3D Printing News Briefs: September 4, 2018

In the first 3D Printing News Briefs for this month, we’re starting with some education and business, followed by some how-to videos and a couple of things to ponder. PrintLab’s curriculum is going global, while the province of Victoria in Australia has invested in 3D printing. A Ukrainian company has introduced a new type of metal 3D printing, and you can learn how to cast concrete 3D printed molds and make an etched glass build surface for your 3D printer by checking out two new YouTube videos. There could be even more uses for construction 3D printing than previously thought, and a thermal view of a model being 3D printed on an Ultimaker begs an important question.

PrintLab Portal Available in Polish

3D printing curriculum provider PrintLab, based in the UK, set up an online portal in January, called PrintLab Classroom, to help teachers better integrate 3D printing into their lesson plans. Now that the English version of the learning platform has been successfully launched, PrintLab is working to offer the curriculum portal in multiple languages. Now, thanks to a collaboration with Polish 3D technology and education supplier Paxer, a new PrintLab reseller, the platform is available in Polish, with translations in Spanish and Chinese in the works.

“After a great deal of initial interest and success, we are very pleased to be able to offer our curriculum to Polish students and educators. Our mission has always been to prepare the next generation for their future careers by addressing the widening skills gap and we are now able to do this across multiple regions. Our focus is on finding partners that share our belief and vision and in Paxer, we have found a motivated team that has technology in education at its core,” said Nick Mayor, Co-Founder at PrintLab.

“The aim is to inspire students and teachers around the world to adopt technology into lessons. We have started with Polish, however that is just the beginning. Spanish and Chinese translation is currently being undertaken which is part of our plan of inspiring minds on a global scale and providing teachers worldwide with comprehensive lesson packages, developed alongside teachers.”

New Virtual 3D Printing Hub in Victoria

The manufacturing industry in Victoria, the second most populous state in Australia, contributes $27.7 billion to the Victorian economy. Now, businesses there will be able to connect with additive manufacturing technology and produce products more easily and quickly, thanks to a new dedicated virtual hub. Ben Carroll, the Minister for Industry and Employment, joined Member for Carrum, Sonya Kilkenny, at the Carrum Downs facility of 3D printing company Objective3D to make the announcement this week. The hub, supported by $2 million from the Victorian Government and delivered by Australian Manufacturing Technology Institute Limited – a national body representing manufacturing technology suppliers and users – should improve access for local companies to the state’s 3D printing infrastructure.

Carroll said, “3D printing is a game changer for manufacturing – which is why we’re backing the technology so more local companies can reap the benefits.

“This new hub will help local manufactures innovate, become more productive and excel in future industries.”

xBeam Metal 3D Printing

Ukrainian company NVO Chervona Hvilya has a new form of metal 3D printing it calls xBeam, which it says “was born to make the best features of Additive Manufacturing available for wide industrial community and to prove that definition of Additive manufacturing as the Third Industrial Revolution is reality.” The company has spent roughly four decades developing electron beam technologies for multiple applications, and its exclusive xBeam technology was born from this experience.

With xBeam, the company says you won’t have to decide between high productivity, accuracy, and a defect-free metal structure – its patented solution delivers all three. xBeam is based on the ability of a gas-discharge electron beam gun to generate a hollow, conical beam, which can offer “unique physical conditions for precisely controllable metal deposition and forming of desired metal structure in produced 3D metal part.”

Using 3D Printed Molds to Create Cast Concrete Products

Industrial designer Rob Chesney, the founder of New Zealand-based bespoke design and fabrication studio Further Fabrication, recently published a tutorial on the studio’s YouTube channel about creating cast concrete objects and products with 3D printed molds and no silicone at all. For the purposes of the video, Chesney used 3D printed molds for faceted candle holders.

“In the first half of this video we’re gonna deal with the design and the creation of the molds using the computer and 3D printing,” Chesney said. “In the second half we’ll show you how you go about casting products with some tips and tricks thrown in there along the way.”

To learn how to make your own cast concrete candle holder with a 3D printed mold, check out the Further Fabrication video:

Etched Glass Build Plate

Another new video tutorial, this time by YouTube user MrDabrudda, shows viewers how to make an etched glass build surface for a 3D printer. What’s even better, the plate does not require you to use tape, a glue stick, or even hairspray to get your prints to adhere to it.

