Winners Announced for 3D Health Hackathon to 3D Print PPE to Fight COVID-19

The Jersey City Rapid Maker Response Group (JCRMRG), an all-volunteer collective, was founded as the result of a Reddit post calling on 3D printing hobbyists to organize, make, and deliver personal protective equipment (PPE) in the form of 3D printed face shields for medical workers and first responders in New Jersey and New York during the continuing COVID-19 crisis. While the team ended up switching to injection molding to create over 75,000 face shields, which were subsequently donated to healthcare workers all around the US, the JCRMRG recognized the great potential of using 3D printing to help during the pandemic, and launched a virtual nationwide 3D Health Hackathon, with the goal of taking on PPE-related wearability, sustainability, and supply chain issues.

Now, the winners of the hackathon have been announced.

“Hackers came up with solutions to keep people COVID free, and help citizens and businesses adapt to the challenges of the world we all live in,” JCRMRG’s Laura Sankowich told me.

100 hackers from countries all over the world, like India, Mexico, and Nepal, participated in the hackathon, which was supported by a 21-person multidisciplinary mentor team that helped by scrutinizing the functionality of designs and offering support and advice. The hackers ranged from teenage makers and university students to doctors, executives, scientists, and other professionals, with Carnegie Mellon University, Fairfield University, NJIT, NYU, Penn State, Rutgers, and Stevens Institute of Technology represented by teams. The event was sponsored by:

  • 3DPrint.com
  • Asimov Ventures
  • Dassault Systèmes
  • DesignPoint
  • Devpost
  • Indiegrove
  • Jersey City Tech Meetup
  • PicoSolutions
  • PSE&G
  • PrusaPrinters
  • Stevens Venture Center
  • TechUnited
  • Women in 3D Printing

There were three hack categories: create methodology for reducing waste in the production process in order to facilitate sustainable PPE; develop modular/mobile manufacturing labs that can be deployed easily in healthcare, emergent, and even educational settings; and design day-to-day PPE, like face shields, that can be used by commuters and at businesses and schools to help resume day-to-day life.

“Our goal is to be responsible partners in the ecosystem that we are currently a part of, while acting as a catalyst for innovation, and we are the only all volunteer PPE group in the country doing an event like this. We want to pay it forward, enable our hackers to walk away with enough feedback and support to launch their own successful ventures that can continue to support the battle against COVID, and combat supply chain disruption through maker-led initiatives,” said JCRMRG founder Justin Handsman.

The Armdle

The team of judges deliberated for three days, and the hackathon winners have been announced. Blizzard Robotics, a high school team out of California made up of Riya Bhatia, Abeer Bajpai, and Peter Xu, came in third place for their versatile door handle attachment, which they dubbed the Armdle. They noticed when visiting hospitals and orthodontists, people had to touch the same door handles when entering and exiting bathrooms inside the facility. If the handles are not properly sanitized, bacteria on one person’s hand can easily be transferred to others when they touch the handle. So they developed the Armdle, a universal door handle attachment that can be placed on the side or top of most door handles to help stop the spread of infection through shared surfaces.

The Armdle concept is simple—a person simply uses their arm to push down, or to the side of, the handle, and when they pull back, the attachment’s raised lip hooks onto their arm, so they can open the door without having to use their hands. The attachment actually forms a kind of platform over the handle, so it works with push-doors as well, since people can push down on the Armdle to open the door. Facilities can use zip ties to attach the Armdle to the door handles, resulting in a quick, inexpensive, safer solution.

Howard Chong, Michael Noes, and Ethan White, or Team Bunny PAPR, came in second place for their user-friendly, scalable, and open source Powered Air Purifying Respirator (PAPR).

Bunny PAPR

Their goal was to help the world get back on its feet, back to work, and back to socializing without distance by addressing the global shortage of N95 equipment, while also keeping essential workers on the front lines of the pandemic safe. Commercial PAPRs cost about $1,000, but the hospital-grade Bunny PAPR is only $30. This PPE solution is not only affordable and easy to sterilize, but it’s also disposable, reusable, and can be made with readily available parts—an FDA-approved viral filter, a disposable bag and USB battery pack, and a laptop/XBox fan. Additional benefits include higher comfort levels, support for those with breathing conditions who can’t wear N95 masks, and compatibility with wearables.

