Costa Rica: Researchers Design 3D Printed Medical Device for Suturing Extremities

Our skin protects us from invading microorganisms and foreign substances, eliminates harmful toxins, helps to regulate our core body temperature, and is in charge of receiving both tactile and thermal stimulation. But, it’s fragile and easily damaged, which can lead to open wounds that get infected. Michelle Orozco-Brenes, José A. Jiménez-Chavarría, and Dagoberto Arias-Aguilar, researchers out of Costa Rica, published a paper, titled “Design of a medical device for superficial suturing upper and lower extremities,” about their work creating a medical suturing device.

“This work presents the design for a class 2 medical device that meets the basic requirements of the current and known suturing methods in Costa Rica,” the abstract states. “The design process was achieved in three main stages, (i)Research on similar technologies; e.g. The operation principles of a sewing machine, materials used; (ii) The study of types of skin traumas; (iii) General approach toward the suturing device, including device functionality, integration with the human body and manufacturing process. The device model was designed and fabricated using 3D printing technology, this allowed the team to analyze ergonomics, the assembly of the parts and the equipment’s motion. The printed prototype made it possible for potential users to provide feedback on the design and suggestions for improvement.”

Figure 1. SolidWorks design of the medical device to be printed.

Suturing means to connect blood vessels with a specific material, such as thread, when tissue is torn in a way that halts natural healing. You can find many suturing devices on the market around the world, but Costa Rican hospitals don’t typically use them, as they are complex and costly. So the team set out to design a class 2 FDA electronic medical device that could both reduce tissue damage and uniformly, and quickly, suture a wound so an “aesthetically acceptable” scar is left behind.

“The idea for a medical device to suture arose for three main reasons,” the researchers wrote. “First, physicians were noticing poorly sutured wounds that would result in large scars. These in some cases required further procedures like plastic surgery. Also, time consumption, making the search for a device that would make the method faster a necessity. Finally, sutures stitched by hand are sometimes left too loose or too tight, causing bleeding from the wound.”

Table 2. Schematic representation of the function of the suturing medical device.

Device specifications were functionality, cost, durability, modularity, and reliability. They used SOLIDWORKS software to create the design for their model, which required three specific functions:

  • Stabilize the skin
  • Rotate the needle on its axis to join tissue sections
  • Initiate and finish with the least possible amount of user interference

“The final design was oriented to have the area and volume of the shell as similar as possible for the needle to rotate 360° without any problem,” the researchers explained.

In order to test out several functionality features, they 3D printed a prototype first, using Polyjet technology to fabricate the piston and and an FDM printer for most of the other parts. Due to its high strength and toughness, corrosion and fatigue resistance, and low friction coefficient, they used the AISI 316L alloy for the prototype.

The suturing device has seven main components. The shell encases the device, while two guides allow the movement of the guide pin, which is used to tie a double knot. Rollers provide the rotational movement that allows for the suturing, while a piston gives the rollers their movement. The final parts are a ½ circle needle with tapered tip, and nylon thread, which has good elasticity for skin retention and closure.

Figure 2. Final design for the suturing medical device.

To use the device, the needle is first threaded in its initial position at the top of the shell, and then set in the rollers. The piston lowers the shell, and the needle is rotated 270° to pinch the tissue for suturing. The knot is initiated when the rollers, guided by the holder, turn 45° to the right, and the pin is set in place over the guide. The needle makes a 360° turn on its axis, and the guides turn over the shell and let go of the guide pin, “letting it fall due to gravity over the guides” beneath it to finish the first knot. The first few steps are repeated, and after the final full turn, the user tenses the thread through the top hole, until it’s kept that way through the guide pin. The lower guides will release, and the guide pin is removed, completing the double knot.

“After the prototype was assembled and design functions checked, the final step required a survey,” the team wrote. “The study contained questions about the medical device presented via prototype and they were asked to elaborate on their answers regarding their opinion as health professionals.”

Table 3. Survey on trained medical physicians.

The 3D printed prototype device was presented to Dr. Stephanie Gómez Najéra, Dr. Pamela Villareal Valverde, and Dr. Tatiana Piedra Chacón. The numbers listed in the survey results are the average between these three Costa Rican physicians, and the scale, based on the Likert scale, goes from 1-5, with 1 being strongly disagree and 5 being strongly agree.