“So I’m tired of having to respray the hairspray on my glass bed for my 3D printer, so what I’m doing is taking a 180 grit diamond stone and a tub of water, and I’m going around on here and roughing this up,” MrDabrudda said.

To learn the rest of the process, check out the rest of the video:

Construction 3D Printing Uses

A 3D printed Volvo CE workshop tool

While there are still those who may think that construction 3D printing is all hype, that’s not the case. Sure, maybe it’s not possible to create a fully 3D printed house in a day in every country in the world, but we’re already able to create large-scale, 3D printed objects, with impressive lifespans and tensile strengths, out of a multitude of materials. There are also other applications in construction 3D printing than just houses. Caterpillar has long been interested in 3D printing, and thanks to its early work in research engineering cells, prototyping, and 3D printing tools for the assembly line, it’s now moved into commercial production of nearly 100 components; however, all but one were made of polymers.

“We’ve made a lot of progress with this technology, but not to the point where we are comfortable putting it into, for example, safety equipment or the manufacture of large metal parts, although we are doing a lot of research in that area,” said Don Jones, Caterpillar’s General Manager, Global Parts Strategy and Transformation.

Another OEM with developed 3D printing capabilities is Volvo CE, which stands for Construction Equipment. As of right now, the company has 3D printed spare parts such as plastic coverings, cab elements, and sections of air conditioning units.

“It’s especially good for older machines where the parts that have worn out are no longer made efficiently in traditional production methods,” said Jasenko Lagumdzija, Volvo CE’s manager of Business Support. “Producing new parts by 3D printing cuts down on time and costs, so it’s an efficient way of helping customers.”

Can Thermal Imaging Improve 3D Printing Results?

Usually when I think of thermal imaging, the movie Predator immediately comes to mind – the alien creature tracked its human prey by their body heat signatures. But this technology can also be applied to 3D printing. About two years ago, CNC machine manufacturing company Thermwood Corporation added real-time thermographic imaging as a standard feature on its LSAM (Large Scale Additive Manufacturing) systems. This imaging makes it far easier to adjust and control the entire 3D printing process, which will result in excellent 3D printed structures as a result.

Using thermal imaging can help create high-quality, large tools that are solid and void-free enough to maintain a vacuum, without any necessary surface coating or sealing. To ensure good prints, the temperature of the print surface needs to be controlled, which is tricky to do. But thermal imaging can help operators remain in the optimal range of temperatures. Thermwood seems to be ahead of the times with its thermal imaging capabilities.

A new video was recently posted by YouTube user Julian Danzer showing a large BFR winged rear section model being fabricated on an Ultimaker 3D printer; the video switches about 30 seconds in to a thermal view of the print job. The quality isn’t great, but it makes me think – should all 3D printers come standard with FLIR cameras now? If thermal imaging can really help improve the results of 3D prints, my answer is yes. What do you think?

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

Sand 3D Printing Used to Create Smart Slab Ceiling for ETH Zurich’s DFAB House

Last year, a project began, led by ETH Zurich and centered around the fabrication of a multi-story house called the DFAB House. The structure would showcase multiple technologies being developed at the university, including a 3D sand printing technique. Now the team has completed what is known as the Smart Slab, a panel that will be the DFAB House’s ceiling. At its thinnest point, the Smart Slab is only 20 mm thick, but it’s strong, and while it wasn’t 3D printed directly, the mold for the slab was made from a 3D sand printer, making it the first full-scale architectural project to use 3D sand printing for its formwork.

The ceiling is 80 meters squared, weighs 15 tonnes and consists of 11 concrete segments that connect the lower floor with the two-story timber space above. One advantage of using 3D printing for the mold instead of using a direct layer-by-layer concrete process is that high performant fiber-reinforced concrete can be used, and it can be fabricated with millmeter precision.

The Smart Slab was developed by the research group of Benjamin Dillenburger, Assistant Professor for Digital Building Technologies at ETH Zurich. The group developed a new software to create the formwork elements; the software is able to record and coordinate all parameters relevant to production. The team entered basic data such as room dimensions as well as a scan of the curved wall that will support the ceiling. This allowed them to adapt the geometry of the slab so that at each point it was applied only as thick as structurally necessary to support the force flow.

“We didn’t draw the slab; we programmed it,” said Mania Aghaei Meibodi, Smart Slab project lead and senior researcher in Dillenburger’s group. “It would not have been possible to coordinate all these aspects with analogue planning, particularly with such precision.”