Speaking of wearables, STEM advocates Natasha Dzurny, Casey Walker, and Elizabeth Spencer, who make up the Jersey City team Slice Girls, won first place in the hackathon for their Ready Set Wearables hack, which makes it possible for users to carry essential items, such as a door pull, hand sanitizer, and emergency medication, on their watch, dog leash, shoelaces, a carabiner or wrist band, etc.

The team members worked with CAD software and 3D printed prototypes to figure out their functional yet fashionable designs, which enable users to leave the house with all the COVID-19 essentials without having to carry a purse or bag, or worrying that you left something important at home. For instance, one component is a collapsible door pull, and another watch-friendly accessory is a small clip-on dispenser for hand sanitizer. Finally, the last Ready Set Wearables accessory is a container that allows the wearer to carry a small amount of medication.

“We will reduce anxiety, increase compliance with CDC health regulations, and save lives by slowing the spread of COVID-19,” the Slice Girls state in their video.

Congratulations to all of the hackathon winners!

(Images courtesy of the Jersey City Rapid Maker Response Group)

The post Winners Announced for 3D Health Hackathon to 3D Print PPE to Fight COVID-19 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Anouk Wipprecht’s 3D-Printed Proximity Dresses Are Perfect for Social Distancing

If you don’t remember the stunning and technical work from Anouk Wipprecht—the Dutch fashion design working on “rethinking fashion in the age of digitalization” by combining engineering, fashion, robotics, science, and interaction/user experience in an emerging field known as FashionTech—let me refresh your memory. Noting that fashion lacks microcontrollers—something I never would have thought about—Wipprecht is an amazingly unique designer, who wants her clothing to, according to her website, “facilitate and augment the interactions we have with ourselves and our surroundings.”

“In a future where electronics are predicted to be embedded in everyday objects, – what kind of clothes will we wear? Will future techno fashion be purely aesthetic – or will it expand our awareness, acting like an intelligent second skin? Will we become super sensory, physically aware of data flows, communicating our internal states through the garments we wear? And, most pertinently perhaps, how will we socialize in our world when we are supervised by technology?”

Anouk Wipprecht’s Smoke Dress

Back in 2014, Wipprecht launched a campaign to create the first crowdsourced 3D-printed dress, and followed this up with her Synapse Dress, partnering with Materialise, Niccolo Casas, and Intel to create a wearable that leverages the wearer’s own electrical currents for a fully immersive experience. The designer later combined 3D printing with virtual reality to create a collection of dresses for Audi, and worked with model and musician Viktoria Modesta to fabricate 3D-printed prosthetics for musical performance.

Now, the high-tech futurist designer is back with two new 3D-printed wearables that could be very useful in this time of social distancing, due to the continuing COVID-19 crisis: the Proximity Dresses, Robotic Personal Space Defenders.

“Extending my research into proxemics and the body, I have fabricated two new dresses that create physical barriers when a person is detected in the immediate surroundings of the wearer,” Wipprecht said. “These twin dresses respond based on proximity and thermal sensors and indicates strangers within the intimate, personal, social and public space around the wearer.”

As with Wipprecht’s Smoke Dress and 3D-printed, robotic Spider Dress, which literally moves itself into an attack position if the embedded proximity biosensors detect that the wearer is uncomfortable, the design for these new dresses is based on Edward T. Hall’s Proxemics Theory. She explains that the theory defines “four spaces around the body,” each of which has its “own characteristic distances.”

Anouk Wipprecht’s 3D-Printed Spider Dress

“Whereas Hall had to measure the space between people using a wooden stick, I have been working since 2007 to translate these concepts into the digital domain, in order to measure the spaces between people up to a range of 25 feet,” she explained.

The Proximity Dresses use robotic, nylon 3D-printed hip mechanisms to extend when necessary. Additionally, they feature a transparent collar, 3D printed from clear resin, with some fancy sensors that offer noise-free distance readings.

Anouk Wipprecht’s Proximity Dress

These sensors use “high-output acoustic power combined with continuously variable gain, real-time background automatic calibration, real-time waveform signature analysis, and noise rejection algorithms. This holds true even in the presence of various acoustic or electrical noise sources, making it suitable for on-body use.”