“The comments reference that the usefulness depends on the context of where it would be applied, for example a jail or emergency room,” the researchers wrote of the doctors’ opinions on their device.

“One main drawback is that the device may not be suitable for all types of wounds. Other concerns raised by the physicians were related to the price and size of the device.”

Based on observations from the survey, the researchers modified the final prototype to “improve its ergonomic factor” by adding a holder at the top of the shell for more stability and easier manipulation.

Next steps include standardizing parts of the prototype so that some pieces can be purchased in the market, and optimizing the mechanisms, like the servomotor, sensors, and motors, that generate the device’s movements.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

The post Costa Rica: Researchers Design 3D Printed Medical Device for Suturing Extremities appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Open Source DIY Telescope Prime Features Raspberry Pi and 3D Printed Parts

PiKon telescope

While the majority of us are not astronauts, there is a tool that can be used in your home to make you feel like you’re just a little bit closer to the stars – the telescope. Five years ago, a group of UK researchers from the University of Sheffield, including physicist Mark Wrigley, were inspired by NASA’s Juno spacecraft to create their own DIY telescope, the PiKon, using 3D printing and a Raspberry Pi. Now, a pair of Polish scientists have followed in their footsteps with their own parametric, open source, DIY telescope with 3D printed parts.

Aleksy Chwedczuk and Jakub Bochiński wanted to help popularize astronomy by making their own semi-professional, yet affordable, telescope model for at-home use, for which people can then download the files and create on their own. Chwedczuk and Bochiński call their creation the Telescope Prime, and created the first prototype in just eight hours. The initial prototype was then used to take pictures of the moon, and the final version was finished in less than three months.

The look from the inside of the Telescope Prime

Polish 3D printing company Sygnis New Technologies offered to help the scientists create their DIY telescope by sharing their equipment.

“As Sygnis New Technologies, we are proud to say that we have participated in the Telescope Prime project by adjusting 3D models of parts of the telescope and printing them for the science duo,” Marek Kamiński, the Head of Social Media for Sygnis New Technologies, told 3DPrint.com.

Telescopes have been helping people observe outer space since the 17th century, though at that time it was reserved only for the elite citizens who could purchase the equipment. But even though there is much more variety available today, it’s still not something that is widely available – the device has many complex, interacting elements. That’s why Chwedczuk and Bochiński wanted to use 3D printing to help create a more affordable, open source version.

In a piece by Sygnis, the two scientists said, “We wanted to initiate the development of an open-project telescope that could be easily modified and expanded…

“At the same time, it should be a digital telescope – adapted to our 21st century online lifestyle, where the habit of sharing one’s experiences on the Internet is the new norm.”


The telescope model, which all together costs less than $400 to put together, is made of three main parts: the 20 cm diameter parabolic mirror (with a recommended focal length of 1 m), a Raspberry Pi microcomputer with a camera and touch display, and 3D printed parts that are used to fix the camera and the mirror. To help keep costs down, “readily available materials,” like wood, screws, and a paper tube, are used to build the Telescope Prime.

Aleksy Chwedczuk with the first prototype of the telescope

In a further effort to keep the telescope fabrication as inexpensive as possible, it does not have lenses. Light is focused in a single spot, and stops on the mirror. A boarding tube makes up the body of the device, and plywood parts are then added. The telescope can use its build-in camera to take images of the night sky, and transmit them online in real-time using the touchscreen of a computer, projector, or tablet. Additionally, you can easily increase and reduce the size of the telescope – just enter the mirror’s size into the program, and all of its dimensions will be automatically converted.

“The creators had to take into account the realities of the 21st century, modern issues of the popularization of astronomy, also among the youngest amateurs of the starry sky, as well as the availability of materials for the construction of the telescope,” Sygnis wrote. “Telescope Prime is an innovative idea that reflects the needs and possibilities of an astronomer enthusiast of the second decade of the 21st century.”

The open source models for the telescope parts, which are available for download on the Telescope Prime website, were prepared in advance for 3D printing, so they didn’t need any corrections later. These elements were 3D printed on FlashForge 3D printers out of Orbi-Tech PLA material, and it took a total of 156 hours of printing to create the 17 telescope parts.

