Fraunhofer ILT: Making Tungsten Carbide-Cobalt Cutting Tools with LPBF 3D Printing

Obviously, the Fraunhofer Institute for Laser Technology ILT does a lot of work with lasers, and, in the same vein, with metal 3D printing processes that use lasers. Now, it’s teaming up with scientists from the Institute for Materials Applications in Mechanical Engineering IWM and the Laboratory for Machine Tools and Production Engineering WZL, both at RWTH Aachen University, to investigate laser processes for the 3D printing of cutting tools made of tungsten carbide-cobalt (WC-Co).

The new AiF project – “Additive Manufacturing of Machining Tools out of WC-Co – AM of WC-Co” – began on October 1st 2019 and will last for 30 months; funding is provided by the Otto von Guericke e.V. working group of industrial research associations.

Cutting tools made of WC-Co are very heat- and wear-resistant, which is what one generally wants in this type of application, but it’s not easy to use conventional methods of manufacturing to create them. Complex sintering processes are currently used, but it’s not ideal, as only a restricted amount of geometrical freedom is possible, and it’s expensive and difficult to introduce complex cooling structures into the tools as well.

The process development aims to generate a homogeneous, almost dense structure of the WC-Co-composite, as shown here in this SEM measurement. [Image: Institute for Materials Applications in Mechanical Engineering IWM, RWTH Aachen University]

One of the project goals is to create cutting tools with integrated complex cooling geometries in order to ensure longer tool life. That’s why the Aachen researchers are looking into Laser Powder Bed Fusion (LPBF) 3D printing for WC-Co cutting tool fabrication, which offers near-net-shape production for generation of cooling structures within these tools, and far more design freedom. This technology requires users to carefully choose their process and material parameters in order to create components with strength that’s comparable to what could be achieved with conventional manufacturing methods.

For the past few years, Fraunhofer ILT scientists have been researching a major problem in the LPBF process – temperature distribution in the part. Conventional systems slow down the cooling process with a heated base plate, but with LPBF, the metal powder is melted where the laser touches it and cools down quickly, which can cause cracks and tension.

Fraunhofer ILT has been working with adphos Innovative Technologies GmbH on this issue, and together the two created a system which uses a near-infrared (NIR) emitter to heat the component from above to over 800°C. This system is what Fraunhofer ILT and its fellow Aachen researchers are using to process tungsten carbide-cobalt material for cutting tools in the “AM of WC-Co” project.

Under the scope of the project, the researchers are investigating the process route all the way from powder formation and 3D printing to post-processing and testing the components. Together, they will qualify the materials and processes that will replace complex sintering processes in fabricating these cutting tools.

Preheating the machining plane with the NIR module significantly reduces stresses in the laser-manufactured component. [Image: Fraunhofer ILT]

3D printed WC-Co cutting tools will have a hardness comparable to those made with conventional manufacturing methods, but because of the cooling structures that the LPBF process can be used to create, they will have a longer service life. Additionally, the NIR emitter system developed by Fraunhofer ILT and adphos can lay the groundwork for processing refractory alloy systems in the future.

At formnext 2019, in Frankfurt from November 19-22, you can stop by the Fraunhofer Additive Manufacturing Alliance booth D51 in Hall 11 to learn more about the collaborative “AM of Wc-CO” project.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

[Source: Fraunhofer ILT]

The post Fraunhofer ILT: Making Tungsten Carbide-Cobalt Cutting Tools with LPBF 3D Printing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Qrons is Developing 3D Printable Implants to Treat Brain Injuries

Every year traumatic brain injuries (TBI) affect an average of 69 million individuals worldwide. Although the number is less than one percent of the total global population, it is large enough to draw attention from researchers and companies trying to ease the pain and suffering related to the injury, which is usually the result of a fall, a sports injury and especially traffic accidents. In the United States, it is one of the leading causes of death and disability among children and young adults. With so many biotechnology companies springing up to resolve, via bioprinting, many common afflictions and diseases, one of them has been developing advanced stem cell-based solutions since 2016 to combat neuronal injuries, with a particular focus on TBI and concussions.

