3D Printing News Briefs: April 6, 2019

We’re starting off today’s 3D Printing News Briefs with a product launch announcement – 3YOURMIND launched the full version of its Agile MES software software this week at AMUG 2019. Moving on, Sintratec will present its latest SLS 3D printer at RAPID + TCT next month in Detroit, Tiamet3D has joined Ultimaker’s material alliance program, and Sciaky entered into an agreement with KTM Consultants. Xometry just announced some important certifications, and nScrypt is 3D printing titanium parts. Moving on to the world of art and theatre, the Zurich Opera House is 3D printing props, and artist Andrea Salvatori worked with WASP to create a 3D printed art collection.

3YOURMIND Launched Agile Manufacturing Execution System (MES) Software

After spending five years providing order management systems to scale for some of the industry’s AM leaders, 3YOURMIND has finally moved its software solutions to a production environment with the launch of its Agile Manufacturing Execution System (MES) earlier this week at AMUG 2019. The software uses smart part prioritization, rapid scheduling, order tracking, and custom AM workflow creation to improve machine utilization and make production more efficient, and an Early Access Program (EAP) allowed the company to receive direct feedback on its Agile MES software from representatives at companies like EOS and Voestalpine. The next step will be working to finalize machine connectivity.

“For Agile Manufacturing, the Agile MES will need to both GET and PUSH data from all major AM machines and post-processing systems. We are already integrating the data from several vendors into our software and expect to support all major machines,” explained 3YOURMIND’s CEO Stephan Kühr. “Receiving and processing machine data allows us to provide the documentation that is needed for quality assurance and to increase the repeatability of additive manufacturing. Pushing data directly to machines will be the key to automating production.”

Sintratec Showcasing New SLS 3D Printer at RAPID + TCT

A few months ago, Swiss SLS 3D printer manufacturer Sintratec introduced its scalable, modular Sintratec S2. Now, the company will be presenting the printer in the US for the first time next month at RAPID + TCT in Detroit, which will also be Sintratec’s first time attending the massive event. What makes the Sintratec S2 stand out is its closed-loop workflow, as the complete system covers every process with its three modules: the Laser Sintering Station (LSS), the Material Core Unit (MCU), and the Material Handling Station (MHS). The 3D printer offers quick material changes, a 4K camera for print monitoring, improved ergonomics, and effective heat distribution through its cylindrical printing area and ring lamps.

“The Sintratec S2 will boost the design of applications and gives the user the opportunity to set foot in small series production as well. And that for an unusually attractive price-performance ratio,” said Sintratec CEO Dominik Solenicki.

“With the Sintratec S2 solution we will be opening new opportunities for companies of any size.”

The price for the Sintratec S2 starts at $39,900, and you can see it for yourself at Sintratec’s booth 1753 at RAPID + TCT from May 20-23.

Tiamet 3D Joins Ultimaker’s Material Alliance Program

Last year, Dutch 3D printing specialist Tiamet 3D, founded in late 2014, worked with Finland-based Carbodeon to develop the first nanodiamond-enhanced 3D printing filaments, which went on the market in September. Now the company has joined Ultimaker as a partner in its Material Alliance Program. Together, the two will offer end-users simple one click downloads of Tiamet’s ULTRA Diamond material profile, which is now available on Ultimaker’s Cura software. This collaboration is formally backed by Tiamet’s manufacturing partner Mitsubishi Chemical Performance Polymers (MCPP Netherlands).

Reid Larson, the Director and Co-Founder of Tiamet 3D, told us about some of the highlighted specs of its ULTRA Diamond material, including no additional nozzle wear, 6300 mpa stiffness, low moisture absorption and friction, improved thermal conductivity, and twice “the temperature resistance of normal PLA, Annealed goes to 125C HDT.” You can purchase one kg of ULTRA Diamond filament for €59.

