Airbus Subsidiary Uses Full-Color Multi Jet Fusion for Maintenance Tooling

Among the most exciting aspects of HP’s Multi Jet Fusion (MJF) technology when initially unveiled was the ability to 3D print functional objects in a full range of color. Though it took a couple of years for it to happen, that capability finally hit the market in 2018 with the release of the HP Jet Fusion 300/500 Color 3D Printer range. Now we are beginning to see the applications that a broad spectrum of hues has in practice. Airbus services company Satair used the technology to 3D print a series of tools for its maintenance operations.

Used to gag the main landing gears on the A380, the GAGS tool pads were redesigned to improve the strength-to-weight ratio, resulting in 60 percent mass reduction. Image courtesy of HP.

Satair turned to service bureau Fast Radius with the ultimate goal of to speed up aircraft repair with the use of 3D printed tools. As a member of HP’s Digital Manufacturing Network, Fast Radius leveraged MJF to print tools for the company. In particular, the color printing capabilities of the Jet Fusion 580 Color system were utilized to 3D print bright red and orange tools in order to improve job safety and ensure that tools were not misplaced after use. The tools were also optimized to reduce total part count, enhance robustness and integrate new functions.

One particularly unique feature about the company is the fact it has a production hub on-site at the UPS Worldport facility in Louisville, Kentucky, allowing it to potentially ship parts at greater speeds than other service providers.

This pintle bearing alignment tool is used to bear in the rear spar prior to installing it during the installation of the main landing gear installation. Assembly was reduced from four parts to two. Image courtesy of HP.

Three new tools were redesigned and printed by HP and Fast Radius for Satair: GAGS tool pads, pintle bearing alignment tools, and flap zero locking tools. MJF was chosen in part for the ability to 3D print durable parts with the mechanical properties necessary for harsh aircraft repair environments. Specifically, HP 3D High Reusability PA 12 was chosen due to its chemical resistance to oils, grease, aliphatic hydrocarbons and alkalies.

3D printing the parts also sped up design time, as multiple iterations could be produced at once within a single build. The use of color also allowed for the communication of information in unique ways, such as 3D printing part numbers, serial numbers and scannable QR codes directly onto the tool.

Whereas Satair previously waited weeks for new tools to be manufactured, this project saw Fast Radius print, inspect, package and ship two tools in less than 48 hours. This was enabled in part by Fast Radius’s logistics partnership with UPS, with which it sent the items from Chicago to Hamburg, Germany.

This flap zero locking tool is used to lock flaps in the A320 cockpit. The assembly was reduced from six parts to two and resulted in a lead time reduction of 50 percent. Image courtesy of HP.

The use of 3D printing by Satair is just another notch in Airbus’s belt, as the aerospace giant deploys AM all across its business to the point that it is probably not necessary to recount all of the ways it is being used, but we can highlight the myriad parts printed for the A350 XWB, as well as the work of Premium AEROTEC and APWorks.

As for Fast Radius, this is another interesting customer from the service bureau, which is fond of emerging AM technologies. For instance, the company also used Carbon’s Digital Light Synthesis to print parts for Steelcase’s office chair. Outside of 3D printing, Fast Radius offers a number of other manufacturing services, including CNC machining and injection molding. With the Fast Radius Virtual Warehouse, the company is hoping to implement the concept of digital inventory, in which digital files replace physical stock, with goods manufactured on-demand.

As with 3D printing itself, it will take some time for designers and engineers to fully grasp the potential of producing parts in full color. The ability to use bright pigments for safety purposes and to embed QR codes is just the beginning. HP previously demonstrated the use of colors to exhibit the level of wear on a part, so that, as it is worn down, it shows new colors that can be more easily quantified. Augmented reality applications could also be developed based on embedded symbols in a part. In the near future, we may see even more interesting uses of full color printing of end parts.

The post Airbus Subsidiary Uses Full-Color Multi Jet Fusion for Maintenance Tooling appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Fraunhofer ILT: Making Tungsten Carbide-Cobalt Cutting Tools with LPBF 3D Printing

Obviously, the Fraunhofer Institute for Laser Technology ILT does a lot of work with lasers, and, in the same vein, with metal 3D printing processes that use lasers. Now, it’s teaming up with scientists from the Institute for Materials Applications in Mechanical Engineering IWM and the Laboratory for Machine Tools and Production Engineering WZL, both at RWTH Aachen University, to investigate laser processes for the 3D printing of cutting tools made of tungsten carbide-cobalt (WC-Co).

