even going beyond the more traditional uses of 3D printing in automotive by adopting the technology to work on the next generation of protective workplace clothing, for example, they recently came up with a lightweight 3D printed glove which could help better protect employees from the threat of a musculoskeletal disorder, which affects an estimated 20% of the global population, rising to as much as 40% in certain industries.

The Additive Manufacturing Centre in Gaydon

3D printing has proven it can deliver many benefits to the automotive industry. Jaguar Land Rover engineers at the Gaydon site revealed to 3DPrint.com that while initially, “the company printed non-functional prototypes, such as design models, AM usage accelerated with associated developments in technology, to functional prototypes and now to the point of using 3D printed parts in production vehicles.”

“There is currently a heavy focus on accuracy and repeatability, in-line with stringent automotive quality standards. The AMC, currently houses 16 industrial 3D printers, across a variety of technologies, namely: selective laser sintering, multijet fusion, stereolithography, continuous liquid interface production and polyjet. The AMC serves all areas of the business, for both the Jaguar and Land Rover brands,” said Christopher Noble, Additive Manufacturing Strategic Engineer at Jaguar Land Rover, to 3DPrint.com.

Fitted with a 600PS 5.0-liter V8 petrol engine, the Jaguar XE SV Project 8  is being driven by development driver Vincent Radermecker at the fearsome Nürburgring Nordschleife race track,  motorsports complex located in the town of Nürburg, Germany. This Special Vehicle Operations’ creation has most of the 3D printed parts hidden from sight, while only a handful can be seen by the owner, such as the plinth for the number plate at the front, and a couple of fins designed to improve the aerodynamics. The team’s greatest addition was inside. Those opting for the ‘Track Edition’ version would find the rear seats stripped out and a roll cage and racing harnesses added. It is where the harnesses meet the seat that gave the Additive Manufacturing team a chance to shine, with the creation of a bespoke bezel on the racing bucket seats.

The part has some overhangs and details that engineers decided would be too complex to manufacture using traditional methods. So using HP’s Multi Jet Fusion 3D printing technology, the team created identical seat bezels as the engineers had designed, and put them through the same stringent testing as any other part would endure.

With a little help from the Model Design Shop, the team soon had a quality finished part befitting the £150,000 super saloon. The quality of the 3D printed part was so well received, that the team was commissioned to create a few more for the XE SV Project 8, including a blank to cover where a traditional seatbelt would be, and bespoke mounting brackets for the car’s parking distance sensors.

“The limited-run Jaguar XE SV Project 8 was an ideal vehicle for AM. Leveraging AM eliminated tooling costs in lower volume vehicles, while also allowing for many unique parts on the car to deliver maximum performance. The elimination of tooling gives greater geometric freedom, as well as avoiding tooling costs and inventory. In product development, the technology grants multiple, quicker iterations of design, without early commitment to hard tooling. In the future, more localized production could become prevalent to reduce logistics, with AM seeing increased usage for spare and aftermarket parts,” explained Noble. “High piece cost is a limiting factor for higher production volumes, but we expect this to reduce as companies focus more on material supply and pricing, leaving room for increased adoption of AM.”

Currently the AMC is a only polymer facility, however, Jaguar Land Rover has strong links with a number of metal additive suppliers and researchers, and is actively working on metal additive projects for adoption in future vehicles.

“There are 15 engineers working at the AMC across a variety of roles, including scheduling the production of over 80,000 3D printed parts every year. This includes prototype parts, parts for our manufacturing sites and parts for production vehicles. The team is responsible for delivering the AM strategy of the business, which includes the characterisation of new technologies, as well as educating the wider company on 3D printing. Each day brings a new set of challenges, with the opportunity to work on several exciting and innovative projects.”

Noble, along with his colleagues Freddie Raven, Additive Manufacturing Strategic Engineer, and Ben Wilson, AM and Prototype Design Manager, is currently engaged with multiple projects across different areas of the business and expect to see continued growth in AM applications, even for more mainstream adoption in personalizing vehicles, as it can simplify the process.

“Our customers demand the highest quality from our vehicles and the unique benefits 3D printing offers can be used to deliver a superior product. AM is ultimately another tool in the box to deliver experiences our customers love for life,” went on the expert.