The ceiling is composed of ribs of different sizes. The main ribs carry the loads, while the smaller filigree ribs are primarily for acoustics and aesthetic appeal. The lighting and sprinkler systems are integrated directly into the slab structure; they were coordinated with the planning software as well.

Several partners worked on the Smart Slab after its design had been exported from the computer. One industry partner produced the 3D printed sand formworks, which were divided into pallet-sized sections for easier printing and transport. Another partner fabricated the timber formwork through CNC machining, which gives shape to the upper part of the Smart Slab and leaves hollow areas that reduce weight and create space for electrical cables. A third partner brought together the two types of formwork, spraying the fiber-reinforced concrete onto the sand formwork to produce the lower concrete shell and casting the remaining concrete into the timber formwork.

The 11 individual concrete segments were transported to be building site after hardening for two weeks. A crane placed the concrete elements onto the load-bearing wall, where the prestressing took place. Steel cables were pulled lengthwise and crosswise through the concrete support and into the channels already inserted in the formwork. Tensioning the cables significantly increases the system’s load capacity.

“It was spectacular to see on the construction site how seamlessly our elements fitted with each other and with the existing components of the DFAB House,” said Dillenburger. “We owe this in part to the outstanding interdisciplinary collaboration with our partners. The meticulous work that we had invested into planning completely paid off.”

ETH Zurich has become well-known for its work with advanced 3D printing and robotics research. The university has developed numerous new digital fabrication technologies, several of which are being utilized in the construction of the DFAB House. The house is being constructed at Empa and Eawag‘s NEST research and innovation facility. You can learn more about the DFAB House here.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Images: ETH Zurich]

Nano Dimension and Mayku Announce New Strategic and Distribution 3D Printing Partnerships

Israeli additive electronics provider Nano Dimension announced in April that it would be expanding its coverage in the Asia Pacific (APAC) region, and today has made good on that announcement. The award-winning company has officially entered the Chinese market now, thanks to its strategic partnership with top 3D printer distributor the AURORA Group.

The AURORA Group is the majority shareholder of 3D software and 3D printer provider General Integration Technology (GIT), which recently purchased and installed a DragonFly 2020 Pro PCB 3D printer from Nano Dimension for its Taiwan showroom. In addition to this new partnership, AURORA has also purchased a second DragonFly 2020 Pro.

“China is one of the world’s largest and most important electronics manufacturing and design markets, and establishing the correct foothold in the market is key for Nano Dimension. AURORA has years of operating experience in the manufacturing sector, and with its extensive resources and unique network of 1,500 offices, 300,000 customers, including more than 3,000 customers in electronics industries, we believe it is very well positioned to give us fast market access to realize the full potential of the DragonFly 2020 Pro in China,” said Amit Dror, CEO of Nano Dimension. “We look forward to developing the Chinese market together by leveraging AURORA’s significant presence.”

As a result of the partnership, AURORA will market and sell the DragonFly 2020 Pro to customers in China, which will help grow Nano Dimension’s market coverage in APAC.

“Providing our customers with the very latest in high-quality, innovative 3D printing solutions is key to the success of our company,” said Daniel Chi, GM of 3D Business Unit, AURORA Group. “Forming a strategic relationship with Nano Dimension helps us expand our offering to now include capabilities for 3D printing electronics. The Nano Dimension DragonFly 2020 Pro is a groundbreaking technology that opens unimagined possibilities for electronics designers and manufacturers.”

A January 2018 market research report from the International Data Corporation (IDC) shows that the quickly growing Chinese 3D printing market is leading Asia. 3D printing in the country benefits from both industrial and private consumer investments and government support, so partnering with AURORA for additional APAC coverage is a smart move on Nano Dimension’s part.

“This is an important moment for our recently established Hong Kong office,” said Nano Dimension’s APAC Director Gilad Reshef. “We are proud to partner with AURORA as our leading partner in China. The partnership with AURORA deepens AURORA’s exposure to additive manufacturing by expanding into 3D-printing electronics, paving the way for new markets and applications.”

This news from Nano Dimension and AURORA isn’t the only newly announced 3D printing partnership. London startup Mayku has just released its innovative desktop vacuum former, the FormBox, for sale in the UK and the US, with help from its own new partner – 3D printing specialist GoPrint3D.

The FormBox

“We’re really excited about it as we think a lot of 3D printer owners will want one to complement their existing 3D printer,” GoPrint3D’s David Whitehouse told 3DPrint.com.