The new AiF project – “Additive Manufacturing of Machining Tools out of WC-Co – AM of WC-Co” – began on October 1st 2019 and will last for 30 months; funding is provided by the Otto von Guericke e.V. working group of industrial research associations.

Cutting tools made of WC-Co are very heat- and wear-resistant, which is what one generally wants in this type of application, but it’s not easy to use conventional methods of manufacturing to create them. Complex sintering processes are currently used, but it’s not ideal, as only a restricted amount of geometrical freedom is possible, and it’s expensive and difficult to introduce complex cooling structures into the tools as well.

The process development aims to generate a homogeneous, almost dense structure of the WC-Co-composite, as shown here in this SEM measurement. [Image: Institute for Materials Applications in Mechanical Engineering IWM, RWTH Aachen University]

One of the project goals is to create cutting tools with integrated complex cooling geometries in order to ensure longer tool life. That’s why the Aachen researchers are looking into Laser Powder Bed Fusion (LPBF) 3D printing for WC-Co cutting tool fabrication, which offers near-net-shape production for generation of cooling structures within these tools, and far more design freedom. This technology requires users to carefully choose their process and material parameters in order to create components with strength that’s comparable to what could be achieved with conventional manufacturing methods.

For the past few years, Fraunhofer ILT scientists have been researching a major problem in the LPBF process – temperature distribution in the part. Conventional systems slow down the cooling process with a heated base plate, but with LPBF, the metal powder is melted where the laser touches it and cools down quickly, which can cause cracks and tension.

Fraunhofer ILT has been working with adphos Innovative Technologies GmbH on this issue, and together the two created a system which uses a near-infrared (NIR) emitter to heat the component from above to over 800°C. This system is what Fraunhofer ILT and its fellow Aachen researchers are using to process tungsten carbide-cobalt material for cutting tools in the “AM of WC-Co” project.

Under the scope of the project, the researchers are investigating the process route all the way from powder formation and 3D printing to post-processing and testing the components. Together, they will qualify the materials and processes that will replace complex sintering processes in fabricating these cutting tools.

Preheating the machining plane with the NIR module significantly reduces stresses in the laser-manufactured component. [Image: Fraunhofer ILT]

3D printed WC-Co cutting tools will have a hardness comparable to those made with conventional manufacturing methods, but because of the cooling structures that the LPBF process can be used to create, they will have a longer service life. Additionally, the NIR emitter system developed by Fraunhofer ILT and adphos can lay the groundwork for processing refractory alloy systems in the future.

At formnext 2019, in Frankfurt from November 19-22, you can stop by the Fraunhofer Additive Manufacturing Alliance booth D51 in Hall 11 to learn more about the collaborative “AM of Wc-CO” project.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

[Source: Fraunhofer ILT]

The post Fraunhofer ILT: Making Tungsten Carbide-Cobalt Cutting Tools with LPBF 3D Printing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Ford and trinckle Partnering to Automate Design of 3D Printed Production Tools

3D printed lift assist

Popular automotive manufacturer Ford, which has long used 3D printing to fabricate assembly tools and was recently recognized for its work with the technology, is now partnering up with award-winning software company trinckle in order to automate the design process for its 3D printed production tools. The two companies will present the joint project next week during formnext.

“The additive manufacturing itself is no longer the dominating cost factor limiting the scalability of the application. Up to 50% of the total costs per tool are caused by the manual design, which is the new bottleneck. For each new line and each special edition, these tools must be specifically designed to position the badges with exact accuracy,” explained Lars Bognar, an engineer with Ford Research & Advanced Engineering Europe. “This design task is not a trivial one, as the tools have to adapt precisely to the free-form surfaces of the car body sheet. It can easily last between two and four hours to create an appropriate AM-ready design. Time that is hard to spend for the designers, who are already working at full capacity. In the worst case, a short-term demand can result in a delay of assembly because the corresponding tools are not available. It was time for us to rethink the design process from scratch, and that’s when we came across the trinckle team.”