Additive Manufacturing Inspector, Dave Francis, at work at the lab

“There is a strategy in place to deliver 3D printed parts into our manufacturing processes. The AM team has delivered a number of projects in collaboration with our manufacturing colleagues, such as jigs, fixtures and manufacturing aids, a notable example of which was the prototype 3D printed glove designed to reduce musculoskeletal disorders. 3D printing is aligned with the business strategies of Destination Zero and ACES (Autonomous, Connected, Electrified and Shared) vehicles, with a reduction in waste and freedom of design enabling benefits such as light-weighting. We expect wider adoption in future projects as the AM industry continues to advance and becomes more accessible for commercial higher-volume vehicles,” he concluded.

[Image credit: Jaguar Land Rover]

The post Jaguar’s Engineers Use 3D Printing for their Fastest Sedan, XE SV Project 8 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: September 2, 2019

In this edition of 3D Printing News Briefs, we’ve got stories to share about a new material, a case study, and an upcoming symposium. Liqcreate has released a new 3D printing material for dental professionals. FELIXprinters published a case study about its automotive 3D printing work with S-CAN. Finally, ASTM International will soon be hosting an AM symposium in Washington DC.

Liqcreate Releasing New Dental 3D Printing Resin

Manufacturer of professional-grade 3D printing materials Liqcreate has been hard at work on a new 3D printing resin to help dental professionals optimize their digital workflow and scale up their in-house manufacturing. The hard work has paid off, as the company is announcing the release of its newest material, Liqcreate Premium Model – an accurate, low shrinkage resin for fabricating dental and aligner models.

The opaque photopolymer is matte, and the color of skin. Parts 3D printed with Liqcreate Premium Model have low shrinkage and excellent dimensional stability, and its low odor makes it great for office use. Other benefits include high detail and accuracy, and temperature resistant for aligner production. The resin is compatible with the Anycubic Photon, Wanhao D7, and Kudo3D Bean 3D printers, in addition to all open source 385 – 420nm LCD and DLP systems. You can purchase Liqcreate Premium Model through the company’s distributor network starting September 2nd.

FELIXprinters Publishes Case Study

Dutch 3D printer manufacturer FELIXprinters published a case study about its work with reverse engineering and 3D scanning company S-CAN 3D Ltd, a UK customer which uses FELIX’s AM platforms to manufacture jigs, create casting molds and masters, and prototypes. Founded in 2012, S-CAN also uses FELIX technology to manufacture automotive parts, like the pictured engine block. FELIXprinters offers a range of systems for industrial prototyping and production applications, inlcuding its Pro 3 & Tec 4 series of AM platforms and its new, larger Pro L and XL models.

“We have found FELIXprinters AM platforms to be very easy to use. You can be up and running within a few minutes of getting them out of the box. We run all of our printers through Simplify3D software so you load the profile, pick a material and you are ready to go. In-house we now have the first machine we bought from FELIX back in 2015 (the Pro 1), and a Tec 4.1, a Pro 3 and the new Pro XL. Our first Pro printer has paid for itself 10 times over,” stated James Senior, MD of S-CAN 3D.

“Internally, S-CAN 3D use FELIX 3D printers for prototyping designs. We might do five or more different concept designs of a particular part or component, as it’s much easier to visualise a part when it’s in your hand. We are putting a lot of work through the newly purchased XL printer and it’s opening up things which we wouldn’t have been able to do before (at least to the same quality and size), so things are very encouraging. We have found FELIX machines to be very repeatable which is our most fundamental requirement for any application, and we also haven’t noticed any accuracy degradation over time.”

At the upcoming TCT Show in Birmingham, September 24-26, the two partnering companies will exhibit together at Stand E50 in Hall 3. Visitors will be able to view FELIXprinters’ Pro series of 3D printers, as well as its new advanced, customizable 3D bioprinting platform.

ASTM International’s AM Symposium

Speaking of industry events, ASTM International, which recently announced that it will be hosting its second Additive Manufacturing Center of Excellence Workshop in France, will also host a symposium in the Washington DC area. The Fourth ASTM Symposium on Structural Integrity of Additive Manufactured Materials and Parts, held by the ASTM International Additive Manufacturing Center of Excellence (AMCOE) from October 7-10 at the Gaylord National Resort and Convention Center, National Harbor, Maryland, is designed to give AM professionals a forum to exchange ideas about the structural integrity of 3D printed components and materials, focusing on quality and certification criteria and the lack of design principles and industry standards.

Paper topics for the symposium include the effect of anomalies, process optimization to improve performance, feedstock and its related effects on mechanical behavior and microstructure, and the applicability of existing test methods. Sessions will be organized by sector-specific applications, such as aviation, consumer, maritime, and spaceflight. Registration for the event will be open until October 2nd, 2019.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

The post 3D Printing News Briefs: September 2, 2019 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Playing a Big Part: Cummins Impacts Auto Parts Manufacturing With 3D Printing

What if you never had to hear, “They don’t make that part anymore” from your local mechanic?