Qrons, headquartered in New York, is now going further with their innovative research after they announced an agreement with Dartmouth College, in New Hampshire, for an exclusive worldwide license to develop innovative 3D printable biocompatible materials to treat penetrating brain injuries, and more.

The agreement, signed October on 2, allows Qrons to use a patented 3D process entitled Mechanically Interlocked Molecules-based Materials for 3D Printing as part of its injury-specific 3D printable implants to treat penetrating brain injuries. Qrons is also a funding party to a sponsored research agreement with Dartmouth to advance the license or ownership of additional intellectual property, and the company’s research team is already working closely with Chenfeng Ke, the inventor of the licensed 3D process and an Assistant Professor at the university’s Department of Chemistry, to develop innovative 3D printable, biocompatible advanced materials.

Chenfeng Ke

Chenfeng Ke is currently leading the Ke Functional Materials Group Lab at Dartmouth, which focuses on syntheses and applications of polymeric materials for storage/separation and 3D printing applications. According to the lab, the research scheme overlaps organic synthesis, crystal engineering, polymer synthesis, materials characterization, and 3D printing, with an emphasis on the design of polymeric materials that are noncovalently assembled.

“We are excited to partner with Qrons and continue the development of smart hydrogels with 3D printing capability for the treatment of traumatic brain injuries,” stated Ke, who is also a member of Qrons Scientific Advisory Board.

Today, current treatments to help patients regain function after a TBI focus on reducing secondary injuries, mainly rehabilitation in a hospital or specialized therapy center. It usually involves a physical therapist and occupational specialist to help patients relearn how to walk, talk, and carry out other everyday tasks. Qrons claims that this treatment can partially reduce further damage but do little or nothing to heal the brain.

At Qrons, researchers use a multi-disciplinary approach to treat this highly complex condition, by integrating a 3D printable, customized scaffold with innovative, engineered mesenchymal stem cells (MSCs) that target brain injuries to regenerate damaged tissue. The company suggests that these genetically modified MSCs offer a mechanism to secrete a continuous flow of neuro-protective and neuro-regenerative agents to drive TBI repair mechanisms. The agents can prevent further neuronal damage and have the potential to stimulate neurons to migrate to the injury site, regrow axonal processes and regenerate brain tissue.

Qrons already has two product candidates for treating TBIs, both integrating proprietary, modified MSCs and smart synthetic material. The QS100, an injury specific, 3D printable, implantable MSCs-synthetic hydrogel, to treat penetrating brain injuries, and QS200, an injectable MSCs-synthetic hydrogel for the treatment of diffused injuries commonly referred to as concussions.

The exclusive worldwide license for 3D printable materials in the fields of human and animal health will enhance the company’s research, leading to further innovations in a niche field.

“The intellectual property covered by this license has been instrumental in helping us advance our research on the treatment of penetrating brain injuries,” commented Ido Merfeld, Qrons Co-founder and Head of Product. “We believe combining Qrons’ proprietary hydrogel with customizable 3D printing capabilities is an innovative approach to treating traumatic brain injuries, for which there are limited treatments.”

One of 111 bioprinting companies in the world, Qrons is moving fast to research novel techniques for promoting neural recovery. Throughout the last three years, they have entered into research agreements with Ariel University, based in Israel to develop and commercialize products for neuronal tissue regeneration and repair, completed the first in vivo animal experiments for the QS100 and are close to beginning pre-clinical experiments for the QS200.

Jonah Meer

Jonah Meer, also co-founder and CEO, said that “there is a great need for our promising treatments, and this technology is an integral part of our work to develop innovative 3D printable, biocompatible advanced materials.”