The final version of the Telescope Prime

Kamiński told 3DPrint.com that the two scientists are currently “promoting the project on Polish universities, schools and science institutes.” This makes sense, as the Telescope Prime website explains that the project was “initiated and fully carried out” on the grounds of the Akademeia High School in Warsaw.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Source/Images: Sygnis New Technologies]

The post Open Source DIY Telescope Prime Features Raspberry Pi and 3D Printed Parts appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Industrial Design and Development Company Chooses EnvisionTEC for the Production of Accurate Prototypes

P5 Designers (P5) is a traditional, project-based design and development business based in Milford, NJ. The company boasts dozens of patents in product, packaging and manufacturing design. P5 has built up an enviable reputation in the industry and supports businesses in the production of a wide range of products, from toys to medical equipment.

The elite team at P5 is composed of cross-trained researchers, industrial designers, and engineers providing an end-to-end service including: project management, product preparation, product design, prototyping and packaging design.

Within the research and development process, there is a need for multiple prototypes and iterations of those prototypes. With traditional manufacturing methods, those prototypes are often hand crafted, made from molds or milled.

Since the beginning, members of the team at P5 have been involved with 3D printing. Although additive manufacturing had improved productivity and reduced costs, P5 needed more accurate results. They recognized that to stay ahead of the competition and ensure the best results for their customers they would need to invest in the best machines in the market. For manufacturing, P5 needed a machine that could closely mimic the final injection molded part and give the customer a true reflection of the look and feel of their final product.

After testing a number of brands and technologies, P5 was sold on the EnvisionTEC Perfactory. The printer allows the production of everything from a tiny medical part to large packaging models – quickly, painlessly and accurately. Additionally, the range of resins available for the EnvisionTEC Perfactory provides a huge number of options. This includes hard and soft materials, flexible, tough and even temperature resistant materials.

These processes are both time consuming and expensive, requiring specific skills and tooling to achieve. They also result in a vast amount of wasted material. Additive manufacturing is becoming a vital part of prototyping for many companies. Multiple iterations and design tweaks can be achieved quickly and without the need to reproduce or modify molds. Additionally, unlike milling techniques, there is no specialist tooling required. P5 has been using 3D printing for a number of years, recognizing that its implementation has not only removed many of the costs associated with the R&D process but also improved the speed at which concepts can be turned into real-world objects. Multiple iterations of a prototype can be printed simultaneously. Speeding up the decision-making process.

“3D printing is vitally important to the product design process. It helps us bring into the 3D dimensional realm some of the concepts that we have. The ease of use, the amount of detail we get and the vast materials selections available was something that was missing in most other manufacturers. The quicker we can start putting things into our hands, the quicker we can start developing the fit and feel that is so vital to any good product design part.” – Mr. Paul Carse – Owner, P5 Designers

“When we are in the heat of a project, especially in the very early stages where we are doing a lot of design development, we will use this machine for maybe 2-3 weeks straight with non-stop building. Reliability has never been an issue.” – Ms. Kelly Duncan – Industrial Designer, P5 Designers

Since the purchase of the EnvisionTEC Perfactory, the team at P5 have embraced its flexibility and speed. The accuracy of the machine has allowed them to produce prototypes to very high tolerances and accurately to their digital designs. Accurate prototypes that reflect the production items can be produced and handled by the customer very quickly. This allows clients to see and feel their vision and adjust designs to achieve the look and feel they desire. The dimensions of the build plate and Z height on the Perfactory allow for multiple iterations of a design to be printed at the same time, so options can be presented to the client. This capacity also allows for larger objects to be produced with equally fine detail. When adjustments are required, these can be quickly achieved with re-prints in a matter of minutes or hours.

The patented technology employed by the printer results in exceptional surface quality with very little visible stepping. This increases the speed of prototype production further by reducing the finishing time required. The range of EnvisionTEC materials and the ability to painlessly switch these for different jobs makes the machine very flexible, allowing them to fulfill the needs of more customers. For example, the ability to print medical devices on one print, then switch to clear bottles on the next.

After using the Perfactory for hundreds, if not thousands of jobs it has proved reliable and provides consistent results time after time. The team at P5 can rely on the machine, knowing that even when leaving it overnight to complete prints, they will return to a completed job, and a printer ready to accept the next.

“We want to make our concept models as close to injection moulding as possible. So we’ll make sure that everything has a uniform 1-1.5mm wall thickness which a Perfactory has no problem doing. It makes really clean crisp parts, which is great.” – Ms. Kelly Duncan – Industrial Designer, P5 Designers

The large Z height on the Perfactory allows for the production of even large models. Additionally models can be printed horizontally or vertically to maximize yield per print. Even small medical devices can be produced to extremely high tolerances.