Sciaky Increasing Sales Efforts Through New Agreement

In an effort to increase the sales efforts of its Electron Beam Additive Manufacturing (EBAM) solutions in Australia, the Middle East, and New Zealand, Sciaky, Inc. has entered into an agreement with KTM Consultants, founded by metallurgist Trent Mackenzie in 2015. In terms of sheer work envelope, Sciaky’s massive EBAM systems are the industry’s most widely scalable metal 3D printing solution, able to produce parts ranging from 8 inches to 19 feet at gross deposition rates of up to 25 lbs of metal an hour. Additionally, its Interlayer Real-time Imaging and Sensing System (IRISS) is the metal 3D printing market’s only real-time adaptive control system capable of sensing and digitally self-adjusting its deposition.

“I was immediately drawn to Sciaky’s EBAM technology because of its unique and robust capabilities. Industrial manufacturers of large metal parts need to explore the significant advantages that technologies like EBAM offer. It is truly a game-changer,” said Mackenzie.

Xometry Announces New Industry Certifications

Digital manufacturing marketplace Xometry announced that it has just received ISO 9001:2015 and AS9100D certifications – some of the most rigorous, widely-recognized quality management designations in the industry. ISO 9001 helps organizations meet the needs and expectations of their customers in terms of quality management, while AS9100 meets customer demands in the exacting aerospace and defense industries. The company went through a major audit as part of the process, and its achievement definitely reflects how committed Xometry is to providing quality.

“We are thrilled to receive this designation. Our team members have a passion for providing great customer service while following the disciplines that give our customers peace of mind regarding on-time delivery, quality, and continuous improvement. It is yet another step towards achieving industry “best in class” status and being able to meet the expanded needs of our customers,” stated Xometry COO Peter Goguen.

nScrypt Develops Proprietary Method for 3D Printing Titanium

nScrypt 3D printed titanium gear, dogbone, and block

Florida manufacturer nScrypt, which develops high-precision Micro-Dispensing and Direct Digital Manufacturing equipment and solutions, is now focusing on repeatable 3D printing of metals for the medical, defense, and aerospace industries. The company has created a proprietary method for 3D printing titanium parts, which tests have shown display densities comparable to wrought parts. This method could easily work with other metals as well, such as copper, Inconel, and stainless steel, and nScrypt’s Factory in a Tool (FiT) systems can finish or polish areas with high tolerance features using its integrated precision nMill milling head. nScrypt’s Brandon Dickerson told us that the company expects to release more details on this later in 2019.

“The parts were printed with our SmartPump™ Micro-Dispensing tool head, which runs on any of our systems,” Dickerson told 3DPrint.com. “The parts shown in the photos were printed on our DDM (Direct Digital Manufacturing) system, also known as our Factory in a Tool (FiT) system, which can run 5 tool heads at the same time, including our Micro-Dispensing, Material Extrusion, micro-milling, and pick-and-place tool heads.  The parts were sintered after the build and the current densities are in the high 90% range.  We expect our system to appeal to customers who want to do Direct Digital Manufacturing and need strong metal parts, but cannot build them with a powder bed system (for example, if the geometry would trap powder inside) or prefer not to use a powder bed system (for example, if they want a cleaner system).”

Zurich Opera House 3D Printing Props with German RepRap

Finished tutu for “The Nutcracker”, which was produced with the help of the x400 3D printer

Switzerland’s largest cultural institution, the Zurich Opera House, puts on over 300 performances a year, but the behind-the-scenes magic happens in the studios and workshops, where the props and costumes are made. The opera house uses the x400 3D printer from German RepRap, with assistance from Swiss reseller KVT- Fastening, to support its creative work by fabricating props and molds. This affords the institution more creativity and flexibility, as they can design objects to their exacting needs in 3D modeling programs, which also helps save on time and money. The opera house currently uses PLA, which is easy to handle, offers a variety of colors, and is flame retardant – very important in a theatrical setting.

“Often, the wishes and ideas of costume and stage designers are very diverse and sometimes extraordinary. It often happens that props are not available in the way designers have it in their minds. This is where the 3D printer is perfect for,” said Andreas Gatzka, director of theater sculpture at the Zurich Opera House.

“There are a lot of great benefits. Special wishes of stage and costume designers can be realized quickly as well as a short-term change of the objects, for example larger, smaller, longer, shorter, or whatever is needed.”