That fantasy may soon be a reality for car owners thanks to the latest innovations at auto parts manufacturer Cummins. Having already embraced 3D-printing for heavy-duty engine repairs, the Indiana-based company recently sold their first 3D-printed auto part.

Now, they’re looking to disrupt the industry with mass production.

Industry 4.0 in 3D

The landmark part was merely a low-volume bracket, but its creation marks the beginning of Cummins’ strategy to incorporate additive manufacturing and 3D printing at a larger scale.

Investment into 3D printing seems like a no-brainer for Cummins: the Fortune 500 company designs diesel and natural-gas powered engines, power generators, filtration systems, turbochargers, fuel systems, and more.

Embracing 3D printing allows Cummins to “package” multiple, formerly-individual parts into one printed whole. This ensures the production of lighter, stronger, and more reliable parts, especially for components like joint assemblies and weldments. In the testing phase, the ability to just tweak the design file and then reprint also improves upon traditional manufacturing methods.

Beyond more efficient and exact analysis-led design, additive manufacturing also benefits the everyday consumer. According to Kelly R. Schmitz, Executive Director of New and ReCon Parts Engineering, “[3D printing] provides an avenue for customers looking for hard-to-find parts”, and that customers could soon get hard-to-find parts in days or weeks instead of months.

Impacts Beyond The Manufacturing Industry

Cummins’ developments could shake other industries too.

Classic car restorers are all too familiar with getting stuck needing a rare or out-of-production part, especially if they aren’t handy with metalworking themselves. 3D-printed auto parts would not only make the hobby more accessible, it would mean big business for whichever additive manufacturers can partner with well-known parts providers like McMaster-Carr and Classic Industries.

While it might be a stretch to imagine mechanics down at the local Pep Boys playing with 3D printers while your car is getting serviced, the relationship (and speed) between such businesses and their parts providers could change drastically.

Positive impacts could also be seen outside the car industry: Cummins says mass production using 3D printing would help the environment. Not only would there be less waste due to the elimination of the tool and die process, the ability to produce parts locally would cut down on the current environmental costs associated with transporting parts.

As for when we can start expecting parts in a jiffy (and not necessarily at Jiffy Lube), Cummins bets it will be faster than most of us think.

“I’m thinking as soon as five years. We are the start of a really interesting time in manufacturing,” said Director of Advanced Manufacturing Brett Boas. “With this technology, you can really unshackle the designer to do things you just can’t do using traditional forms of manufacturing.”

To prepare, Cummins has already hired their first dedicated additive manufacturing engineer—surely the first of many.

 

Discuss this news, and other 3D printing topics, at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

Carbon and Ford Expanding Collaboration for Automotive 3D Printing Solutions

HVAC Lever Arm

Digital manufacturing company Carbon and the Ford Motor Company, which recently announced the opening of its new Advanced Manufacturing Center in Michigan, have revealed that they are expanding their existing collaboration, which began in 2015 around the time that Silicon Valley-based Carbon emerged from stealth mode with its innovative CLIP technology. The original partnership centered around materials research and using 3D printing for current and future vehicle design, and now the two companies will be working together to design and digitally manufacture several new durable, end-use automotive parts.

“We are thrilled to be collaborating with Ford Motor Company and are excited about the many opportunities to leverage the power of digital manufacturing to deliver durable, end-use parts with similar – or better – properties as injection molded parts. The automotive industry shows significant promise for using digital fabrication at scale, and our work with Ford is a perfect example of the kind of innovation you can achieve when you design on the means of production,” said Dr. Joseph DeSimone, the CEO and Co-Founder of Carbon.

Parking Brake Bracket

This week, Carbon, which has worked in the automotive sector in the past, revealed for the first time some of the new 3D printed polymer parts it produced for Ford, which was recognized for its work in automotive 3D printing in the fall as a triple finalist in the Automotive Innovation Awards Competition, which is held by the Automotive Division of the Society of Plastics Engineers (SPE).

Carbon used its robust 3D printers, proprietary Digital Light Synthesis (DLS) technology, and durable EPX (epoxy) 82 material to create several automotive parts, including HVAC (Heating, Ventilation and Cooling) Lever Arm Service Parts for the Ford Focus, Ford F-150 Raptor Auxiliary Plugs for a niche market, and Ford Mustang GT500 Electric Parking Brake Brackets.