Since EnvisionTEC machines are STL agnostic the team at P5 are not locked to a single CAD provider. Moving is simple. Additionally, as all EnvisionTEC Perfactory machines are based on the same principles and are compatible with the same resins, expanding the printing capacity is easy. Machines can be added without the vast cost of retraining their team or implementing new software.

EnvisionTEC offers a full range of desktop, full-production and high-speed continuous 3D printers for the production of highly detailed prototypes for design verification and testing or for real mass production of custom products. Learn more here. Want to download the case study, you can go here.

The post Industrial Design and Development Company Chooses EnvisionTEC for the Production of Accurate Prototypes appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Unveiled at Hannover Messe: BigRep Pro & 3D Printed NEXT Automated Guided Vehicle

Eventgoers at Hannover Messe, held in Hannover Germany from April 1-5, are getting a preview of the latest in spectacular new technology and innovation. This includes learning more about new dimensions in additive manufacturing too as companies like BigRep unveil 3D printers such as the 5G connected industrial BigRep PRO—developed with partner Bosch Rexroth.

The BigRep PRO was designed with engineers around the world in mind, as the two companies sought to give industrial businesses greater opportunities to create models that are completely functioning prototypes—along with the ability to fabricate composite, end-use parts, and small-number serial production using high-performance materials.

BigRep CEO Stephan Beyer, PhD

“Our new printers are the launching pad for the factory of the future. We are opening a new dimension for additive manufacturing by establishing industrial 3D printing in automated and IoT-integrated systems,” said BigRep CEO Stephan Beyer, PhD. “BigRep’s quality solutions meet the industry’s requirements for precise, controlled and efficient machines with full data integration.”

“We will establish 3D printing as an added value production technology in industries such as automotive, aerospace, consumer goods, manufacturing and more.”

Powered by BigRep’s proprietary Metering Extrusion Technology MXT and featuring a motion control system produced by Bosch Rexroth, this new 3D printer was created to offer better precision and quality overall, along with higher speed and full IoT connectivity for applications such as sensors and monitors. These progressive solutions mean higher quality in 3D printing, along with better maintenance of the hardware itself as any issues or defects are quickly detected by the software. With access to the 5G network, monitoring of manufacturing projects can be delegated to cloud or production-related edge systems. The PRO can be ordered now.

BigRep PRO 3D printer

“Over the medium term, additive manufacturing cannot ignore the need to adapt to the standards of established production processes,” said Thomas Fechner, Head of the Business Unit New Business at Bosch Rexroth. “The goal is a completely digital workflow. The data must be able to pass consistently – from the customer order, the CAD software and simulation environments to specific machine movements and quality assurance.”

The Berlin-headquartered developer of large-scale 3D printing hardware and materials is also unveiling a new scanner for mid-print product quality inspection, as well as the NEXT AGV prototype, their 3D printed and automated guided vehicle for the factory of the future. BigRep has partnered with Bosch Rexroth for this project also, as they both envision such technology being vital to automated manufacturing of the future.

The NEXT AGV runs on a power grid, supplied by inductive energy, and is meant to function not only as an automated logistics carrier but also a mounting platform for other devices such as robots. The AGV design can be customized as needed for production purposes, featuring 3D printed wheels which allow the machine to move sideways, and a 3D printed antenna as an added safety detail.

Founded in 2014, BigRep has been involved in countless other dynamic projects and collaborations over the years, to include working with Magigoo, BASF, and even companies like Etihad Airways, the second largest airline in the United Arab Emirates. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: BigRep]

3D Printed Wireless Earbuds Help Enhance Hearing and Reduce Stigma Around Traditional Hearing Aids

Manchester Metropolitan University graduate Elen Parry, a current Industrial Digitalisation masters student at the university and an International Autodesk Student Ambassador for the UK, is focused on using “Human-Centred Design methods” to reduce exclusion against people. Her current project is a 3D printed wireless earbud concept, aimed at helping people with hearing disabilities fight the stigma around traditional hearing aids, while enhancing their hearing at the same time.