3D Printed Art Collection

Artist Andrea Salvatori 3D printed the eye-catching pieces for his new collection, titled Ikebana Rock’n’Roll, using the Delta WASP 40100 Clay 3D printer – designed by WASP to be used by ceramic and clay artists. The collection just opened on stage at THE POOL NYC in Milan last week, and will be available to view until May 31st. With these 3D printed vases, Salvatori wanted to use “a miscellany of ceramic insertions” to mess with the high quality shapes 3D printing can achieve by adding asymmetry.

“The process of depositing the material and setting the spheres is a central theme in the Ikebana Rock’n’Roll collection, to the point of convincing Salvatori to name the works “Composition 40100”, as if they originated from a musical dialogue of the most varied tones. The artist upsets the algorithm reiterated slavishly by the machine with imperfect musical accents, the result from time to time of spontaneous actions and reasoned processes,” WASP wrote in a blog post.

“The ikebanes, proposed by Andrea Salvatori in the exhibition, transcend the experimental limits of an abstract investigation, representing a concrete territory in which 3D printing and ceramic art co-exist synergistically. The Master challenges the confrontation with the public, becoming also in this sector, precursor of a new genre in which WASP feels itself fully represented.”

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

TCT Asia: Ultimaker Introduces Cloud-Based Platform and New 3D Printing Material Alliance Program Partners

The TCT Asia show began today in Shanghai, and desktop 3D printing leader Ultimaker is one of the attendees. The Dutch company made some important announcements at the event today, including the launch of its future-ready Ultimaker Cloud platform, which was designed to support the professional 3D printing workflow and will help speed up the adoption of 3D printing.

As the world transitions to local digital manufacturing, we need a platform solution that will not only make the user workflow more simple but also hasten this transition, while ensuring compatibility with multiple materials and software applications. Due to Ultimaker’s open strategy, important industry partners, like material manufacturers and CAD providers, can integrate with its new cloud-based platform, which will offer more value to users and make the 3D printing experience seamless and reliable.

“Ultimaker Cloud forms the foundation for future value propositions provided by Ultimaker and key industry partners. This is a crucial next step in our journey to speed up the world’s transition to local digital manufacturing,” said Jos Burger, Ultimaker CEO. “I have no doubt that our enabling platform, formed with our global network of software and material partners, makes Ultimaker the preferred solution in the desktop space.”

The first cloud services the platform offers include remote 3D printing, which will provide monitoring and allow print jobs to sent from anywhere to network-enabled Ultimaker 3D printers. Ultimaker Cloud also provides unlimited access to the Marketplace, where registered users can browse materials thanks to exclusive access to print profiles, as well as give feedback to the community and plugin contributors through a rating option. In addition, optimized settings for ideal print results are automatically populated in Ultimaker’s Cura software through the Marketplace. Finally, Ultimaker Cloud offers a way to backup user settings for easier remote access.

Ultimaker Cloud will be available for download on March 19th, which is also when Ultimaker Cura 4.0, with its updated user interface, will be launched.

This new cloud-based platform isn’t the only news Ultimaker announced at TCT Asia. The company’s Material Alliance Program, which was established last year, has three new members: PolymakereSUN, and Essentium.

“The growing importance of 3D printing gives us – as a leader in desktop 3D printing – an important role in ensuring a perfect collaboration between hardware, software and materials. By offering material profiles directly to millions of end users via the Ultimaker Marketplace, we unlock new 3D printing applications for different industries,” said Burger. “Essentium, eSUN, and Polymaker and are well-respected material companies, offering unique material properties that are relevant for engineers working in a wide range of industries. I am proud to recognize their commitment to the Ultimaker Material Alliance during TCT ASIA.”

This means that there will now be more choices for applications and materials in FFF 3D printing, as print profiles for these three companies will now be available for download in the Ultimaker Marketplace. Users can just choose a material profile and quickly begin a print.

“FFF 3D printing remains the most practical and accessible of all 3D printing technologies. The three materials we offer via the Ultimaker Marketplace, including PolyMide PA6-CF, PolyMide CoPA and PolyCast, are among the most unique and advanced materials in our portfolio,” stated Polymaker president Dr. Xiaofan Luo. “I believe they will open up countless new applications for a greater number of engineers.”

