3D Printing News Briefs: January 16, 2020

In today’s 3D Printing News Briefs, we’ve got a little business news, followed by stories about materials, and finally ending with some 3D printed fashion. PostProcess Technologies is expanding in Japan with a new partnership. Smart International has launched a material partnership program, and CRP Technology is introducing a new Windform material. Finally, a Spanish fashion brand is using BCN3D’s technology to make some of its clothing.

PostProcess Technologies Enters Asian Market with New Partnership

Executives from PostProcess and K.K. IRISU (C. ILLIES & CO., LTD.)

Automated post-printing solutions provider PostProcess Technologies Inc. announced that it’s entering the Asian additive manufacturing market, and expanding the reach of its solutions, by naming K.K. IRISU (C. ILLIES & CO., LTD.) as its first distribution partner in Japan. PostProcess chose the high-quality industrial machinery and technologies specialist, to help serve its growing base of customers in Japan and represent its data-driven technologies because of its expertise and experience. The partnership is mutually beneficial, as ILLIES can now offer its customers access to technology that will automate common post-printing processes and enable “additive manufacturing at scale.”

“K.K.IRISU’s main objective is to educate the Japanese market in additive manufacturing and to continue to be the solution provider for the Japanese 3D manufacturing world. We feel that by adding PostProcess Technologies to our lineup, will help assist the Japanese market to compete with other countries in Additive Manufacturing as well as globally maintain the high standards of the tag ‘Made in Japan’,” said Dr. Frank Oberndorff, President of K. K. IRISU.

Next month, both companies will exhibit at the Design Engineering & Manufacturing Solutions (DMS) 2020 Expo.

Smart International Introduces Material Partnership Program

This week, Smart International, the global brand licensee in 3D printing for KODAK, announced the launch of a new Materials Partnership Program in order to help its customers achieve a repeatable 3D printing experience, while also meeting the demand for high-quality, yet easy-to-print, engineering materials. The company has already developed, and tested, material profiles for filaments from its partners BASF, Clariant, and DSM, which will help provide optimal conditions for these third party materials on the Portrait 3D printer. Print profiles were created from this data, and can either be accessed from the KODAK 3D Cloud or downloaded from the Smart3D website.

“We feel it is of vital importance to continually adapt to the ever-evolving 3D printing market. Partnering with top filament companies like BASF, Clariant and DSM gives the customer the opportunity to choose the material that best fits their project, and gives them confidence to use these high-quality 3rd party materials with the KODAK Portrait 3D Printer,” said Roberto Gawianski, the CEO of Smart International. “We are pleased to be able to assist in the development and evolution of 3D printing filaments, and will continue to support progress in this area.”

BASF material profiles include Ultrafuse ABS Fusion+, Ultrafuse PAHT CF15, Ultrafuse PA, and Ultrafuse Z PCTG, while Clariant now has a profile for its popular 20% carbon fiber-reinforced polyamide 6/66 PA6/66-CF20 filament. Smart International also created material profiles for DSM’s Novamid ID1030, Novamid ID1030 CF10, a carbon fiber filled PA6/66 copolymer filament and Arnitel ID2060 HT.

CRP Technology’s New Windform P2 Material

Italian company CRP Technology is introducing the latest material from its Windform P-LINE range – the glass fiber-reinforced thermoplastic polyamide Windform P2, which the company states has “excellent mechanical properties” for its High Speed Sintering (HSS) technology. The new material has high tensile strength (39.24 MPa), combined with increased stiffness (2925.20 MPa), and is great for insulating, as it is glass fiber-filled. Windform P2 is good for producing end-use parts that need high stiffness, as well as manufacturing components with detailed resolution.

“Windform® P2 is the second polymer from P-LINE, the new Windform® range of materials for high speed production-grade 3D printing, introduced on the market less than a year ago,” said Engineer Franco Cevolini, CRP Technology CTO and VP.

“This is a very important property. Windform® P2 is stiffer than Windform® P1 because Windform® P2 is reinforced (Windform® P1 is not reinforced). Most of the reinforced materials for similar technologies currently on the market, show a decrease in the tensile strength property. My staff and I have been able to preserve the high tensile strength in Windform® P2. Therefore, Windform® P2 overall’s performance is superior than the performance of similar materials currently on the market for similar technologies.”

