SLA 3D Printing For Microneedle Transdermal Drug Delivery Systems

In the recently published ‘A 3D printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery,’ researchers explore innovative methods for delivering medication into the bloodstream via the skin. In this study, they work on the micro-level to create ‘new degrees of freedom’ in delivery.

As medicine continues in the direction of patient-specific treatments, 3D printing continues to play an enormous role—including medical devices, implants, innovations in tissue engineering like scaffolding, and much more. In this study, the researchers continue to refine the use of needles for transdermal use.

Conventionally, they have been fabricated with materials like plastics, metals, ceramics, and more. With the advent of biocompatible polymers, microneedles are being more widely used due to greater disposability, affordability, and the potential for customization—pointing toward patient-specific benefits overall.

Microfluidic devices are behind many of the new capabilities in drug delivery systems, allowing for mixing and transporting of the required small amounts of fluids.

“For example, microfluidic mixing was used to directly synthesize nanoparticles with tunable physicochemical properties such as particle size, homogeneity, and drug loading and release at the point of delivery,” state the researchers. “Additionally, the combination of microneedles and microfluidic mixing is beneficial in areas such as combinational therapy-based subcutaneous/transdermal administration for preclinical testing of biologic treatments.”

New systems are being developed too for ‘codosing,’ allowing for patients to receive several medications at once. Microfluidics and innovative drug delivery systems make the process more affordable, simpler, and less open to error. This study yields microfluidic-enabled microneedle devices printed via single-step stereolithography (SLA) from an ‘elaborate hollow microneedle design,’ resulting in a refined microneedle array.

“This architecture allows the modulation of the input fluid solutions’ flow rates to facilitate programmable drug delivery in future combinational therapy-based applications,” stated the researchers.

While there are benefits to SLA 3D printing, the research team was tasked to refine the process further for this study, creating a new microneedle design and print set up.

3D-printing of microfluidic-enabled hollow microneedle devices. (a) CAD model of a representative microfluidic-enabled microneedle device as an input to the SLA printer. (b) The printed device with three microfluidic inlets converging into a 3D spiral chamber and to a hollow microneedle array outlet. (c) Close-up of the inlet junction visualizing the convergence of red-dyed, clear, and blue-dyed solution streams. (d) Close-up of the hollow microneedle array.

The research team was able to create up to 12 devices (with dimensions of 1.5 × 1.2 × 3.1 cm) using class IIa biocompatible resin in a single print, in 2.5 hours.

Characterization of 3D-printed hollow microneedle arrays. Images of sheared-cylinder microneedles printed at (a) 0°, (b) −45°, (c) +45°, and (d) 90° angles with outlined profiles (insets show the corresponding print setups). SEM images of the (e) conical, (f) pyramidal, and (g) basic syringe-shaped needle arrays. (h) Average needle heights for each design (for a subset of 25 microneedles per array). (i) CAD model of the syringe-shaped design and the SEM image of the tip (∼50 μm radius of curvature). (j) CAD model of the fine-tip syringe-shaped design (additional features highlighted) and the SEM image of the tip (∼25 μm radius of curvature). (k) SEM image of the fine-tip microneedle array. (l) Average microneedle heights across three separate fine-tip microneedle arrays (for a subset of 25 microneedles per array). Error bars indicate ±standard deviation.

Scanning microscopy displayed success in both design and 3D printing of the arrays.

3D-printed microneedle mechanical characterization: penetration and failure. (a) Penetration test of the pyramidal, conical, and fine-tip syringe-shaped microneedle arrays across two layers of the parafilm with 5 N of applied force. (b) Mechanical simulation of the fine-tip syringe-shaped microneedle, visualizing the occurrence of maximal stress at the tip. (c) SEM image of a microneedle before and after penetration testing (demonstrating no tip failure). (d) Axial force vs displacement curve for a 3 × 3 array of syringe-shaped microneedles. The failure point and penetration force are noted. The inset image illustrates the compression test setup.