Together, Carbon and Ford jointly presented the new applications at the Additive Manufacturing for Automotive Workshop, which is part of the 2019 North American International Auto Show (NAIAS) held in Detroit this week.

When it comes to materials, Carbon knows what it’s talking about – the company’s mission is to reinvent how we design, engineer, manufacture, and deliver polymer products. Its EPX 82 material, part of its epoxy resin family, was a perfect choice for 3D printing the new automotive parts.

The components not only passed the rigorous performance standards set down by Ford for their selected applications, but they were also able to hold up well in terms of critical requirements, like fluid and chemical resistance, flammability (ISO 3795), short- and long-term heat exposures, interior weathering, UV stability, and fogging (SAEJ1756).

Carbon has been a major power player in the 3D printing field since it arrived on the scene. Now, through some of its more high-profile partnerships with companies such as Vitamix, Johnson & Johnson, adidas, and Ford, the company is moving past 3D printing and, in its own words, on “to full-scale digital manufacturing” by working with its customers to create high quality, well-made products across multiple industries.

What do you think? Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Images provided by Carbon]

Betatype Case Study Illustrates Cost and Time Savings of Using 3D Printing to Fabricate Automotive Components

When it comes to industrial 3D printing for automotive applications, London-based Betatype is building up considerable expertise. The 3D printing company was founded in 2012, and works with its customers to deliver functional, 3D printed components. Betatype built a data processing platform called Engine to help manage and control multi-scale design; the platform maximizes the ability of 3D printing to provide control in one process over material, shape, and structure.

Some of the benefits provided by 3D printing include high cost-per-part, productivity, and volume, especially when it comes to using metals. Betatype recently completed a case study that demonstrates how the advantages of metal 3D printing can be properly leveraged for applications in automotive parts production. It focuses on Betatype’s use of laser powder bed fusion (LPBF, also called Powder Bed Fusion, DMLS and SLM) 3D printing and optimization technology to, as the case study puts it, challenge “the current status quo” by producing 384 qualified metal parts in one build, which helped lower both lead time and cost per part.

“When it comes to automotive and other consumer-facing industries focused on producing high volumes of parts at low costs, the current generation of Additive Manufacturing (AM) processes is generally considered incapable of meeting these needs,” Betatype explained in its study.

“The key to making AM productive enough for wider adoption across these high-volume industries, however, lies in process economics – choosing the most effective manufacturing process for each part. Combining these principles with Betatype’s knowledge of the limits of additive – as well as how and when to push them – together with the company’s powerful optimisation technology, supports customers with the design and production of parts that not only perform better, but that are economically viable against existing mass production technologies.”

Production build of automotive LED heatsinks by Progressive Technology on an EOS M280.

You’ll often hear people in the 3D printing industry saying that one of the benefits of the technology is its ability to offer greater design freedom than what you’d find in more conventional manufacturing process. While this is true – 3D printing can be used to produce some pretty complex geometry – that doesn’t mean it’s without its own problems. It’s necessary to understand these constraints in order to find applications that can fit with the technology, and be used in high volume manufacturing as well.

Processes like die casting are capable of creating millions of components a year. 3D printing is valuable due to its capability of using the least amount of material to provide geometrically complex parts. Often 3D printing just doesn’t have the manufacturing volume or part cost to be an economical choice. But, this may not be the case for long.

According to the case study they looked at, “how it is possible to combine the innate geometric capabilities of AM with increased production volumes of cost-effective parts and improved performance” The team looked at “the Automotive industry’s switch to the use of LED headlights, which brings with it new challenges in thermal management.”

Most LED headlights need larger heatsinks, which are typically actively cooled. Betatype realized that the geometry of these metal parts would make them a good candidate for metal 3D printing, which is able to combine several manufacturing processes into just one production technique.


Betatype realized that LPBF would be ideal during the component’s initial design stage, and so was able to design the component with in-built support features. This made it possible to stack multiple headlight parts without requiring any additional supports; in addition, the company maintains that completed parts could be snapped apart by hand without any other post-processing required. This claim is something that we are highly skeptical about. No destressing or tumbling, shot peening, HIP or other processes usually result in parts that look different from the ones in the images given to us.

[Image: EOS]

Depending on part geometry it can be difficult to achieve full stacking with LPBF 3D printing. This is largely due to thermal stresses placed on parts and supports. Betatype designed the part in such a way as to decrease these stresses. This is what allowed Betatype to nest a series of heatsinks in order to maximize build volume and produce nearly 400 parts in one build envelope using an EOS M 280 3D printer owned by Progressive Technology.