ZER Collection 3D Printing Clothes with BCN3D

The 3D printed parts are made in TPU due to the flexibility of this material.

Spanish fashion brand ZER Collection introduced its first collection at the most recent Mercedes Benz Fashion Week in Madrid. The label, which was founded in 2017 by Núria Costa and Ane Castro and designs ‘futuristic, functional and urban clothing with sporty aesthetics,’ incorporated 3D printed parts, made with BCN3D’s Sigma printer, into 12 of the outfits; this system allows for the printing of two different materials, including flexible TPU. ZER Collection is using 3D printing in order to accelerate its production manufacturing processes and reduce waste, while also contributing to the use of sustainable new technologies in the apparel industry.

“We work much faster, because we can print two fabrics at the same time,” Costa said when explaining some of the benefits of using 3D printing to make their clothing, including their ability to “digitize all patterns in order to produce only the necessary fabric.”

“We believe that the use of 3D printing represents a revolution in fashion, in environmental care and in society.”

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

The post 3D Printing News Briefs: January 16, 2020 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: August 11, 2019

We’re starting off this 3D Printing News Briefs edition with some good news from Xometry – this week, it announced the availability of Carbon DLS technology as one of its process options. Moving on, Markforged published a case study and Aeromet announced new properties for its A20X powder. Finally, HP has launched a design competition.

Xometry Offering Carbon DLS Technology

Just this week, custom on-demand manufacturing network Xometry announced that it will be offering Digital Light Synthesis (DLS) technology by Carbon as one of its available 3D printing process options, in addition to SLS, SLA, FDM, DMLS, PolyJet, and HP’s Multi Jet Fusion. Through its Instant Quoting Engine, Xometry customers can get quotes, design feedback, and lead times for production-grade parts 3D printed with Carbon’s DLS. You can learn more about how to get the most out of this technology, and the Xometry platform, during a live webinar on Wednesday, August 14, from 12 – 1 pm; each attended will be entered to win a pair of Adidas Futurecraft 4D shoes with 3D printed soles by Carbon.

“We are very excited to add Carbon’s cutting-edge DLS technology to Xometry’s capabilities. Our additive customers have been asking us for it due to its reputation for speed and quality,” stated Bill Cronin, Xometry’s Chief Revenue Officer.

Aeromet Announces New Properties for A20X Alloy 

 

 

announcement covering new record-breaking properties achieved by the A20X alloy after a research project involving Rolls-Royce, Renishaw and Aeromet.

A20X™ cements its status as a leading aluminium powder for additive manufacturing after breaking the critical 500 MPa UTS mark.

6th August 2019: A20X, the aluminium alloy developed and patented by UK foundry specialist Aeromet International, has cemented its status one of the strongest aluminium additive manufacturing powders commercially available after surpassing the key 500 MPa UTS mark.

As part of a recent research project involving aero-engine giant Rolls-Royce and additive manufacturing equipment specialist Renishaw, heat-treated parts produced using A20X™ Powder have achieved an Ultimate Tensile Strength (UTS) of 511 MPa, a Yield Strength of 440 MPa and Elongation of 13% – putting the powder at the forefront of high-strength aluminium additive manufacturing.

Crucially, parts additively manufactured with A20X™ Powder maintain high-strength and fatigue properties even at elevated temperatures, outperforming other leading aluminium powders.

Mike Bond, Director of Advanced Material Technology at Aeromet, commented: “Since bringing the A20X™ alloy to market for additive manufacturing 5 years ago we have seen significant adoption for high-strength, design-critical applications. By working with Rolls-Royce, Renishaw and PSI we have optimised processing parameters that led to record-breaking results, opening up new design possibilities for aerospace and advanced engineering applications”.

The HighSAP project, backed by the UK’s National Aerospace Technology Exploitation Programme (NATEP), was led by Aeromet and involved Rolls-Royce, Renishaw and atomisation experts PSI. A20X™ Powder for additive manufacturing is derived from the MMPDS-approved A20X™ Casting alloy, the world’s strongest aluminium casting alloy, which is in use by a global network of leading aerospace casting suppliers.