“Penetration and fracture tests confirmed the microneedles’ mechanical robustness for practical application. An example microfluidic-enabled microneedle device was printed with our devised scheme that facilitates homogeneous mixing of multiple fluids under different flow rates, followed by transdermal delivery of the mixed solution. Comparisons of various flow rate ratios with colored dye solutions showed tunable control over the relative concentrations of solutes delivered. Ex vivo confocal laser scanning microscopy of three fluorochrome model-drug solutions on porcine skin further validated the platform’s ability for transdermal drug modulation and delivery,” concluded the researchers.

“This 3D printed device is particularly applicable to preclinical investigations centered on combinational drug therapy, where the in-situ combination of multiple drugs and the tuning of their physicochemical properties lead to more effective outcomes than single or premixed agents alone. For example, the controlled multifluidic synthesis of nanoparticles can tune the release mechanisms of various drugs for wound healing applications.”

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Mixing characterization of the 3D-printed microfluidic architecture. (a) Photograph of the SLA-printed microfluidic mixing architecture with CAD model in the inset. (b) Schematic of the solution concentration quantification method. (c)–(f) Microscopic images of the 3D spiral chamber’s inlet junction under various flow rate ratios of red-dyed, clear, and blue-dyed solutions (Q1:Q2:Q3). (g)–(j) Microscopic images of the 3D spiral chamber’s outlet under the corresponding flow rate ratios. (k)–(n) Normalized fluorescence (FL) intensities of rhodamine B (RB), fluorescein isothiocyanate (FITC), and methylene blue (MB) present in the solutions obtained from the outlet. Error bars indicate ±standard deviation (n = 3).

[Source / Images: ‘A 3D printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery’]

 

The post SLA 3D Printing For Microneedle Transdermal Drug Delivery Systems appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printed Microfluidics on Glass to Integrate Sensors

In the recently published ‘3D printing on glass for direct sensor integration,’ authors M. Neubauer, M. McGlennen, S. Thomas and S. Warnat explore further methods for refining 3D printed microfluidics. In this study, the researchers create an approach for fabricating channels onto glass substrates.

As additive manufacturing processes become a realistic method for fabricating fluidic devices, using vat polymerization ( they abbreviate it VPP), stereolithography (SLA), and digital light processing (DLP), researchers have many different options before them for research like integration of sensors. Glass substrates offer a way for making channels that are not only optically transparent but offer a way to embed a glass-based impedance-conductivity sensor within the 3D printed flow channel.

For the 3D printing process, the researchers chose a MiiCraft 50, along with clear BV007 resin.

Modified build plate with insert for glass slide and silicone gasket and vacuum hole to hold glass substrate in place during printing.

“Using a silicone gasket and a diaphragm vacuum pump (Masis, GZ35-12) a glass slide could be held in place during the printing process and quickly released afterwards. The glass slide protruded slightly from the plane of the build plate; this distance was measured and accounted for in the printer software,” explained the researchers.

“Mounting the glass flush with the edge of the insert made it possible to reference the edge of the glass in the software so that prints could be precisely aligned to the edges of the glass itself with better than 100 μm repeatability.”

Image of micro-machined sensor used in this work.

The research team selected sample applications to match the sensors, but they could also be used in a wide range of applications. The build plate, silane treatment, and more, could be used with other hardware and materials.

“The glass substrate is itself a part of the channel and allows ideal optical access. Resistance measurements, Raman spectroscopy, and impedance spectra show that sensor properties are unaffected, and no resin or chemicals are left on the sensing surface after printing on the sensor. Viability of materials other than Au could be tested for other applications with similar techniques,” concluded the researchers.

“Applying the same methods for device realization, any number of devices can be integrating with a 3D printed structure. The limitations on device design generally are associated with the 3D printer, its resolution and compatible resins. These issues will become less prevalent as the technology in this rapidly advancing field improves and becomes available. Overall, this process will benefit from all advances in 3D printing technologies, becoming an increasingly viable avenue for sensor-packaging integration for bio-sensing.”

3D printing microfluidics is becoming an extensive area of study, from analyzing and solving challenges within to exploring the connection with other materials and processes, to include bioprinting. What do you think of this news? Let us know your thoughts; join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Fabrication process and image of device. (a) Flow chart of device fabrication. (b) Exploded view of designed sensor packaging. (c) Assembled device with tubing and magnets.