Based in Berlin, trinckle, a 3D printing service and software company, specializes in product configuration and automated design. The company uses its cloud software paramate to create software applications, which can integrate the user into the process, for the automated design of 3D printed products across a wide range of industries, including automotive.

Many automotive manufacturers use 3D printing to fabricate assembly aids and hand tools, like fixtures and jigs. There are many advantages, including lower weight and production costs and faster availability. Ford, which currently has over 50 different 3D printed tools in serial production, is working with trinckle to further scale the applications of the technology.

Bognar and his fellow engineer Raphael Koch didn’t want to settle for just saving a little money, and decided to, as trinckle put it, look “at the AM application as a whole.” They decided to use a hand tool called a labeling jig, which places model badges on the body of a vehicle, as an example.

trinckle developed an internal application for Ford so it could efficiently generate these tools by creating new jig designs in just minutes. Employees can upload the car body’s model data, and the necessary badges, through an intuitive user interface. Then, with just a click of the mouse, standard elements like edge guides, handles, magnet mounts for fixation, and text fields can be easily added. Software algorithms generate the tool’s geometry so it fits the contour of the car body.

“The trinckle software application does not only dramatically reduce manual design times and costs, but also streamlines the entire process,” said Koch. “We enable our employees on the shop floor to take over more responsibility and relieve our designers at the same time. The latter can focus on their core activities again.”

Now, instead of lasting two to four hours, the design process only takes 10 minutes, thanks to the straightforward handling provided by paramate. Because AM-compliant design expertise is not necessary, assembly line employees can easily design 3D printable tools on their own and independently carry out tool optimization iterations.

Using automation to design 3D printable labeling jigs is only the first step in the right direction for Bognar and Koch, and in the near future, other additive tools will likely undergo similar automation.

To learn more about this work with Ford, and its other business applications, visit trinckle at booth C07 in Hall 3.0 at formnext in Frankfurt next week. Bognar and Dr. Ole Bröker, the Head of Business Development at trinckle, will also be presenting the joint project at the TCT Conference during the show.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

Ford Recognized for Work with Automotive 3D Printing

3D printed lift assist

Several major automotive manufacturers have been utilizing 3D printing, and Ford is one of them. Recently, the company has been recognized for its work in 3D printing. For the first time, the Automotive Innovation Awards Competition held by the Automotive Division of the Society of Plastics Engineers (SPE) is recognizing additive manufacturing as a separate category, and Ford was the winner of all three finalist spots.

The parts that won Ford the finalist spots include a 3D printed injection mold lifter action used in the new Ranger pickup, a window alignment feature used in the 2017 Mustang convertible, and an assembly lift assist used to make the Escape SUV and Fusion sedan. These aren’t production parts – two are used in assembly and one in a tool, but the technology was still integral in the development and manufacturing of the products.

“We really didn’t understand the potential of what the capabilities of this process were going to be,” said Roy Raymer, Ford’s Product Coordinator for Rapid Manufacturing. “It’s incredible.”

Vent

The mold insert was developed to solve a problem of inadequate venting; the 3D printed insert has integrated venting channels to allow gas to escape. The design features vents along the top and side of each vane, which, Ford says, improves venting by 100 percent. Manufacturing time was reduced by 70 percent, and the integrated design eliminates the need for a separate grill. The mold is made by Hi-Tech Mold and Engineering.

The window alignment fixture is 3D printed using FDM, with 35 percent short carbon fiber reinforced polyamide. It is 30 percent lighter and cheaper to produce than a traditional welded fixture – it took only 50 hours to build the integrated feature with handles and mounting brackets. The 3D printed fixture integrates pneumatic control, eyelets for a stowage rack, trigger switch housing, ergonomic handles, a gage protector deflector, pneumatic tubing retainers and switch mounts.

The lift assist was also 3D printed using FDM, and according to Ford, it can lift anything from a half shaft to an instrument panel. 3D printing the part allowed for more complex geometries to better interface with the casting, and it cost 50 percent less than a traditional fixture. It also reduced weight by 222 pounds, reducing repetitive motion injuries and making it easier to operate overall. The company also greatly reduced lead time.