A drone case being removed from the mold.

GoPrint3D, which is also a distributor for EnvisionTEC and learnbylayers, was launched six years ago as a part of Express Group Ltd, which has provided 2D printer repair and spare parts to the UK for three decades. The company sells, repairs, and hires 3D printers, in addition to providing professional services.

“We were so impressed when we first saw the FormBox that we immediately backed it on Kickstarter,” explained Jo Young, Managing Director at GoPrint3D. “Now we are a partner as well as a backer. It’s the perfect accessory to 3D printers like the Form 2 so we are delighted to add it to our range.”

In 2016, Mayku crushed its original $50,000 Kickstarter campaign goal for the FormBox by over 1,000%. The desktop vacuum forming machine, which can be powered by a vacuum cleaner, lets makers and designers create items in all sorts of materials, ranging from concrete, ice, and plaster to soap, chocolate, and wax, and others as well.

The machine is user-friendly, and fast as well – able to make molds in just minutes without having to rely on any additional software or digital model manipulation.


“Vacuum forming was previously something found in makerspaces and in schools due to their cost and size,” explained Ben Redford, Mayku’s Co-Founder and CPO. “We are thrilled to have the support of the 3D printing industry and have been blown away with what makers have been designing.”

The FormBox is a complementary new hardware addition for 3D printer owners. Users can easily vacuum form a 3D print using the FormBox, which can then be used as a mold for fast replication in multiple materials that are not able to be directly 3D printed at this time.

GoPrint3D now has the FormBox in stock and available for purchase for a price of £499 excluding VAT.

Discuss partnerships and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

 

Metal 3D Printing and Classic Foundry Techniques: Friends or Foes?

The first question that is often asked when a new technology is introduced is: what of the old way of doing things? Sometimes the answer is that it fades into oblivion — think: fortran and floppy disks — other times it falls out of use in mainstream society but becomes the domain of a small, especially devoted community, like calligraphy or pedal loom weaving. And in other cases, it simply shifts its focus and allows itself to flower as it removes extra ‘noise’ from the workflow. John Phillip Sousa wondered if the invention of the phonograph might cause human beings to lose their vocal chords as they would no longer have to sing any song they wished to hear, and an equally pessimistic (although slightly more realistic) group worried that the Kindle would eradicate books altogether.

What has happened is that humanity has access to more music than ever and book production may see a fall in the print of throwaway paperbacks, but there appears to be no reason to fear that beautiful books will be eliminated from publication. One new technology that is causing both concern and overinflated speculation is the introduction of metal 3D printing. The question is: what impact will this technology have on traditional foundries? Foundry work is not inherently antithetical to 3D printing as many have, in fact, been using 3D printing to create molds for years now and have found the technology to be quite helpful in their production.

Beyond the printing of 3D molds, metal 3D printing is demonstrating a capacity for directly creating metal objects that is improving with each passing project. Voxeljet, which recently produced a new design for aircraft doors using 3D metal printing, doesn’t think that this signals the end of the classic foundry, however. Instead, they see it as something akin to a separate track of printing. What made the doors they produced such a good candidate for 3D printing was the need for a precise internal geometry, something impossible to be produced in a foundry. So rather than stealing work from a foundry, they were doing work that otherwise would not have been performed at all. And there are other reasons not to see metal 3D printing as a threat to foundry work, as voxeljet explained in a statement:

“3D metal printing, such as direct metal laser sintering (DMLS), currently only competes with foundries in a relatively small segment. The build spaces of DMLS systems are ideally suited to smaller components. And 3D-printed components for aerospace require time-consuming certification, which metal casting has had for decades already. Direct 3D metal printing is also relatively expensive. This is not only due to the high cost of metal powder, but also the high cost of 3D printers and the comparatively slow building speeds.”

In addition to these factors, the products of 3D printing in metal require hand finishing which is labor intensive. All of these factors lead up to an average cost for 3D printed metal pieces that hovers around $160 per pound for aluminum, and $215 per pound for stainless steel, whereas pure cast steel has a price point of about $15 per pound. However, with the introduction of less expensive machinery, greater build bed sizes, and a more experienced workforce, the input prices for 3D printed metal are bound to come down. And so the question arises: will there be a change as the costs associated with metal 3D printing fall?