[Source / Images: ‘3D printing on glass for direct sensor integration’]

The post 3D Printed Microfluidics on Glass to Integrate Sensors appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Portable Microfluidic Platforms Streamline Multiple Lab On A Chip Applications

In the recently published ‘Portable Microfluidic Platform Employing Young-Laplace Pumping for Multiplexed Lab-on-a-Chip Applications’ author Leonard Mahlberg discusses the relevance of lab-on-a-chip devices today in numerous applications, but mainly medicine. These devices allow for faster and more affordable lab analysis, but Mahlberg points out that there is a need for streamlining and more accuracy in microfluidic systems. Their work is centered around a platform employing surface tension induced pumping founded on Young-Laplace pressure. This mode means that transport can not only be modified easily but fluids move without the requirement for external modules.

Microfluidics, whether digital microfluidics (DMF) or continuous-flow microfluidics (CFM), offer the following benefits:

  • Portability
  • Ease-of-use
  • Low sample consumption
  • Fast reaction times

Graphical illustration of a comparison between a common medicinal treatment process for a sick patient (1) and a treatment process using a microfluidic device (2), showing the possible advantages of reduced time, energy and money consumption of MF devices.

Mahlberg mentions that microfluidics is in a ‘unique position,’ mainly due to the doors they open for medicine as well as biology and environmental analysis. Hydrophobic surfaces can be created via several different techniques, to include lithography, spray coating, spin coating, dip coating, and more—while hydrophilic areas are made through ‘direct or indirect approaches.’ Wettabilities allow for surface energy traps (SETs), resulting in droplet array fabrication, along with channels and other patterns.

Illustration of different droplet contact angles on (super)hydrophobic, hydrophobic, hydrophilic, and (super)hydrophilic classified surfaces

“One can perform analysis, extraction, or splitting operations when using SETs. An example of such a microarray with different wetting capabilities can be found in nature on Stenocara gracilipes in the Namib Desert,” explains Mahlberg. “This species of beetles possesses patterned hydrophilic bumps/channels surrounded by hydrophobic areas located on its wings and its back, allowing it to collect water in the surrounding air, which rolls down its wings and leads to its mouth.”

Digital microfluidics allows mixing and manipulating of droplets, through:

  • Magnetic actuation
  • Dielectrophoresis
  • (super)hydrophilic- (super)hydrophobic patterned surfaces and electrowetting-on-dielectric (EWOD)

Comparison of different surface structures and droplet wetting behaviors; a: CA of a water droplet sitting on a flat surface (LV = LG, SV = SG); b: Illustration of the Wenzel State with a droplet wetting the entire surface it is sitting on; c: Illustration of the Cassie/Baxter where air pockets are enclosed between the droplet and the surface it is sitting on.

CFM devices are ‘more prominent,’ allowing for a focus on analysis of individual droplets, devices centered around fluid confinement through channels with rigid walls. This category of device can be used in detecting virus, sorting cells, and analyzing DNA, along with being used in energy applications for creating fuel cells, CO2 conversion, and more. MF devices can also be used in material sciences for synthesizing polymer foam, sorting nanoparticles, and more.

“When observing the behavior of liquids in such sub-millimeter scaled channels, one is able to notice different characteristics when comparing it to macroscale behavior,” explains Mahlberg. “This is due to the significant difference in liquid surface-to-volume ratios present in MF devices.”

Passive pumping of droplets occurs as a differential pressure is present—defined by Laplace pressure and determined by the Young-Laplace equation.

“Surface microfluidics presents several advantages when compared to enclosed MF-devices, including simple washing due to its open structure, environmental accessibility, clear optical path, reduced sample loss, high and reproducible flowrate, compatibility with biological experiments (depending on surface material) and monolithic construction,” stated Mahlberg. “Using micromachining techniques, such as laser micromachining, SETs can be machined onto superhydrophobic surfaces in any desired design.”

With the spin-coating procedure, reproducible substrates could be fabricated, offering an improved transparency characteristic. A ‘flexible and adaptable’ 3D printed platform was developed for liquid distribution, meant to be used with future LoC applications, along with improving user interaction.