Parry’s HeX earbuds, which were chosen by the Design Council’s CEO Sarah Weir as the top pick for this year’s ‘New Designers’ event, are audio headphones that can also be used as an advanced hearing device. The concept calls for the use of an advanced chip, which would receive and process sound signals and be able to differentiate and control what you actually want to hear and normal background noise. Users could decrease or increase the volume of their environment, which could help extend their ability to hear while at the same time protecting them against hearing loss.

Thanks to technology like 3D printing and connected manufacturing systems, it’s now possible to produce devices like hearing aids and earbuds, and combined products like HeX, on a large scale.

“My mission is to encourage social inclusion through my designs, to create improved situations for everyone. The driving principle behind creating HeX earbuds was to create a hearing device that is for everyone – whether you live with hearing loss or perfect hearing,” said Parry.

“People with disabilities often feel excluded and conspicuous because of their medical devices, so I want to transform hearing aids into a desirable wearable tech product that gives people enhanced hearing, style and confidence – something that anyone might want to wear.

“3D printing enables us to manufacture them quickly and relatively simply, so HeX earbuds could be easily produced for a mass audience.”

The HeX earbuds would be made out of silicone, with single to three flange protection and medical-grade titanium casing, and able to be personalized and 3D printed to exactly fit any ear size or shape. The product’s hexagonal shape offers a more natural, multi-directional hearing experience, which would make it possible for users to hear and process a multitude of different sounds. The idea is for the hearing aid earbuds to also provide the latest connective technologies, so that no matter a person’s hearing ability or lack thereof, HeX is still a sought after product in the mass market.

“It was my intention to design an accessible hearing aid that removes social barriers and can enhance human ability, making it desirable to a wider range of people,” Parry wrote on her site.

For instance, HeX users could connect with other devices in order to easily complete tasks like streaming music or answering the phone while out and about through the use of embedded Bluetooth, infrared, and motion technologies.

Additional technologies Parry hopes to incorporate into HeX include rechargeable graphene batteries, along with dual connectivity strips for fast charging.

A 3D printed prototype of Parry’s HeX earbud concept has already been produced at the university’s advanced 3D printing and digital manufacturing hub Print City, which is open to both industry and researchers.

“This is one of many examples of how additive manufacturing and out-of-the box thinking by Elen disrupts the current design of medical devices,” said Professor Craig Banks, the academic lead of Print City.

Few industries have been affected quite as much by 3D printing as the hearing aid manufacturing industry, which switched entirely to 3D printing several years ago after Phonak, owned by Sonova, began using the technology to produce its hearing aids. The global company was seeing such success with 3D printing that the rest of the industry noticed, and quickly followed suit. Not long after, other production methods in the hearing aid world were basically wiped out by 3D printing.

With innovative products like the HeX earbuds, and makers like Parry who are conscious of and fight back against the social issues of the day, we’re truly seeing what 3D printing is capable of helping us create. I bet we haven’t even cracked the surface yet.

[Source: Design Products & Applications / Images: Elen Parry]

What do you think? Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

3D Printed Artificial Heart Pump Demonstrates Application of Embedded Magnet Printing

Cross section of the prototype. The dark grey magnetic components are visible.

Kai von Petersdorff-Campen, a doctoral student in the mechanical and process engineering department at ETH Zurich, set out this spring to make a 3D printed artificial heart pump. He succeeded, though the plastic prototype that took 15 hours to print was not what one would call high quality. But tests showed that the prototype worked, which was important: the more significant point of his project was not actually to make a heart hump, but rather to demonstrate a working application of a 3D printing method he developed that can create products which contain magnets.

Artificial heart pumps are geometrically complex products, as well as contain magnets, and there’s still only a limited amount of research being conducted with 3D printed magnets. The 3D printed heart pump that Petersdorff-Campen developed is one of the first 3D printed prototypes with magnetic components.

Petersdorff-Campen explained, “My goal was not to make a good heart pump, but to demonstrate the principle of how it can be produced in a single step.”

He refers to his new method as embedded magnet printing, as the magnets are 3D printed directly in the plastic. Plastic and magnetic powder are mixed together and processed into filament strands, before they are 3D printed using FDM technology. Then, the print is magnetized in an external field.

According to ETH Zurich, Petersdorff-Campen received an invitation to the prestigious ASAIO conference in Washington this summer. He presented the method in a podium speech, won the prototype competition with his submitted video, and published a paper, titled “3D Printing of Functional Assemblies with Integrated Polymer-Bonded Magnets Demonstrated with a Prototype of a Rotary Blood Pump,” together with colleagues from ETH Zurich, Arnold Magnetic Technologies AG, and the ZHAW Zurich University of Applied Sciences.