L-R: From Jos Burger, CEO Ultimaker; Dr. Blake Teipel, CEO Essentium; Dr. Yihu Yang, CEO eSUN; Dr. Xiaofan Luo, President Polymaker; Benjamin Tan, VP APAC Ultimaker

Each new member of the alliance brings something important to the table. For instance, recycling is a topic that’s widely discussed around the world, and it seems like helpful initiatives are popping up all over.

“We are specialized in the industrialization of biodegradable polymers. We are delighted to join the Ultimaker Materials Alliance Program with material print profiles of PETG, ePA-CF, and HIPS (High Impact Polystyrene), since it allows us to speed up the development of eco-friendly 3D printed products by using renewable resources,” said eSUN’s CEO Dr. Yihu Yang.

So engineers in the electronics industry can benefit from FFF 3D printing, the materials used must be ESD safe. Now, print profiles in the Ultimaker Marketplace are available with just these properties.

“At Essentium we are committed to creating industrial solutions for the world’s top manufacturers and bridging the gap between 3D printing and machining. We have partnered with BASF, the world’s largest chemical producer, to create the Ultrafuse-Z line, which is a series of ESD safe filaments that are powered by Essentium,” explained Dr. Blake Teipel, CEO of Essentium. “We offer material print profiles for Ultrafuse-Z PCTG in the Ultimaker Marketplace, an industrial grade filament that is specifically formulated to be ESD safe.”

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Source/Images: Ultimaker]

3D Printing News Briefs: November 13, 2018

We should really call today’s 3D Printing News Briefs the formnext 2018 Briefs, as announcements from the show are numerous this week. EnvisionTEC, XYZprinting, BASF, and DSM all introduced new 3D printing materials at the event in Frankfurt today, and in the only news not related to formnext, Imerys Ceramics has announced a new range of ceramic feedstocks.

EnvisionTEC Debuting First 4K 3D Printing System

At formnext, 3D printer manufacturer EnvisionTEC debuted the industry’s first DLP-based 3D printer that uses a true 4K projector with UV optics tuned to the 385 nm wavelength. Available in three production-ready variations, with a gray body and a 2560 x 1600 pixel projector resolution, the Perfactory P4K 3D printer delivers highly accurate parts with an ultra-smooth surface finish. Additionally, the Perfactory P4K, has access to the rest of the Perfactory line’s versatile materials portfolio for production capacity.

“The P4K is the highest resolution advanced DLP printer with the largest build envelope and deploys artificial intelligence in pixel modulation to deliver the highest accuracy parts with the smoothest available surface finish in the 3D printing space. This will deliver the next level of production-grade 3D printing solutions,” said Al Siblani, the CEO of EnvisionTEC.

The new Perfactory P4K will be on display at formnext all week.

XYZprinting Introducing New 3D Printing Materials

Another company introducing new materials at formnext this week is desktop 3D printing brand XYZprinting. In order to expand the capabilities of both domestic and professional grade 3D printers, the company is launching a new antibacterial PLA material, along with copper metallic PLA and Carbon PLA materials. The first of these can destroy up to 99% of bacteria, including E. coli and Staphylococcus aureus, and comes in four colors: white, red, yellow and neon green.

The copper metallic PLA, made of 65% copper powder, is a good alternative for hobbyists when it comes to sculpting metal for ornamental models. The material is being launched in conjunction with XYZprinting’s new nozzle, made of carbon hardened steel. Finally, the new Carbon PLA, which is also compatible with this new nozzle, is made of 10% carbon fiber, and its matte finish is ideal for showing off fine details. You can learn more about these new materials at XYZprinting’s booth D10 in Hall 3.1, where it will also be exhibiting its latest 3D printer, the da Vinci Color AiO, with a 3D scanner and optional laser engraver.