After a systematic study on varying NaBH4 concentrations had been conducted, a 300 mM concentration was shown to result in both AgNP and AgNC synthesis in correlation with different total pumping time. These results serve as proof of concept that the ability to control flowrate opens the possibility to perform various LoC applications that employ reactions that rely on different reaction times.

“This developed proof of concept protocol could therefore be upscaled for multiplexed synthesis approaches, as other multiplexed reaction concepts have been presented for future potential applications,” concluded Mahlberg. “In particular, this flexible multiplexed microfluidic platform could be utilized for the development of a portable and cost-effective PoC device that is able to perform simultaneous multiplexed bioimmunoassays for pathogen detection in substances like blood-based on sandwich-ELISA.”

“The creation of such a PoC device is of significant value for the field of medicine and society overall, as patients could use it to test their blood independently from home at any time, without the need to visit and consult a doctor. Such a PoC device would help patients to save time, energy and money, which could greatly benefit their treatment and help improve their lives.”

Microfluidics have been connected with 3D printing in many research studies lately, especially as other platforms have expanded, bioprinting continues to progress, and there is a growing focus on miniaturization. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Discrete sessile water droplets sitting on a hydrophobic surface, colored with food dye, courtesy of Bachus et al.

[Source / Image: ‘Portable Microfluidic Platform Employing Young-Laplace Pumping for Multiplexed Lab-on-a-Chip Applications’]

 

The post Portable Microfluidic Platforms Streamline Multiple Lab On A Chip Applications appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing Offers Significant Impact on Microfluidics

Researchers present an overview of 3D printing microfluidics in the recently published ‘Functional 3D Printing for Microfluidic Chips.’ Allowing for epic ‘downscaling’ of biochemical applications—and from the lab to a portable mode, 3D printed microfluidics can be applied to many different applications from sensors and actuators to parts designed for movement like valves, pumps, or fluid flow.

Scientists predict that 3D printing in microfluidics will be the precursor to a ‘new generation’ of smart devices able to adapt to their environment and human requirements. As the name would predict, microfluidics route tiny streams of fluids to their destination, usually customized to a laboratory application or a ‘point-of-care setting.’ 3D printing has also been used for chips as the technology has entered the mainstream, offering one of its greatest benefits: speed in production.

“Ideally, the user does not have to be a specialist and the setup does not require a large amount of external equipment,” explain the researchers. “For a device to meet these demands, a self‐contained design of operational features is beneficial.”

The researchers point out that 3D printing has become a true alternative over conventional techniques like molding, but mainly so with functional items like valves and sensors; for instance, the authors mention the case of a strain sensor created to offer data regarding tissue strength, allowing doctors to evaluate heart tissue response to drugs.

Typical technologies used are:

  • Stereolithography (SLA)
  • FDM 3D printing
  • Photopolymer jetting

Pump designs are 3D printed to offer flow like that of a syringe pump but eliminating the need for so much hardware and allowing microfluidics more accessibility.

“The most elementary design of a pump is based on previously described valves. By combining three valves on top of a fluid channel, and actuating the valves consecutively, the working principle of a peristaltic pump is recreated,” state the researchers.

An impressive new device created by researchers recently demonstrates how a heart-on-a-chip can be used to measure the strength of heart tissue. The chip is fabricated via direct ink writing and requires six different inks. Also, of interest is a new strain sensor created through embedded 3D printing, e-3DP, with resistive ink that is composed of carbon particles in silicone oil and then extruded in a silicone elastomer. Other sensors have been created too, such as those for soft strain, force, and tactile measures.

“With integrated sensing and on‐line readout of data, external hardware controllers allow the precise reaction to specific stimuli, effectively controlling built‐in elements. This “outsourcing” of regulatory elements from the lab to the chip is a critical step toward the automation of microfluidic chips. Additionally, it makes the technology more accessible to other labs and lowers equipment costs,” conclude the researchers.