 

 

 

  • Aeromet announces new properties for A20X powder
  • Case study: Dunlop uses Markforged technology to save thousands
  • HP launches 3D Print Design Competition

The post 3D Printing News Briefs: August 11, 2019 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Study Shows Anisotropic Properties of 3D Printed Nickel Super Alloy K418 (713C)

3D printing materials don’t just suddenly appear and get put to use without further thought – there is a great deal of study that goes into them, particularly metal materials. Their behaviors and properties must be known in order to make sure they perform. Especially now that our technology is being used in high-value applications such as aero-engines and medcine research about material properties and performance is growing in both volume and importance. In a new study entitled “Anisotropy of nickel-based superalloy K418 fabricated by selective laser melting,” a group of researchers used 3D printed samples to study the anisotropic mechanical behavior of one particular material – K418, a nickel-based superalloy.

K418 was developed in the 1960s and has been used on a widespread basis in aerospace engines, hot end turbocharger impellers, turbine blades the automotive industry, and more. It has excellent mechanical properties, excellent ductility and fatigue strength, good oxidation resistance at high temperatures, making it a stable and reliable material. It is difficult to machine by conventional methods at room temperature, however, due to excessive tool wearing, high cutting temperature, and other issues. Components made from K418 are often complex, with inner chambers, thin walls, and overhangs, making them difficult to fabricate through one single method such as machining. This alloy is also known as 713C Alloy, 713C,or Inconel 713C Alloy and many derivatives thereof. Inconel is actually a superalloy that was developed in the 60″s but became a catch-all name for the many superalloys developed around the same time frame. Inconel 713LC was a proprietary alloy made by the INCO (INCO was a global Canadian mining company that was the world’s largest producer of nickel, bought by Vale in 2006) and this term plus all of the derivatives are used interchangeably. 713C or as it is also known K418 has been used extensively in rocket engines, turbo stages and in the space and defense industries since the 60’s. SpaceX, NASA, Rocketdyne and others are all using this material to 3D print rocket engines.

Selective laser melting (SLM, also called powder bed fusion, DMLS, Direct Metal Laser Sintering, PBF) has shown itself to be more effective than conventional techniques like machining at manufacturing complex metal components. Thanks to its high temperature and rapid cooling, it also offers better mechanical properties than casting.

In this study, the researchers looked at the anisotropic properties of the K418 alloy. Anisotropy is defined as a difference in physical or mechanical properties when measured along different axes – in other words, a material’s properties could be different along the vertical axis than along the horizontal axis. In FDM (material extrusion) printed parts for example parts are weaker in between layers than laterally.

The researchers used a self-developed SLM 3D printer to produce several cylinders from the K418 material. The samples were manufactured both horizontally and vertically, or transverse and longitudinal. Microstructural anisotropy analysis was performed on both the horizontal and vertical samples.

“The microstructural anisotropy analysis was performed by optical microscopy (OM) and scanning electron microscopy (SEM),” the researchers explain. “Electron backscatter diffraction (EBSD) analysis was used to identify their crystallographic preferred orientation (texture) and to correlate the anisotropy of the mechanical strength with the texture of the material. The results showed that the transverse specimens had slightly higher yield strength, but much significantly higher ductility than that of the transverse specimens with the elongated columnar grains along the building direction.”

SEM micrographs of (a and b) the horizontal samples and (b and c) the vertical samples.

The extremely high thermal gradient and rapid cooling rate during the SLM process led to strong non-equilibrium solidification of the molten pool and the formation of ultrafine grain structure, which resulted in anisotropic microstructures and mechanical properties in different directions.

“The presence of textures renders the SLM processed K418 samples anisotropic in their mechanical properties, indicating that the transverse specimens display a ductile-brittle hybrid fracture mode with a slightly higher yield strength, while the vertical specimens show a ductile fracture mode with a significant increase in ductility,” the researchers continue.

The fact that SLM-produced K418 has anisotropic properties is an interesting finding. The finding may mean that engineers will feel more comfortable using and designing K418 parts using 3D printing. Metal 3D printing is an extremely effective method for producing components from this material, particularly complex structures. Given the performance envelope of this material and its space applications, this is sure to be an article that many will take an interest in. For some more reading on Inconel this article discusses cooling rates and their effects on Inconel 718 and in this article, we look at how Inconel 718 is being used by Launcher.

Authors of the paper include Zhen Chen, Shenggui Chen, Zhengying Wei, Lijuan Zhang, Pei Wei, Bingheng Lu, Shuzhe Zhang, and Yu Xiang.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.