As the widespread impact of TBI continues to grow, solutions like the ones proposed by Qrons could mean a different lifestyle for survivors.

[Images: Qrons and Dartmouth College]

The post Qrons is Developing 3D Printable Implants to Treat Brain Injuries appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: October 18, 2019

The stories we’re sharing in today’s 3D Printing News Briefs run the gamut from materials to new printers. Altair has launched its new industrial design solution, and Remet opened a metal 3D printing lab in Poland. Innofil3D is sharing lots of material news, and Equispheres has released the test results for a unique 3D printing powder. Finally, Hackaday published a micro 3D printer project.

Altair Launches New Industrial Design and Rendering Solution

The “Geko Ring Collection,” jewelry by Luca Palmini, designed and rendered with Inspire Studio. Image courtesy of Luca Palmini.

Global technology company Altair has launched Inspire Studio, its new 3D design and rendering solution, to help architects, designers, and digital artists create, evaluate, and visualize designs. The solution builds on the functions of Altair Evolve, and includes 3D rendering and animation software Inspire Render, which helps users rapidly generate photorealistic product renderings and animations. Both Inspire Studio and Inspire Render run on MacOS and Windows, and help designers open up their creativity to go beyond traditional CAID tools. The solutions will be introduced next month during a one-day launch event in Italy, and you can also get a free ticket to formnext 2019, where you can learn more about Inspire Studio and Inspire Render at Altair’s booth E11, hall 11.1.

“We are very pleased with these two new solutions for the global industrial design community. Inspire Studio builds on our previous industrial design tool, Evolve, while going beyond Evolve’s capabilities. Inspire Studio will enhance designers’ creativity by letting them drive their designs. It offers an intuitive user interface and a powerful construction history, allowing them to quickly create and explore multiple iterations of their design. Relying on the same modern user experience with powerful interactive, full progressive and raytracing rendering engine, Inspire Render will help designers quickly run photorealistic renderings and walkthrough animations on GPUs and CPUs,” said James Dagg, CTO at Altair.

3D Design and Rendering Software | Altair Inspire Studio

Remet Opens Modern Metal 3D Printing Laboratory

Polish steel structures manufacturer for the oil and gs mining industry, Remet, has launched a metal 3D printing laboratory equipped with a range of high quality machines and devices. The first of these is the DMP Flex 350 by 3D Systems, followed by 3D Systems’ Figure 4, the office-friendly metallic powder atomizer ATO Lab, and plenty of other specialized research equipment. Remet completed the project together with 3D Lab, a top Polish industrial 3D printer distributor and manufacturer of the ATO Lab.

The ATO Lab metal atomizer, which enables testing and fabrication of many powdered metal alloys, was the starting point for this unique laboratory. A new branch of the enterprise, called Remet Metal Labs, is where the company will work on comprehensive additive manufacturing and industrial applications projects. Its goal is to create highly flexible conditions for creating prototypes in the powder production field, and automotive, aviation, and space industry customers are invited to work with Remet to take advantage of the lab. 3D Lab and Remet will present their solutions together at formnext in Frankfurt next month.

Innofil3D Materials and Design Rules Video

This week, Innofil3D, and its parent company BASF, have a lot of news to share. First up, Ultrafuse BVOH, its water-soluble support filament, is now available for purchase, along with its new Ultrafuse 316L metal filament. Designed for easy FFF 3D printing, this is the company’s first metal material – 80% stainless steel with a 20% polymer content.

For users interested in 3D printing their Innofil3D PRO1 filament on a Raise3D printer, you can now join the Raise3D Open Filament Program to take advantage of optimized settings and print profiles. This new program is a collaboration between Raise3D and filament manufacturers, like Innofil3D, to find the top-performing materials for its 3D printers. Finally, Innofil3D has released its second video tutorial for design rules and principles of FFF 3D printing. Check out the video below, and be sure to visit BASF at its large K-Fair exhibit in Hall 5, C21/D21.