“The present and future impact of 3D printing technologies in the field of microfluidics is undeniable. By inheriting the intrinsic characteristics of 3D printing, microfluidic device development has become itself limitless, regarding factors such as the architecture, size, and number of devices produced. All of this can be presently achieved by 3D printing and its highly automated manufacturing process which allows for an equally limitless degree of reproducibility and customizability on the fly.”

Just as 3D printing technology avails itself to massive structures—whether in building an art installation, rocket, or entire home—it is also just as popular today among users in creating on the micro-scale.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Pneumatically controlled valves. a) Schematics and micrograph of a valve in its opened and closed state. Reproduced with permission.3 Copyright 2015, Royal Society of Chemistry. b) CAD design of a membrane valve. c) Schematic illustration in its opened and closed state. Flushing channel allows the control chamber to be drained after printing. b,c) Reproduced with permission.5 Copyright 2016, Royal Society of Chemistry. d) Schematic illustration of the succeeding miniaturized design. Reproduced with permission.21 Copyright 2015, AIP Publishing.

Concatenation of pneumatically controlled valves to a form a pump. a) Photograph of a peristaltic pump, SLA‐printed with WaterShed XC 11122. Reproduced with permission.3 Copyright 2015, Royal Society of Chemistry. b) CAD design of a pump. Gray channels are for flushing out resin after the print. c) Photograph of the printed pump shown in (b). d) Schematic diagram and e) CAD design of the multiplexer. b–e) Reproduced with permission.5 Copyright 2016, Royal Society of Chemistry.

[Source / Images: ‘Functional 3D Printing for Microfluidic Chips’]

The post 3D Printing Offers Significant Impact on Microfluidics appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

UTK: Doctoral Student Explores the Intersection of 3D Printing, Microfluidics & Bioprinting

University of Tennessee at Knoxville Doctoral student, Peter Golden Shankles, presents his dissertation on ‘Interfacing to Biological Systems Using Microfluidics,’ discussing the popular new field of microfluidics and the 3D printed tools that are propelling it forward—for this project and numerous others recently too. 3D printing allows for much greater self-sustainability in the lab as researchers can create tools for experiments and chemical reactions on their own, but attention must also be paid to how such technologies affect chemical transformations and influence biological systems.

As microfluidics are used more frequently with cell-free protein synthesis systems (CFPS), researchers usually set up tubes to experiment with reactions. As the author points out, this is usually easy, but other studies have shown better success with ‘engineered reaction hardware.’ In this study, the researchers aim to begin using microfluidics as well as nanoscale membranes to lessen distances in diffusion and maintain reactions longer with better addition of microfluidics and nanoscale membranes. Success in such research could make impacts in applications such as medicine, when mixing doses of medicine.

Researchers involved in microfluidics have begun to use 3D printing due to the ease in creating components, quickly, and with exponential reduction in production cost. Availability of 3D printers has made a big difference, along with the affordability quotient, but more improvements must be made. FDM 3D printing has also been behind the creation of devices without the need for molds. 3D printed microfluidics are also popular mechanisms in bioprinting today, with the use of hydrogels used in tissue engineering.

3D microfluidics. Using 3D capabilities of the feature-based software, bridges were printed to create an overlapping design with three channels from an offset (a) and side (b) view. (d)Top view – overlapping channels remain separate from one another. (c) Side view – the bridging structure raises off the plane of the glass slide. The expanded view shows the printing direction for the bridging structures. (e) The microfabricated structure along with an inset of the chambers with each channel independent of one another. (f) Shows 3D printed structures connecting channels and overlapping to simplify the device control.

“The field of 3D printed microfluidics is growing to the point that substantial biological discoveries have been made with printed devices along with providing a path to commercialization for microfluidics that is simpler than PDMS based approaches,” says Shankles. “Most plastics used in 3D printing can be injection molded, providing a more straightforward road to commercialization than other techniques.

“Within microfluidics there are a plethora of techniques available to scientists and engineers so that the focus can be returned to biology and answering questions that are out of reach for traditional techniques.”

Shankles makes the obvious point that researchers should understand the proper ‘aspect of nature’ to copy for success in microfluidic platforms, along with realizing that current assays often require more than interactions with just one measurement of density or biochemical activity—and even the most basic systems may require more complicated setup than initially realized; however, Shankles does see the new 3D printing breakthroughs as offering potential for the future.