(a) Design scheme and coupling of the printed pump with integrated driving and bearing magnets in the housing and impeller; (b) Cross-section of the printed pump showing the used materials in different colors; (c) Fully printed pump with drive unit after removal of support material.

The abstract reads, “In an effort to simplify integration of magnetic components, the current work presents a method to directly print polymer-bonded hard magnets of arbitrary shape into thermoplastic parts by fused deposition modeling. This method was applied to an early prototype design of a rotary blood pump with magnetic bearing and magnetic drive coupling. Thermoplastics were compounded with 56 vol.% isotropic NdFeB powder to manufacture printable filament. With a powder loading of 56 vol.%, remanences of 350 mT and adequate mechanical flexibility for robust processability were achieved. This compound allowed us to print a prototype of a turbodynamic pump with integrated magnets in the impeller and housing in one piece on a low-cost, end-user 3D printer. Then, the magnetic components in the printed pump were fully magnetized in a pulsed Bitter coil. The pump impeller is driven by magnetic coupling to non-printed permanent magnets rotated by a brushless DC motor, resulting in a flow rate of 3 L/min at 1000 rpm. For the first time, an application of combined multi-material and magnet printing by fused deposition modeling was shown. The presented process significantly simplifies the prototyping of products that use magnets, such as rotary blood pumps, and opens the door for more complex and innovative designs. It will also help postpone the shift to conventional manufacturing methods to later phases of the development process.”

Flexible filament consisting of a polymer-magnetic powder mixture.

One of the biggest challenges of the project, which is part of Zurich Heart under the umbrella of University Medicine Zurich, was actually developing the filaments. The more magnetic powder added to the granulate mix, the stronger the magnet would be, but it would cause the end product to be more brittle; as filaments for 3D printing must be somewhat flexible, this would obviously not work.

Petersdorff-Campen said, “We tested various plastics and mixes, until the filaments were flexible enough for printing but still had enough magnetic force.

“Some people are already asking where they can order the material.”

However, there were people who criticized his 3D printed heart pump, saying that 3D printing should not be used to make medical devices because of all the necessary approval processes they must go through (do any of these detractors actually follow what the FDA is up to anymore?).

But, Petersdorff-Campen is not bothered by his critics, and believes “it’s worth it for scientists and developers to develop the idea further.”

“That was not my focus, however. I simply wanted to show the principle,” Petersdorff-Campen said about his 3D printed medical device.

(a) Polymer-bonded magnetic filament flexible enough to be spooled on a standard filament spool with a 10 cm diameter; (b) SEM micrograph of the extruded polymer-bonded magnetic compound.

While his embedded magnet printing method may not be perfect for fabricating heart pumps, the overall potential for magnetic 3D printing is enormous. Magnets are also used in electric motors, which power all sorts of devices, like microwaves and computer hard drives.

At the moment, geometrically complex components containing magnets are still made with injection molding, but using 3D printing instead could make the process faster and less expensive.

But, Petersdorff-Campen still has a lot of work to do before his new 3D printing method is ready for commercial use. Even though his 3D printed heart pump was able to successfully pump 2.5 liters per minute with 1,000 rotations, it doesn’t quite meet the required standards.

“I wouldn’t want to have such a device implanted,” Petersdorff-Campen said.

Additional co-authors of the paper are Yannick Hauswirth, Julia Carpenter, Andreas Hagmann, Stefan Boës, Marianne Schmid Daners, Dirk Penner, and Mirko Meboldt.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Images: Kai von Petersdorff-Campen, ETH Zurich]

Researchers Use Biomimicry and 3D Printing to Develop Robotic Fish

Developed robotic fish prototype.

3D printed robotic fish have all sorts of applications, from underwater data acquisition and detecting toxins in the water to studying and saving real fish, or just adding a new pet to the family. A group of engineering researchers from the University of Firat in Turkey are using biomimetic design to come up with flexible solutions for different marine applications, like observing organisms, examining underwater resources, finding and combating pollution, coastline security, surveying submerged areas, and fault detection in pipelines.

Detailed mechanical configuration of the 3D printed robotic fish.