This uncertainty necessarily creates a degree of concern among those whose businesses and livelihoods depend upon a demand for foundry work. Rather than viewing the technology as an enemy to be shut out, perhaps the best solution is for foundries to get ahead of the game and embrace the tech, integrate it into their workflows and determine for themselves what makes sense to leave to a 3D printer and what can still only be produced at the hands of skilled foundry workers. As Ingo Edere, CEO at voxeljet, stated:

“3D sand and plastic printing are a perfect alternative for foundries, both in terms of cost, as well as the printable complexity. Foundries can manufacture equally complex components without having to change the process chain. Foundries do not have to purchase their own 3D printing systems as there are service providers worldwide supplying 3D sand or plastic printing.”

Clearly, a company such as voxeljet believes in the efficacy of this technology and its firm place as part of the landscape of future production. However, just because something can be 3D printed, doesn’t always mean that it should be, and discerning artisans and clients alike are the ones who will ultimately have to determine where that line lies.

What do you think of this news? Let us know your thoughts; join the discussion of this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

ETH Zurich Students Cast Elaborate Metal Architectural Structures with 3D Printed Molds

The innovative researchers at ETH Zurich in Switzerland are becoming quite well-known for their advanced design and construction techniques, especially when it comes to their work with molds. 3D printed molds can be used to help fabricate everything from jewelry and chess pieces to medical implants and wind turbines, but a group of masters students from the university’s Architecture and Digital Fabrication course are currently interested in creating 3D printed molds for the architecture field.

Together with ETH Zurich senior researcher Mania Aghaei Meibodi, they have developed a new method for casting complex metal architectural structures using 3D printed molds.

Aghaei Meibodi, who researches how 3D printing can help create bespoke metal building elements, said, “Cast metal parts have a long tradition in architecture due to their extraordinary structural properties and possible 3D form.

“Today the amount of manual labour involved, especially in the mould-making process makes them too expensive.

“With our approach using 3D-printed moulds, we make it possible and affordable again to fabricate bespoke structural metal parts — parts with unseen richness of detail and geometric complexity.

“This approach can unlock an entirely new vocabulary of shapes for metal structures in architecture, previously unavailable with traditional mould-making systems.”

The one-off aluminum structure created by the Digital Building Technologies (DBT) group, called Deep Facade, is the first metal facade to be cast in 3D printed molds. Standing six meters high and four meters wide, the structure features ribbons of metal organically looped in a way that resembles the human brain’s cerebral cortex folds, and is a follow-up to a project by last year’s students called the Digital Metal Pavilion.

Aghaei Meibodi told Dezeen that the aluminum Digital Metal Pavilion, a space-frame structure made up of 240 non-repetitive joints, was the very first architectural structure to use 3D printed molds.

It only took a week to make these joints, which Aghaei Meibodi, who also chairs the DBT group, explained is 80 times faster than the more conventional processes used to fabricate complex metal parts. Using 3D printing for this type of application is obviously a far more cost-effective way to produce complex structures and forms for custom architectural projects.



It is possible to 3D print metal directly, but it’s not always the best option – it can be expensive, and can only be used with a limited range of metals with limited material properties. That’s why the DBT group uses 3D printed sand molds in casting molten metal.

Aghaei Meibodi explained, “In this synergy we benefit from the geometric freedom offered by 3D printing and the structural stability of cast metal.”

The Deep Facade structure is made of 26 articulated panels. A differential growth algorithm, which replicates the development of some living organisms, was used to fabricate the structure, which features some sections that would have been too fragile to make with concrete or sandstone.

Topology optimization, which allows for designers to take advantage of the geometrical freedoms made possible through additive manufacturing, also came into play in the DBT group’s creative process.

“Computational techniques such as topology optimisation allow designers to design lightweight parts, but the parts optimised with this technique are often difficult to manufacture through traditional methods.

“Our proposed fabrication approach doesn’t encounter the same limits as traditional manufacturing methods and can go further with shape optimisation thanks to the ability of 3D printing to print complex moulds that could be used to fabricate more efficient structures,” said Aghaei Meibodi.

Aghaei Meibodi is hopeful that her student group’s new method can one day be applied to a unique, large-scale project.

“With this new approach of casting metal, one can imagine a return of 3D detailing and 3D articulation, perhaps a fusing of ornament and structure,” she said.

“My dream application of it would be in the building envelope and interior structure of large spaces as large-span supporting structures.”

Discuss this story and other 3D printing topics at 3DPrintBoard.com or let us know your thoughts in the Facebook comments below.

[Images via Dezeen]