“The platform introduced here provides a route to expanding co-culture studies and building upon genomic studies to verify proposed interactions in a tractable way that preserves quorum sensing 70 behaviors while providing resources to more deeply understand the effects of chemical communication between species and communities,” concluded Shankles.

While also offering countless innovations to the world, 3D printing also allows scientists to make a wide range of tools—changing the scope of project management today as they as able to create necessary components for the lab themselves such as micro and millifluidic devices, flow chemistry equipment, and microreactors for photocatalysts. Find out more here about how scientists today are interfacing to biological systems with the help of 3D printing. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Signal switching the culture chamber with imbalanced support channel flow rates. (a) The relative flow rate is changed between the fluorescein and buffer support channels every 30 min. (b) shows a detailed version of one transition from the buffer support channel to the fluorescein support channel. (c) epifluorescent micrographs of the culture chamber in the beginning of a transition period at 0, 1, and 5 min.

[Source / Images: Interfacing to Biological Systems Using Microfluidics]

Researchers Create Scalable System for 3D Printing on Micro- and Nanoscale

Researchers from Germany and Australia give us insight into a new method they have created in ‘Multimaterial 3D laser microprinting using an integrated microfluidic system.’ As authors Frederik Mayer, Stefan Richter, Johann Westhauser, Eva Blasco, Christopher Barner-Kowollik, and Martin Wegener explored the ever-expanding field of 3D laser micro- and nano-printing further, they saw the need for structures that could be created beyond those with the typical ‘single constituent material.’

The research team created a scalable system allowing users to 3D print on both the microscale and nanoscale, for use in applications like photonic crystals, wire bonds, free-form surfaces, optical technology, mechanical metamaterials, microscaffolds, and much more. Previously such applications were catered to with 3D printed microstructures of only a single material, produced in a much more time-consuming manner. The ability to create structures with material materials at once means an obvious and substantial savings in time and money, as the researchers explain:

“… as resist systems and cycles increase, such a process performed by humans rapidly becomes not only very tedious and time consuming but also quite unreliable. Therefore, it is highly desirable to avoid having to go back and forth between the chemistry room and the 3D laser printer numerous times and instead integrate all steps and components into one compact tabletop machine tool.”

Seven different liquids are used within their system in this study:

  • Nonfluorescent photoresist for the structure’s backbone
  • Four photoresists containing fluorescent semiconductor quantum dots and organic dyes with different emission colors
  • Two developers (mr-Dev 600 and acetone)

“The scaling-up to a yet larger number of chemicals is straightforward,” state the scientists.

See an example of their microfluidic chamber scheme in Figure 1A, below, with the example photoresist in Fig 1B, and an expanded view of the stainless-steel microfluidic chamber in Figure 2A. Other features include:

  • Optical access through a round glass window (diameter, 25 mm; thickness, 170 μm)
  • Another round glass window (diameter, 10 mm; thickness, 170 μm) acting as the substrate for printing samples
  • A distance of 100 μm between the two windows

 

Fig. 1 Scheme of the microfluidic chamber. (A) A high-NA oil-immersion microscope objective lens focuses femtosecond laser pulses into a chamber, which is clad by two thin glass windows (light blue). One of them serves as the substrate for the samples. The selection valve shown in Fig. 3 allows for switching between different photoresists (here, one nonfluorescent and four fluorescent) and solvents (acetone and mr-Dev 600), which are injected into the microfluidic chamber. For clarity, the scheme is not to scale. A to-scale technical drawing is shown in Fig. 2B. (B) Structure formulae of the components of one of the fluorescent photoresists containing Atto dye molecules.

 

 

 

 

Fig. 2 Microfluidic sample holder for 3D laser lithography.(A) Left-hand side: Scheme of the complete sample holder, which can be placed into a commercial 3D laser lithography machine. Right-hand side: Explosion drawing of the microfluidic chamber, which hosts a small coverslip (diameter, 10 mm) inside the chamber, onto which structures can be 3D-printed. The chamber is sealed using a solvent-resistant O-ring, and the top part features a circular glass window for the high-NA oil-immersion objective to focus inside the chamber. (B) Cross-sectional scale drawing of the sample holder. The sample holder features connectors for liquid tubing and channels for the liquids to be guided in and out of the microfluidic chamber. The liquid flow path is indicated using red arrows.