“Through specific control parameters, the exposure of the part in each layer to a single toolpath where the laser effectively melted the part was reduced significantly, with minimal delays in between.”

13 x the productivity per system. Estimated Number of Parts per Machine per Year/Model built on build times provided by Progressive Technology for SLMF system (EOS M 280) and Renishaw AMPD for MLMF system (RenAM 500Q).

One of the large drivers in part cost is equipment amortization, and it’s important to lower build time in order to make parts more cost-effective. By using LPBF 3D printing and its own process IP and optimization algorithms, Betatype claims to have reduced cost-per-part from over $40 to less than $4, and lower the build time from one hour to less than five minutes per part – ten times faster than what a standard build processor is capable of performing. This would be a huge leap in capability for metal printing if these cost estimates stack up.

On single laser systems, like the EOS M 280 and Renishaw’s RenAM 500M, Betatype says that lowered the build time for all 384 parts from 444 hours to less than 30 hours; this number went down even further, to less than 19 hours, by using new multi-laser systems like the SLM Solutions 500 and the RenAM 500Q.

Up to 90% reduction in part cost. Estimated Cost per Part / Model built on build times provided by Progressive Technology for SLMF system (EOS M 280) and Renishaw AMPD for MLMF system (RenAM 500Q).

Betatype’s claims that their customer was able to achieve a productivity gain of 19 times the old figure per system in a year  – going from 7,055 parts to a total of 135,168.

The case study concludes, “With an installation of 7 machines running this optimised process, volumes can approach 1 million parts per year — parts that are more functional and more cost-effective.”

It always good to show performance that is a step change ahead of what everyone thought possible. It is also significant that companies are making detailed case studies and verifiable claims as to output and yield. Betatype’s Case Study shows very promising numbers and we hope that productivity can indeed reach these heights with their technology.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Images provided by Betatype unless otherwise noted]

BMW Impresses with 3D Printed Roof Bracket for BMW i8 Roadster

BMW has been using 3D printing for more than 25 years, so the automotive manufacturer has built up a high level of expertise over the decades. Recently, the company has leveraged 3D printing to create some interesting concept cars, but BMW uses 3D printing for more than just creative concepts – it’s putting the technology to work in real-world applications. In fact, BMW is leading the way in the use of 3D printing for mass production in the automotive industry by creating the first metal 3D printed part to be successfully produced for a road car.

The part is a roof bracket for the 2018 BMW i8 Roadster, and it had been in the works for 10 years, until 3D printing advanced to the point at which it could begin producing the part in mass quantities, though relatively small ones. The bracket makes the soft top of the automobile quickly raise and lower and fold and unfold in a zigzag configuration. It wasn’t an easy part to design. It needed to lift, push and pull the weight of the roof, and its design was necessarily complex, making it impossible to cast.

BMW’s designers and engineers used topology optimization software to input specifications like the space they had available and the weight of the load they needed to move, and the software generated a load path, which is a design that distributes the load to minimize the amount of material required in the part. Frequently, the load path is too complicated to be translated into a physical object, even through 3D printing. Complex designs require additional supports, which take up additional space and add extra steps to the production process, making it too lengthy and costly.

The BMW part, which was designed by Maximilian Meixlsperger, Head of Metal Additive Manufacturing at the company, overcame these challenges.

“What BMW did is get this done without support,” said Richard Yen, Altair Senior Vice President for Global Automotive and Industry. “Now they can print one batch at a time for mass production, They can print more than 600 of these brackets in one batch.”

Yen was one of the judges at the recent Altair Enlighten Awards, which honor advancements in lightweighting technology. BMW’s 3D printed roof bracket earned a lot of attention at the awards ceremony for its innovative design, which is 44% lighter than the roof bracket conventionally manufactured for the previous Roadster model.

“When the judges looked at this part, we said, ‘this is the tip of the iceberg for manufacturing,’” said Yen.

BMW was not the biggest winner of the evening – that was GM, which took top awards for reducing the weight of its 2019 Chevy Silverado by 9%, 450 lbs. lighter than the 2018 model of the vehicle. The company achieved this through thinner and stronger new steels, mysterious new assembly processes, and computer simulation. While GM may have taken the top awards, however, BMW got plenty of attention for its roof bracket, which heralds a new era of mass production through metal additive manufacturing.