The researchers, inspired by the carp fish for their 3D printed robotic fish, recently published a paper, titled “Mechatronic Design and Manufacturing of the Intelligent Robotic Fish for Bio-Inspired Swimming Modes,” about their use of 3D printing, robotics, and biomimicry to develop an Autonomous Underwater Vehicle (AUV).

The abstract reads, “This paper presents mechatronic design and manufacturing of a biomimetic Carangiform-type autonomous robotic fish prototype (i-RoF) with two-link propulsive tail mechanism. For the design procedure, a multi-link biomimetic approach, which uses the physical characteristics of a real carp fish as its size and structure, is adapted. Appropriate body rate is determined according to swimming modes and tail oscillations of the carp. The prototype is composed of three main parts: an anterior rigid body, two-link propulsive tail mechanism, and flexible caudal fin. Prototype parts are produced with 3D-printing technology. In order to mimic fish-like robust swimming gaits, a biomimetic locomotion control structure based on Central Pattern Generator (CPG) is proposed. The designed unidirectional chained CPG network is inspired by the neural spinal cord of Lamprey, and it generates stable rhythmic oscillatory patterns. Also, a Center of Gravity (CoG) control mechanism is designed and located in the anterior rigid body to ensure three-dimensional swimming ability. With the help of this design, the characteristics of the robotic fish are performed with forward, turning, up-down and autonomous swimming motions in the experimental pool. Maximum forward speed of the robotic fish can reach 0.8516 BLs-1 and excellent three-dimensional swimming performance is obtained.”

Two of the most important things to consider when designing a 3D printable, biomimetic robotic fish are its body structure and swimming modes, so the researchers spent a lot of time observing and examining fish to get the design right. According to the paper, over 85% of fish swim by bending their bodies and/or caudal fins, also known as BCF, while the rest swim with their median and/or pectoral fins (MPF).

Forward and turning swimming patterns of a Carangiform carp fish for one period.

“There are two basic approaches in robotic fish design. First is the biomimetic design which has certain requirements such as a tail with the size and number of joints to provide body travelling wave, and the ability to stay at a certain depth with the control of the center of gravity,” the researchers wrote. “The second design approach uses only the movement effects of fish, but it is not physically inspired by real fish.”

The autonomous swimming performance of the robotic fish prototype.

Bio-inspired robotic fish use oscillatory and/or undulatory body motions. The University of Firat team’s robotic fish prototype replicates BCF-type Carangiform swimming modes with its propulsive, servo motor-driven tail mechanism; it also features anterior, rigid, torpedo-shaped body to hold all of the sensors and electronics, along with the Center of Gravity (CoG) control mechanism for moving up and down.

The 3D models of the robotic fish were first designed in SOLIDWORKS and then transferred to Voxelizer, before being 3D printed with PLA material, though the flexible caudal fin was made with a silicone mold. Epoxy resin was used to cover each part in order to prevent possible micro pore leakage, and after the robotic fish was assembled, its surface was covered with synthetic paint to prevent leaks caused by capillary cracks.

Because robotic fish need to be able to perceive static and dynamic objects in their environment while they swim around, the team added three Sharp infrared distance sensors to their fish, which weights roughly 3.1 kg and is about 500 mm long, 76 mm wide, and 215 mm high. A two-link tail mechanism provides the necessary thrust for the fish to move.

The designed front sight unit and angles of sight.

“This study presents the biomimetic design and manufacturing of the intelligent robotic fish prototype (i-RoF) based on bio-inspired swimming to perform real-world exploration and survey missions,” the researchers concluded. “The robotic fish prototype for three-dimensional motion abilities is investigated in the real experimental system. In these analyses, more than 72 different experimental studies were performed to obtain the characteristics of the prototype.

“In order to test the sealing performance of the mounted parts, they run during 6 hours in a water-filled test pool. The success of sealing tests is observed.”

Future research could center around examining the 3D printed robotic fish prototype’s closed-loop control performances using different control structures, as well as testing its swimming ability in different watercourses.

Co-authors of the paper include Mustafa Ay, Deniz Korkmaz, Gonca Ozmen Koca, Cafer Bal, Zuhtu Hakan Akpolat, and Mustafa Can Bingol.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below.