 

 

Fig. 3 Scheme of the system connected to the microfluidic chamber.
(A) It consists of an electronic pressure controller connected to a nitrogen bottle, up to 10 containers for the photoresists and solvents for development, and the star-shaped selection valve. Pumping individual liquids is possible by applying a pneumatic pressure to all liquid containers and opening the flow path for a single liquid using the selection valve. Following the selection valve, the liquid flow is guided through an overpressure valve and our homebuilt sample holder. Last, it is directed into a waste container. (B) Cross section through our homebuilt selection valve assembly. The assembly consists of commercial solenoid valves and a homebuilt 10-to-1 manifold that connects the 10 liquid containers to 10 solenoid valves, and the valve outputs to one manifold output port. An example flow path for one liquid is indicated with red arrows.

The new design means that larger samples can be printed, resolution can be tuned, and overhanging structures are possible. The substrate can be removed, and the top part included a groove designed for a solvent-resistant O-ring. The researchers added this feature to seal the fluidic sample holder, making it leakproof, and they also added measures to prevent the internal setup from exploding due to pressure in the chamber. An electronic pressure controller was added, along with five different photoresists for 3D security features.

“It is conceivable that these microfluidic systems will become widely established for the manufacture of complex 3D micro- and nanostructures composed of multiple materials, with applications in diverse fields such as 3D scaffolds for cell culture, 3D metamaterials, 3D micro-optical systems, and 3D security features. As we have shown, the system can even be integrated into commercially available state-of-the-art 3D laser lithography machine tools,” conclude the scientists.

It doesn’t take long to realize the world of 3D printing includes doors continually opening from one realm of progression to the next, with each innovation building on the last, and new ones continually making impacts in a wide range of industries and applications. The study of materials and ongoing research has resulted in many other intricate customizations and open systems, along with great advances in miniaturization and microfluidics, and new methods on the microscale.

Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

(A) On the left-hand side, a computer rendering of the design for the microstructure is shown. It consists of a nonfluorescent 3D support structure (gray) with fluorescent markers with different emission colors printed into it. On the right-hand side, a stack of images taken by using fluorescence microscopy is shown. (B) The designs of the test patterns were printed into the five different marker layers of the microstructure. (C) Measurement data from fabricated microstructures taken using fluorescence microscopy. Insets show the level of detail at which different photoresist structure elements can be printed.

[Source / Images: ‘Multimaterial 3D laser microprinting using an integrated microfluidic system’]

3D Printed Microfluidic Device Designed to Customize Cancer Treatment

Testing cancer treatments is a lot of trial and error currently, and patients are often subject to multiple uncomfortable and time-consuming therapies before finding one that works. Developments have been made, including growing artificial tumors to test drugs on specific cancer types, but these tumors can take weeks to grow and they don’t account for patients’ individual biological makeup. Now, however, researchers from MIT and Draper University have come up with a new option: a 3D printed microfluidic device that simulates cancer treatments on biopsied cancerous tissue.

The device is a chip slightly larger than a quarter that can be 3D printed in about an hour. It has three cylindrical chimneys protruding from the surface, which are ports that input and drain fluids as well as remove unwanted air bubbles. The biopsied tumor fragments are placed in a chamber connected to a network of deliver fluids to the tissue. These fluids could contain things like immunotherapy agents or immune cells. Clinicians can then use imaging techniques to see how the tissue responds to the treatments.

The researchers used a new type of biocompatible resin, traditionally used for dental applications, that can support the long-term survival of biopsied tissue. This contrasts with other 3D printed microfluidic drug testing devices, which have chemicals in the resin that quickly kills the cells. Fluorescence microscopy images showed that the new device, called a tumor analysis platform or TAP, kept more than 90 percent of the tissue alive for at least 72 hours and potentially much longer.