BASF 3D Printing Solutions Presents New Products at formnext

Germany-based BASF 3D Printing Solutions GmbH (B3DPS), a 100% subsidiary of BASF New Business GmbH, is also at formnext this week, to introduce several new materials for photopolymer and laser sintering methods, in addition to announcing some new partnerships and alliances. First, B3DPS is introducing flame-resistant Ultrasint Polyamide PA6 Black FR, Ultrasint PA6 Black LM X085, which is suitable for most current SLS 3D printers, and Ultrasint PP, a polypropylene with great plasticity, low moisture uptake, and resistance to liquids and gases. Additionally, B3DPS has also grouped its photopolymer materials under the new Ultracur3D brand name.

András Marton, Senior Business Development Manager at B3DPS, said, “Our Ultracur3D portfolio enables us to offer customers various UV-curable materials for 3D printing that provide far better mechanical properties and higher long-term stability than most available materials.

“These materials have been developed for functional components that are subject to high stress.”

The subsidiary also announced that it’s partnering with California company Origin and 3D printer manufacturer Photocentric to develop photopolymers and photopolymer 3D printing processes, and working with Chinese 3D printer manufacturer Xunshi Technology, which operates in the US under the name SprintRay, to open up new applications for the Ultracur3D range. Additionally, B3DPS subsidiary Innofil3D is partnering with Jet-Mate Technology in China and US-based M. Holland to distribute plastic filaments. Visit B3DPS at formnext this week at booth F20 in Hall 3.1.

DSM Announces 3D Printing Product Launches

Vent cover used for PIV windtunnel testing, printed in Somos PerFORM Reflect

In today’s final formnext news, science-based company DSM has unveiled two new high-performance materials for 3D printing structural parts. Somos PerFORM Reflect is a groundbreaking new stereolithography material for wind tunnel testing with PIV (Particle Imaging Velocimetry), and saves more than 30% post treatment cost by eliminating the need to apply PIV coatings to printed parts. In addition to helping customers conduct iterations and collect data more quickly, the resin could actually help break speed records for wind tunnel testing.

“Speed is crucial, whether in automotive, aerospace or other transportation design. Eliminating the need to apply PIV coatings is a major breakthrough for customers who are using PIV wind tunnel testing. It allows them to speed up their aerodynamic design optimizations. We are thrilled that our strategy of focusing on helping customers create their applications have enabled us to deliver such tremendous value. Overnight, Somos® PerFORM Reflect will not just set new speed records but new industry standards,” said Hugo da Silva, Vice President of Additive Manufacturing at DSM.

The company’s second new material is the thermoplastic copolyester (TPC) Arnitel ID2060 HT, which is perfect for the FDM 3D printing of structural parts for automotive applications. The material features a balance of prolonged high temperature resistance, flexibility, and chemical resistance against exhaust gas recirculation (EGR) condensate.

Imerys Ceramics Introduces EZ Print 3D Range of Ceramic Feedstocks

As part of the Imerys group, Imerys Ceramics designs, produces, and markets high-performance mineral solutions for the ceramic industries, and is making ceramic 3D printing easy with its new, unique range of ceramic materials called EZ Print 3D.

EZ Print 3D is available as a plug & play cartridge, so users can enjoy efficiency and ease of use when it comes to 3D printing. The materials are also available as a “ready to fill” ceramic feedstock, and have been tested on several 3D printers currently on the market. EZ Print 3D has a low firing temperature of 1220°C that’s compatible with most kiln temperature limits, and the genuine low porosity (<0,5%) of a porcelain. The technology is perfect for tableware and giftware applications, and the company plans to expand EZ Print 3D accordingly as 3D printing adoption grows. Imerys Ceramics also provides technical support and a dedicated team that’s competent in 3D printing to help customers.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

Colorado-Based AMIDE Alliance Focused on Workforce Development and Creating Sustainable 3D Printing Thermoplastics

It seems these days that Colorado is the place to be in the 3D printing industry. Home to the ADAPT Consortium and 3D Systems’ Littleton Healthcare Technology Center, along with Aleph Objects and its LulzBot 3D printers, the state has had its fair share of innovations in the medical and educational fields. We’ve got more news coming out of the Centennial State this week, as Vartega, which produces recycled carbon fiber from scrap material generated in aerospace, automotive, sporting goods, and wind energy manufacturing, and the Colorado Cleantech Industries Association (CCIA) have teamed up with several academic and industry partners to form an alliance centered around additive manufacturing and sustainable thermoplastics.