Lightweighting is obviously a major goal for the entire automotive industry, as lighter-weight vehicles use less fuel and are thus more efficient in cost as well as more eco-friendly. Additive manufacturing is being used by many in the industry to deliver more lightweight parts, and although BMW’s roof bracket is a small part of a much larger machine, its impact on the product as a whole is a big one.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Source: Industry Week/Images: BMW]

 

3D Printing News Briefs: August 7, 2018

We’re starting things off on today’s 3D Printing News Briefs with a little business and a little software, before moving on to more cool 3D printing projects and products. NextFlex has announced its Project Call 4.0, and we’ve got a closer look at a 3D print filament recycling system that was introduced at the Barcelona Maker Faire. OnShape has announced the latest updates to its CAD system. A university student 3D printed a car muffler, and Printable Science presents its 3D printed safety razor.

NextFlex Project Call 4.0

Last month, the NextFlex consortium, one of the leaders in the Manufacturing USA network, announced the award recipients of $12 million in funding for the latest round of its extremely successful Project Call program for Flexible Hybrid Electronics (FHE) innovations. This week, the consortium announced the $10 million funding round for its Project Call 4.0, which has a “very diverse scope of needs” that represent gaps in capabilities and technology in multiple application areas. Proposals should focus on several manufacturing thrust areas (MTA), such as flexible battery integration, FHE device encapsulation, evaluating and developing connectors for e-textiles and FHE devices, and advanced 3D electrical design software, among others.

“NextFlex’s Project Call process has proven to be extremely successful. We continuously tackle member-identified FHE manufacturing challenges, and with 31 projects already underway from three previous project calls, we expect this to garner even more interest from the FHE community,” said Dr. Malcolm J. Thompson, the Executive Director of NextFlex. “Topics in Project Call 4.0 build upon successful developments and learning from our previous project calls.”

OUROBOROS 3D Printing Recycling System

The Barcelona Maker Faire was held earlier this summer, and one of the many innovations on display at the event included an all-in-one recycling system for 3D printing called the OUROBOROS. The system shreds used plastic and extrudes the material into a 3D printable filament. According to YouTube user Joan Cullere, the OUROBOROS system includes a prototype shredder with a 24 V motor that’s almost completely 3D printed itself.

In addition to the economic and compact shredder prototype, the OUROBOROS 3D printing recycling system features a user-friendly filament extruder with better cooling, a new spooling system, and an optimized filament path. To see the new system for yourself, check out the video below.

Onshape System Updates

Modern CAD platform Onshape introduced the premium edition of its software in May, and delivers automatic upgrades to the system every three weeks. The latest updates, from July 12 and August 1, include many new improvements to the Onshape CAD system.

For instance, the July 12 update introduced a feature for adjusting the line thickness in drawings, which allows users to define the thickness for tangent, hidden, and visible edges. This update also added a new Drawing Properties panel icon, which replace the wrench icon and includes several new features. The August 12 update made it possible for users to change existing parts or assemblies to a revision, which means every stage of the workflow can be changed. In addition, users can now enjoy significant rebuild time improvements in the system’s complex multi-part Sheet Metal Part Studios. The next updates should arrive on August 23rd.

3D Printed Car Muffler

University student and YouTube user Cooper Orrock was inspired by another maker’s DIY project – a duct tape and cardboard car muffler – to make his own 3D printed version. He designed the two-component automotive part and 3D printed it in plastic; then, with the help of some friends, he prepared the part for installation on a vehicle. This included clearing out some of the holes on the rim of each part so it could be screwed together, and removing the original muffler from the car.

“Part of me thinks that it could possibly melt just because of all the heat from the engine and stuff, but part of me thinks it could work,” Orrock said.

To see if his prediction came true, check out the video below.

3D Printed Safety Razor

Printable Science, which creates “all the science that’s fit to print’ according to its Patreon page, creates all sorts of nifty 3D printed projects, like a socket nut driver, a mini hacksaw handle, and a USB microscope stand. Now, it’s moved on to a 3D printed, four part plastic safety razor.

“Forget the dollar shave club… forget paying shipping and handling… 3D print your own safety razor and be part of the 29 cent shave club,” a member of Printable Science said on the YouTube video.

He explained that the basic design of the safety razor has been mostly unchanged for about 150 years, and that with the design for this razor, you can make your own for just 19 cents. However, this isn’t the first 3D printed razor we’ve seen – in fact, the Gillette Company filed a patent for a 3D printable razor cartridge a few years ago, and was also one of the co-creators of a challenge to design a 3D printed razor handle. To see how Printable Science’s 3D printed plastic safety razor compares, check out the video below.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.