By using the sensors, Wipprecht’s unique designs can invisibly trace their surroundings. Additionally, since the sensors don’t record any images or video, the dresses are not a threat to privacy, as nearby people remain anonymous.

“The Proximity Dress 2.0 is based on my 2012 prototype of this dress using hip mechanics create distance and a proximity sensor (ultrasonic rangefinder) for VW showcase during IAA, in Germany,” she concludes.

Check out the video below to see Wipprecht discuss her innovative, defensive Proximity Dress with Hyphen-Hub:

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

The post Anouk Wipprecht’s 3D-Printed Proximity Dresses Are Perfect for Social Distancing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing for Wearables, Energy Storage, and Practical E-Textiles Using Silk Fibroin and Carbon Nanotube Inks

In the recently published ‘The Road to Practical E-Textiles is Smooth as Silk,’ the research of Zhang et al. outlines a new method of 3D printing that could be the catalyst for creating energy harvesting fabrics in E-textiles, leading to better performance in electronics and wearables.

As consumer electronics—and those that can be worn—become more progressive and more available, researchers continue to strive for advances in digital technology and performance for components like sensors—much of which is propelled by miniaturization processes also. Power, energy, and batteries are always a challenge, however, as any of us know just from trying to keep a cell phone up and running daily. The researchers point out that many wearables today are required to be bulky because they must encompass a battery. Biocompatibility can be an issue too now as consumers desire to wear so many different novel and innovative devices.

Structure and Morphology of the as-obtained CNTs@SF Core-Sheath Fibers on Textile (A) Scanning electron microscopy (SEM) image of top-view of a core-sheath fiber on textile. (B) Optical image of top-view of a core-sheath fiber on textile. (C) SEM image of cross-section of a core-sheath fiber on textile. (D) SEM image of cross-section of a fiber showing the CNT core. (from ‘Printable Smart Pattern for Multifunctional Energy-Management E-Textile‘)

Energy harvesting is a new concept to many, described by the authors as ‘a compelling complementary solution to onboard batteries.’ Energy can, in fact, be harvested from ambient light or kinetic energy made by the wearer—and then stored in devices like capacitors. This is where piezoelectric materials and triboelectric generators enter the picture; however, challenges remain in terms of structural design and production, and so much so that the researchers are concerned that much of this new technology could remain ‘mere lab-scale curiosities.’ And Zhang and the team of researchers search for solutions, they have created a 3D printing triboelectric generator composed of a silk fibroin (SF) sheath and an electrically conductive core of carbon nanotubes (CNT).

“The resulting CNT@SF fibers can be arranged into large-area grids (>80 cm2), which can achieve experimental power densities as high as 18 mW/m2. SF@CNT fibers can therefore be potentially integrated as energy harvesting fabrics within E-textiles,” state the researchers. “3D printed CNT@SF fibers for use in triboelectric generators could address long-standing materials and manufacturing challenges through several important innovations.”

In manufacturing silk fibroin and carbon nanotube inks, the research team 3D printed SF and CNT into fibers which could feasibly be used to make complex networks. This process can also be used to integrate triboelectric fibers with existing fabrics.

“Silk fibroin inks can be combined with highly concentrated CNT inks using coaxial spinnerets to create CNT@SF fibers with a core-shell geometry. Both SF and CNT inks are shear thinning, which enables efficient extrusion into free-standing fibers,” state the researchers.

Printing of Core-Sheath Fiber-Based Patterns on Fabrics for Energy-Management Smart Textile (from ‘Printable Smart Pattern for Multifunctional Energy-Management E-Textile‘)

In using biocompatible commodity materials, the researchers foresee greater options for the textiles industry, especially since CNT@SF coaxial fibers are non-toxic in terms of wearables to be attached to human skin. SF can also be used, and is ‘ideally suited,’ due to its ability to form a triboelectric pair with poly(ethylene terephthalate) (PET).

“The performance of CNT@SF/PET-ITO triboelectric pairs is notable, conclude the researchers. “These devices can generate areal power densities up to 18 mW/m2 with open-circuit voltages of 10–80 V. The high-voltage (>10 V) low-current behavior (1–10 μA) of CNT@SF/PET-ITO triboelectric generators can charge capacitors with capacities of ∼5 μF within 5 min, assuming reasonable velocities of 13 cm/s.”