Window alignment tool

Ford began its 3D printing experimentation with an SLA 3D printer for making complex prototypes, and its work has since evolved to using FDM, SLS and 3D sand printing. Like many other automotive companies, Ford has discovered that 3D printing can save time, money, and material, and allow for the the creation of more complex and unique parts. While the examples above are parts used for tools and assembly, it won’t be surprising if Ford soon moves on to using 3D printing for actual production parts. Other companies, like Divergent 3D for example, are using 3D printing to build cars that are more lightweight and efficient, reducing both cost and environmental impact. As the benefits of 3D printing become more evident, we will likely see more and more manufacturers turn to using the technology for actual production, resulting in a significant change to the entire automotive industry.

The winners of the Automotive Innovation Awards Competition will be announced on November 7th.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

GKN Aerospace cuts production time and costs with Stratasys 3D printer

Stratasys has announced that GKN Aerospace, a UK-based global engineering firm has improved production times for tooling applications since integrating its F900 3D printer into production. This printer was implemented at GKN’s Filton, South Gloucestershire manufacturing site, allowing the company to create complex parts, that would be difficult to make with traditional methods. “Since integrating the F900, we have […]

3D Printing News Briefs: June 26, 2018

We have plenty of business, material, and 3D printer news to share with you in today’s 3D Printing News Briefs. 3D printing led to increased savings for GM over the last two years, which is now increasing its use of the technology as a result. ExOne is saying goodbye to one CEO and hello to another, while Polymaker announces a global distribution arrangement with Nexeo Solutions and CollPlant receives R&D project approval in Israel. The US Patent and Trademark Office will be hosting its annual Additive Manufacturing Partnership Meeting this week, and RP Platform has announced a rebrand and a new AI software platform. Finally, the UK’s National Centre for Additive Manufacturing has decided to add Digital Metal’s binder jetting technology to its portfolio.

GM Increasing Use of 3D Printing at Plants

Zane Meike, AM lead at GM’s Lansing Delta Township assembly plant, holds a common 3D printed tool used to align engine and transmission vehicle identification numbers. [Photo: Michael Wayland]

According to Dan Grieshaber, the Director of Global Manufacturing Integration for General Motors (GM), most of the company’s factories have 3D printers, which are used to build accessories and tools for workers. A $35,000 3D printer at GM’s Lansing Delta Township assembly plant has actually helped save the company over $300,000 over two years: it’s used to make multiple items, such as part hangers, socket covers, and ergonomic and safety tools. A common tool used to align engine and transmission vehicle identification numbers cost $3,000 to buy from a third party, but is less than $3 to 3D print at the factory. Realizing that these kinds of savings can add up quickly, GM is increasing the use of 3D printing – part of its new Manufacturing 4.0 processes – at its plants in order to help streamline operations.

“We’re quickly evolving, creating real value for the plant. This will become, as we progress, our footprint. We’ll have this in every one of our sites,” Grieshaber said.

Grieshaber also said that GM is working to standardize 3D printing, as well as share best practices across all of its global plants.

ExOne Welcomes New CEO

The ExOne Company, which provides 3D printers and 3D printed products, materials, and services to its industrial customers around the world, has announced that its CEO, James L. McCarley, is departing the company, effective immediately, to pursue other interests and opportunities; he will be assisting the company in transitioning his responsibilities to the new CEO. ExOne’s Board of Directors has also announced who the new CEO will be – S. Kent Rockwell, the company’s Executive Chairman, who has served in the position in previous years. Rockwell’s new title is effective immediately.

“On behalf of our Board and management team, I would like to thank Jim for his efforts and wish him all the best in his future endeavors,” said Rockwell.

Polymaker Makes Distribution Arrangement with Nexeo Solutions

Shanghai-based 3D printing material producer Polymaker has entered an arrangement with chemicals and plastics distributor Nexeo Solutions, Inc., also based in Shanghai. Nexeo will be a global distributor for three new materials in the Polymaker Industrial line, but plans to introduce more of its materials over the rest of the year. C515 is an advanced polycarbonate (PC) filament that has excellent toughness and a low warping effect, while C515FR is a flame retardant PC with high impact resistance. SU301 is a polyvinyl alcohol (PVA)-based polymer that’s water soluble and was developed as a support material for FFF 3D printers.

Paul Tayler, the Vice President of EMEA at Nexeo Solutions, said, “Expanding our portfolio to include industrial grade filaments from Polymaker Industrial gives our customers access to a wider range of filaments that solve new 3D printing challenges and meet the demands of manufacturers. Industrial customers benefit from Nexeo Solutions’ access to world leading plastic producers coupled with additive manufacturing technical expertise.”