The TAP is cheap and easy to fabricate, so it could quickly be implemented into clinical settings, according to the researchers. The devices is adaptable as well – doctors could 3D print a multiplexed device that could support multiple tumor samples in parallel, so that the interactions between tumor fragments and several different drugs could be modeled simultaneously for a single patient.

“People anywhere in the world could print our design. You can envision a future where your doctor will have a 3-D printer and can print out the devices as needed,” said Luis Fernando Velásquez-García, a researcher in the Microsystems Technology Laboratories. “If someone has cancer, you can take a bit of tissue in our device, and keep the tumor alive, to run multiple tests in parallel and figure out what would work best with the patient’s biological makeup. And then implement that treatment in the patient.”

One potential application is testing immunotherapy, a new treatment method that uses drugs to “rev up” a patient’s immune system to help it fight cancer.

“Immunotherapy treatments have been specifically developed to target molecular markers found on the surface of cancer cells,” said graduate researcher Ashley Beckwith. “This helps to ensure that the treatment elicits an attack on the cancer directly while limiting negative impacts on healthy tissue. However, every individual’s cancer expresses a unique array of surface molecules — as such, it can be difficult to predict who will respond to which treatment. Our device uses the actual tissue of the person, so is a perfect fit for immunotherapy.”

The research was published in a paper entitled “Monolithic, 3D-Printed Microfluidic Platform for Recapitulation of Dynamic Tumor Microenvironments.

“A key challenge in cancer research has been the development of tumor microenvironments that simulate mechanisms of cancer progression and the tumor-killing effects of novel therapeutics,” said Jeffrey T. Borenstein, who leads the immuno-oncology program at Draper. “Through this collaboration with Luis and the MTL, we are able to benefit from their great expertise in additive manufacturing technologies and materials science for extremely rapid design cycles in building and testing these systems.”

Microfluidic devices are typically produced via micromolding with PDMS. The technique was not suitable, however, for producing a device with fine 3D features such as the fluid channels, so the researchers turned to 3D printing, which allowed them to create the device in one piece. They experimented with several resins, but finally settled on Pro3dure GR-10, which is often used to make mouth guards. The resin is nearly as transparent as glass, can be printed in very high resolution, and has hardly any surface defects – and it doesn’t harm the cells.

“When you print some of these other resin materials, they emit chemicals that mess with cells and kill them. But this doesn’t do that,” Velasquez-Garcia said. “To the best of my knowledge, there’s no other printable material that comes close to this degree of inertness. It’s as if the material isn’t there.”

The device also features a “bubble trap” and a “tumor trap.” Fluids flowing into a device like this one creates bubbles that can disrupt the experiment or burst and release air that destroys tumor tissue. So the researchers created a bubble trap, a chimney that rises from the fluid channel into a threaded port through which air escapes. Fluid gets injected into an inlet port adjacent to the trap, then flows past the trap, where any bubbles in the fluid rise up through the threaded port and out of the device. Fluid is then routed around a small U-turn into the tumor’s chamber, where it flows through and around the tumor fragment.

The tumor trap sits at the intersection of the larger inlet channel and four smaller inlet channels. Tumor fragments, less than one millimeter across, are injected into the inlet channel via the bubble trap. As the fluid flows through the device, the tumor is guided downstream to the tumor trap, where it gets caught. The fluid continues traveling along the outlet channels, which are too small for the tumor to fit into, and drains out of the device. A continuous flow of fluids keeps the tumor fragment in place and constantly replenishes nutrients for the cells.

“Because our device is 3-D printed, we were able to make the geometries we wanted, in the materials we wanted, to achieve the performance we wanted, instead of compromising between what was designed and what could be implemented — which typically happens when using standard microfabrication,” Velásquez-García said.

The next step is to test how the tumor fragments respond to therapeutics.

“The traditional PDMS can’t make the structures you need for this in vitro environment that can keep tumor fragments alive for a considerable period of time,” said Roger Howe, a professor of electrical engineering at Stanford University, who was not involved in the research. “That you can now make very complex fluidic chambers that will allow more realistic environments for testing out various drugs on tumors quickly, and potentially in clinical settings, is a major contribution.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Source/Images: MIT]