“These devices exhibit comparable power densities compared to other previously fabricated silk-based triboelectric generators, which report power densities of 0.194 mW/cm2and 4.3 mW/m2. However, it should be noted that Kim et al. combined silk with aluminum-backed polyimide, which has a different electron affinity than PET in the triboelectric series.”

3D printing is often associated with wearables, energy storage devices and integrated electronics. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Printing Inks and Their Rheological Properties (A) Photographs of silk cocoons and the obtained SF ink. (B) Optical image showing the SF microfibrils in the SF ink. (C) Photograph showing the highly injectable SF ink. (D) Photographs of CNT powder and the CNT ink. (E) TEM image showing the good dispersion of CNTs. (F) TEM image of a multiwall carbon nanotube wrapped by polymer on its outer wall; the inset is a zoomed-in image. (G) Apparent viscosity as a function of shear rate of the CNT and SF inks. (H) Storage (G′) and loss (G″) modulus as a function of shear stress of the CNT and SF inks. (I) Photograph of a free-standing CNTs@SF core-sheath fiber after being extruded, showing good spinnability of both inks. (From ‘Printable Smart Pattern for Multifunctional Energy-Management E-Textile‘)

[Source / Images: ‘The Road to Practical E-Textiles is Smooth as Silk’]

The post 3D Printing for Wearables, Energy Storage, and Practical E-Textiles Using Silk Fibroin and Carbon Nanotube Inks appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: October 16, 2018

We’re starting with some business news in today’s 3D Printing News Briefs, including stories about a new 3D printer, an anniversary, and a 3D printing investment. Cincinnati Incorporated has launched a new high temperature version of its SAAM 3D printer, and EOS will supply Visser Precision with five new metal 3D printers, including its M 400-4. VBN Components celebrates its tenth anniversary, and an Israeli 3D printing startup has received about $400,000 in funding. Researchers in Iran have successfully 3D printed flexible electronic circuits, and 3D printing was used to replicate a Chinese grotto. Finally, the Golf Channel will be featuring 3D printed golf clubs tonight.

New High Temperature Version of SAAM 3D Printer

Last week at FABTECH 2018 in Georgia, build-to-order machine tool manufacturer Cincinnati Incorporated (CI) launched a brand new high temperature version of its SAAM (Small Area Additive Manufacturing) 3D printer series. The SAAM HT 3D printer has a nozzle that can sustain temperatures up to 450°C and a bed temperature up to 260°C, which makes it possible to process materials like polycarbonate, PEEK, and ULTEM. Courtesy of its continuous patented automatic-ejection mechanism, the SAAM HT can be used for small batch production, and is a good choice for manufacturing tooling involved in high temperature operations.

“All materials compatible with SAAM can be used on the HT version. This level of versatility makes it a valuable asset in any manufacturing setting. We are enabling manufacturers and engineers to create the custom parts they need for their most demanding applications,” said Chris Haid, the General Manager of the NVBOTS Business Unit at CI.

EOS Supplying Visser Precision with New Metal 3D Printers

EOS M400-4

Denver-based Visser Precision, which provides advanced metals manufacturing solutions, has doubled its metal 3D printing capacity, thanks to the terms of an agreement reached with EOS at the recent IMTS trade fair. Visser has purchased three EOS M 400-4 3D printers, and two of the recently introduced EOS M 300-4 systems, making it the first organization to acquire the new platform. Market demands for DMLS-quality metal components in industries like aerospace and defense led Visser to grow its metal 3D printer capacity, and the new EOS systems will be delivered in a few months.

Ryan Coniam, the President of Visser Precision, said, “Our customers require the highest-performance, highest quality components and we feel partnering with EOS – the metal AM industry pioneers and leaders in DMLS – provides us with the capabilities we need to meet market demands now and in the next few years. Nearly anyone nowadays can 3D print something in metal, the trick is repeatability while meeting and maintaining quality and our investments with EOS mean we can deliver that to our customers.”