CollPlant Receives R&D Project Approval

Two years ago, regenerative medicine company CollPlant received funding from Israel’s Ministry of Economy for its research in developing collagen-based bioinks for 3D printing tissues and organs. CollPlant, which uses its proprietary plant-based rhCollagen (recombinant human collagen) technology for tissue repair products, has now announced that the Israel Innovation Authority (IIA) has approved a grant to finance the continued development of its rhCollagen-based formulations intended for use as bioinks. Terms of the grant require CollPlant to pay royalties to the IIA on future sales of any technology that’s developed with the use of the funding, up to the full grant amount. The total project budget is roughly $1.2 million (NIS 4.2 million), and the IIA will finance 30%, subject to certain conditions.

“In addition to providing immediate non-dilutive funding, this grant from the Israel Innovation Authority represents an important validation of our BioInk technology and its market potential. With the recent opening of our new cGMP production facility in Rehovot, Israel, we are well positioned to meet growing demand for our BioInk and tissue repair products. We are grateful to the IIA for this recognition,” said CollPlant CEO Yehiel Tal.

Additive Manufacturing Partnership Meeting Hosted by US Patent and Trademark Office

For the last several years, the US Patent and Trademark Office (USPTO) has been hosting the Additive Manufacturing Partnership Meeting, and this year’s meeting takes place tomorrow, June 27th, from 1 to 5 PM at the USPTO headquarters inside the Madison Building in Alexandria, Virginia. The USPTO will be seeking opinions from various participants at the informal meeting, which is really a forum for individual 3D printing users and the USPTO to share ideas, insights, and personal experiences.

“We value our customers and the feedback provided from individual participants is important in our efforts to continuously improve the quality of our products and services,” the USPTO meeting site reads. “Your willing participation in this informal process is helpful in providing us with new insights and perspectives.”

Scheduled speakers at this year’s meeting are coming from CIMP-3D, HRL, Kansas State University, Lawrence Livermore Laboratories, and the NextManufacturing Center, and an RSVP is required to attend the AM Partnership Meeting.

RP Platform Launches New AI Software and Rebrand

London-based RP Platform, which provides customizable workflow automation software for industrial 3D printing, is launching a new software platform, which will use AI for the first time to automate 3D printing production. With customers in over 30 countries, the company is one of the top automation software providers for industrial 3D printing. In addition to its software launch, RP Platform has also announced that, as it continues to expand its software capabilities to target AM end part production, it is rebranding, and has changed its name to AMFG.

“We want to help companies make their 3D printing processes much smoother so that they can produce more parts with greater visibility and less effort. And we have more exciting releases to our software over the coming months that will further enhance our production automation capabilities,” said Keyvan Karimi, the CEO of AMFG.

“Ultimately, we’re creating a truly autonomous manufacturing process for industrial 3D printing. For us, this means taking manufacturing to a new era of production. The launch of our new software, as well as our company rebrand, fully reflects this vision going forward.”

NCAM Installing a Digital Metal 3D Printer

The National Centre for Additive Manufacturing (NCAM) in the UK, headquartered at the Manufacturing Technology Centre (MTC) in Coventry, has decided to add the unique binder jetting technology developed by Digital Metal to its large range of advanced manufacturing equipment, and will soon be installing one of its high-precision metal 3D printers – which are not available anywhere else in the UK. The 3D printer will be available for use by NCAM’s member companies, and other organizations, who are interested in testing the capabilities of Digital Metal’s proprietary binder jetting technology.

Dr. David Brackett, AM Technology Manager at the NCAM, explained, “The Digital Metal binder jetting technology falls into the category of ‘bind-and-sinter AM’, where a multi-stage process chain incorporating sintering is required to achieve full density. It’s a very fast technology that can create complicated and highly detailed designs, and there is potential for wider material choice than with AM processes that use melting. We are delighted to be able to offer this to the companies we work with.”

The Digital Metal 3D printer will be operational later this summer, and NCAM personnel are already training with it to ensure they can operate it efficiently and safely.

Discuss all of these stories, and other 3D printing topics, at 3DPrintBoard.com or share your thoughts in the Facebook comments below.