3D Printing and Global Cooperation to Create New Cost-Effective Field Kit for Disease Diagnosis

According to the World Health Organization, there are up to 1 million new cases of leishmaniasis, a parasitic disease spread through the bites of sandflies, each year. The disease is curable if it’s diagnosed and treated early on, but it can lead to ulcers, and is responsible for 30,000 deaths annually, most often among people who are malnourished, in poverty, and/or living in unsanitary conditions.

But this month the Armauer Hansen Research Institute (AHRI) in Ethiopia is trialling a new 3D printed field kit, which could help save lives with more efficient diagnosis of leishmaniasis. The kit is part of a program meant to change up how we test and treat diseases.

Dr. Endalamaw Gadisa, based out of Addis Ababa, has been collaborating on the kit with PandemicTech, a virtual infectious disease incubator in Austin, Texas, and the New Venture Institute (NVI) at Flinders University, which is located in a former car factory that’s now an advanced manufacturing hub called the Tonsley Innovation Precinct in Austin’s sister city of Adelaide, South Australia.

Dr. Gadisa determined several issues with the disease testing in Ethiopia, including the difficulty of viewing samples under available microscopes; fragile test tubes which store a liquid medium (reagent) for testing; the cost of the reagent; and the fact that it can take over a week to get results.

These types of  issues make it necessary to develop more practical and effective diagnostic equipment and tools; 3D printing has helped with this type of project multiple times in the past.

“We don’t need more software to solve problems already solved 10 times over, what we do need is innovation which has impact, that creates value by applying new approaches to global challenges,” said Matt Salier, the director of NVI.

Dr. Gadisa developed a test tube design that could provide test results in just three days and only needs 10 microliters of reagent, as opposed to 25 milliliters. However, he was unable to build the prototype on his own. So Andrew Nerlinger, the director of PandemicTech, offered to work with him on his design as an original pilot project for the incubator, and then contacted Salier.

Nerlinger explained, “When I eventually described the project to Matt Salier during the South by Southwest conference in March 2017, he offered to collaborate and introduced me to NVI’s Raphael Garcia, who ultimately worked directly with Dr Gadisa and me on several design iterations resulting in the prototype depicted in the most recent photos.”

According to Salier, these types of projects are why Flinders NVI always works to demonstrate how business models can combine with new technologies to address society’s large-scale problems. The sister city relationship between Adelaide and Austin helped get the conversation going.

“Flinders NVI has had an office presence in our sister city Austin for over four years now with our local partner, Tech Ranch,” said Salier. “I met Andrew from Endura Ventures as he was establishing PandemicTech and we saw an opportunity to apply our design and innovative manufacturing expertise at Tonsley.”

The first prototype was 3D printed in three parts – a cork on top to plug the culture tube, a main body to hold the fluid and make diagnosis through microscopic inspection possible, and a removable bottom plug.  The design of the tube’s main body was refined multiple times in order to increase the body’s durability and clarity.

The body features a central hole, which connects to the plug, making the tube reusable, and was printed out of clear liquid resin, while different materials were used for the plugs so they can completely seal the body but still be removed easily for cleaning and sterilization.

3D printed test tube and caps that form part of the test kit.

The prototyping process took less than four months – after several solutions were considered through a Design-Thinking process, the best was designed using CAD software, and 3D printed on NVI’s Stratasys Objet Connex.

It cost less than AUD$5,000 to develop the final kit, which is packed inside an off-the-shelf Pelican case using foam laser-cut at Flinders. Additionally, the field kit includes 3D printed microscopes, made by South Australian education startup Go Micro, that can be attached to a smartphone camera in order to turn it into a powerful, 60x magnification microscope, capable of collecting photos for disease diagnosis.

Even though Adelaide, Addis Ababa, and Austin are separated by thousands of miles, Nerlinger said that the collaboration between the three has helped create high-quality, reusable prototypes for far less than the normal cost for “a neglected disease that causes immense morbidity and mortality in the most austere and resource limited environments in the world,” according to The Lead.

Nerlinger said, “We were also excited that NVI was able to match Dr Gadisa with one of its own technologies, the microscope attachment used on a smartphone that is able to read the results of the leishmaniasis testing.

“The new testing device will allow more patients to be treated earlier and decrease the amount of time it takes to obtain a diagnosis. It will also potentially allow health workers to provide a diagnosis to patients while conducting medical work in the remote regions often most impacted by leishmaniasis.

“If the testing is successful then the opportunity exists to build a financially sustainable social impact company around the testing kit that brings together resources from Ethiopia and Australia.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.