VBN Components Celebrating 10 Years in Business

Swedish materials development company VBN Components AB was founded in the midst of the 2008 financial crisis, and has come a long way since then. The award-winning company works to continuously develop new and better materials, including its corrosion and wear resistant Vibenite 350 for the plastics industry and Vibenite 290, the “World’s Hardest Steel.”

Martin Nilsson, CEO and one of the founders of VBN Components, said, “After our first patent, describing the process of making extremely clean and low-oxygen-rate materials, we realised that we were on to something big.”

This year, VBN Components is celebrating 10 years in business, with several patents and new, hard materials under its belt. But stay tuned – the company will soon unveil the greatest news in its history, which has been described as “a revolution in material development.”

Israeli 3D Printing Startup Receives Funding

TAU Ventures team, R-L: Nimrod Cohen, Managing Partner at TAU Ventures; Shira Gal, Director of Incubator Programs; Yaara Benbenishty, Director of Marketing and Operations [Image: Eylon Yehiel]

TAU Ventures, the venture capital fund of Tel Aviv University, announced that it has led an investment round worth nearly $2 million for two Israeli startups, including Hoopo and 3D printing company Castor. Founded two years ago by Omer Blaier and Elad Schiller, Castor combines 3D printing with artificial intelligence for its high-tech customers, which enables the companies to lower costs by using advanced technology. Castor’s technology automatically analyzes and determines the cost-effectiveness and feasibility of using 3D printing in the manufacturing process.

The startup will be receiving about $400,000 in combined funding from Stanley Black & Decker, the Techstars Accelerator, British businessman Jeremy Coller, and TAU Ventures, which is the first and only academic-based venture capital fund in Israel.

3D Printing Flexible Electronic Circuits

Researchers from a knowledge-based company in Iran have recently developed 3D printers that can fabricate flexible electronic circuits, which could be used in the future as wearables for clothing, pressure sensors, or industrial talc for cars.

The unnamed company’s project manager, Ali Gharekhani, told Mehr News that these 3D printers only take a few seconds to 3D print the flexible electronic circuits, and that foreign versions of this system are “very expensive.” Gharekhani also said that in light of this new development, his company has already received some proposals for Turkey, and “intends to reach an agreement with the Turkish side on production of clothes by 3D printers” before its rivals in Germany, Canada, and Korea.

3D Printed Replica of Chinese Grotto

Yungang Grottoes are a cradle of Buddhist art, playing host to more than 51,000 sculptures. [Image: Zhang Xingjian, China Daily]

There are over 59,000 statues carved in 45 different caves in the 1,500-year-old Yungang Grottoes, which was named a UNESCO World Heritage site in 2001. This week, a full-size, 3D printed replica of one of the grottoes passed experts’ tests. The Yungang Grottoes Research Institute in northern China’s Shanxi province, a Shenzhen company, and Zhejiang University launched the project, which is based on original cave No 12, also called the “Cave of Music.” The 3D printed replica is 15 meters long, 11 meters wide, and 9 meters high, weighs less than 5 metric tons, and is claimed by the institute to be the world’s largest 3D printed movable grotto. High precision 3D data was collected to print the replica out of resin, which took about six months, and it can be divided in parts and pieced together within a week.

“We plan to color it with mineral pigments before the end of this year,” said Zhang Zhuo, head of the institute. “In this way, the replica will maintain its original size, texture and color.”

In the future, the 3D printed grotto replica will be added to exhibition tours with the institute’s other cultural relics.

3D Printed Golf Clubs on the Golf Channel

Tonight, at 9 pm EDT, EOS will be featured, together with Wilson Golf, on the NBC Golf Channel show Driver Vs. Driver. The seven-episode series follows aspiring designers of golf equipment as they compete against each other for the chance to win $500,000. In addition to the money, the winner will also have the opportunity to have their driver design sold, under the Wilson Staff name, at retail stores.

The show gives viewers a behind the scenes look as advancing teams work with engineers at the company’s innovation hub, Wilson LABS, to evaluate, refine, and test out their concepts. Tonight is the third episode, and showcases several designers’ use of 3D printing to make the best golf driver club. Wilson is among a few other companies, including Krone Golf, Ping, Callaway Golf Company, and Cobra Puma Golf, that is using 3D printing to produce golf clubs and other equipment.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.