The Advanced Materials and Additive Manufacturing Infrastructure Development and Education (AMIDE) Alliance is the direct result of a $500,000 Advanced Industries Accelerator (AIA) Collaborative Infrastructure Grant from the Colorado Office of Economic Development and International Trade (OEDIT). The funding from this grant will support the development of at least three separate innovation centers in the state, which will focus on creating and applying 3D printing materials, like fiber-reinforced thermoplastics.

[Image: Vartega]

Katie Woslager, Senior Manager, Advanced Industries, Colorado OEDIT, said, “This was an extremely competitive grant cycle, but the review committee and the Economic Development Commission recognized the value that Vartega, CCIA, and the other project partners could bring to the state through this investment in an advanced materials and additive manufacturing ecosystem.”

Members of the AMIDE Alliance will be represented by a seven-person governance board that’s made up of academic and industry partners; CCIA will oversee the board’s establishment. Founding partners include Vartega, CCIA, Colorado State University (CSU) EWI, and The 3D Printing Store. Additional support for both the alliance and the grant proposal came from the following:

Colorado manufacturers AMP Industrial, the Crestridge Group, Oribi Manufacturing, and Steelhead Composites, which all currently have new products in development with advanced materials and manufacturing methods like 3D printed carbon fiber thermoplastics, also provided support.

“There was so much great work happening in Colorado around the adoption and acceleration of 3D printing, but we kept running into the same problems sourcing and developing new materials and identifying local expertise for these applications. As we recognized this gap in the supply chain and workforce, we were able to work with our customers and partners to put together a vision of what a vertically integrated supply chain would look like,” said Vartega CEO Andrew Maxey. “We’re excited to be part of the newly formed AMIDE Alliance to close this gap and increase innovation in this growing and important area of manufacturing.”

Vartega makes custom 3D printing and injection molding materials by combining its recycled carbon fiber with thermoplastics. By participating in the alliance, the company will be making capital equipment investments that will help to grow the state’s production of custom thermoplastic formulations.


The overall goal of the AMIDE Alliance, which will close a major gap in Colorado’s materials supply chain by providing critical development resources for AM thermoplastics, is to develop a materials development and testing ecosystem by investing in resources and equipment. The ecosystem will make it possible to increase advanced 3D printing materials development, as well as training the next generation of skilled manufacturing workers. The alliance will accomplish its goals by opening innovation centers in collaboration with CSU, the Colorado School of Mines, and Vartega.

“Advanced materials and additive manufacturing are impacting just about every industry right now,” said Shelly Curtiss, CCIA Executive Director. “We see a huge opportunity to leverage these new developments throughout the cleantech sector for the benefit of our members who are focused on renewables, energy efficiency, clean water, oil and gas, mining and transportation.”

The CCIA will administer the grand funds for the innovation centers, which will be home to programs for educating and training new students, technicians, and professionals. The centers will also have the necessary equipment to help mature new additive manufacturing technologies and materials. Additionally, EWI will support materials development by offering advanced nondestructive evaluation, modeling and inspection services to support the ongoing new materials development.

CSU’s innovation center will be at the university’s Composite Materials, Manufacture and Structures (CMMS) Laboratory, and will include the installation of a six-axis robotic system for the direct manufacture of continuous fiber-reinforced thermoplastic composites.

The center at the Colorado School of Mines, which will be home to an HP Jet Fusion 580 3D printer that will evaluate and characterize fiber-reinforced polymer powders being developed by project partners, will be located in the school’s Interdisciplinary Advanced Manufacturing Teaching Lab. The final innovation center, which will house extrusion equipment meant for developing fiber-reinforced thermoplastics for 3D printing applications, will be located at an unknown industry partner’s facility.

Another objective of the new AMIDE Alliance is workforce development, and Front Range Community College, Colorado School of Mines, IACMI, and ACMA will support these efforts by creating a curriculum centring around closing the skills gap for composites and 3D printing.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Source: CompositesWorld]