Equispheres Releases Test Results for Unique AM Powder

Materials science technology company Equispheres has released the results from its first powder testing phase, completed by a facility that certifies AM materials for applications in aerospace and defense. The results have confirmed that the powder has exceeded expectations, allowing for a 20-30% increase in mechanical performance and a 50% increase in production speeds. In light of this news, Equispheres is launching new equity financing in order to, as the company wrote in a press release, “grow and unlock the vast potential of Additive Manufacturing.”

“The unique properties of our powder, including the high sphericity, narrow particle size distribution and low surface area results in significantly increased packing density.  This allows an increase of powder layer thickness by a factor of 2 which significantly increases build speed. Most importantly, this boost to build speed does not come with a mechanical performance penalty.  Instead, the uniform nature of our powder ensures that parts are produced with reliable and consistent mechanical properties.  The minimal variance in our performance results provides design engineers the statistical confidence to produce stronger, lighter parts,” said Equispheres’ CTO, Dr Martin Conlon.

Hackaday Project: Micro Deltesian 3D Printer

A new Hackaday project by architect Ekaggrat Singh Kalsi was just published – a micro Deltesian 3D printer, which he says offers a quality that’s on par with any Cartesian 3D printer. The printer has a solid aluminum frame, with a standard slider Y axis and a Delta mechanism for the XZ axis. A 3.5″ LCD touchscreen, with a built-in SD card, is fast and easy enough for his young daughter to use, which was his ultimate goal. With an 80 x 100 x 85 mm build volume and a print bed held in place with magnets, the biggest challenge in making the minuscule 3D printer easy to use was the filament loading; Singh Kalsi used a lever-based latch mechanism for this.

“the micro deltesian was born out of the curiosity of building the convoluted deltesian mechanism,” he explained. “Later on it evolved into the idea of building a 3d printer simple enough to be used by my daughter. The deltesian mechanism seem very wierd when i first saw it but eventually i thought maybe i should give it a try and hence this printer was born.”

Watch the video below to see just how easily his daughter uses the micro Deltesian 3D printer:

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

The post 3D Printing News Briefs: October 18, 2019 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Formlabs Focuses on the Advantages of 3D Printing With the New Form 3

During a recent Formlabs Webinar, growth marketing specialist, Faris Sheikh, performed an engaging live demonstration of the new Form 3 Stereolithography (SLA) printer. For the hundreds of viewers that tuned in on September 26th, the performance of the printing system unveiled some of the advantages inherent in its new features. Everything from a significant improvement in print quality over the previous model, the Form 2, to understanding how low-force SLA can deliver better surface quality and help to get a gentle release once the part is done printing. The Form 3: Live Product Demo webinar is a step-by-step presentation on how to set up and print on the Form 3, walking the audience through the making of a speaker prototype.

Faris Sheikh

You probably read a lot about how the Form 3’s new low-force Stereolithography (LFS) technology is used to create parts that are consistently accurate, with amazing detail and surface finish, every single time. But Sheikh took his audience on a dive into the technology behind the Form 3, talking about what makes it special, helping potential users to understand the new print process and learn how to use it to avoid lead times.

Formlabs has been creating reliable, accessible printing systems for professionals for the last decade, ever since Max Lobovsky, CEO and Co-Founder of Formlabs decided it was time to tackle the $80,000 industrial SLA machine industry and turn it into something really affordable, easy to use and desktop-friendly. So Stereolithography has been the company’s forte since 2011, and the Form 3 is already the fourth iteration of the original Form machine. Over 50,000 of the company’s printers are used across the world in so many different brands, from Gilette to Disney, Boeing, New Balance, Amazon, Sony, and Google, just to name a few of the most known ones out there. And they really keep count of the parts being printed with their machines, which up to now its something like 40 million, but they expect that number to go up quickly with the new Form 3 and another version which is bigger, called the Form 3L.

“Our goal with the Form 3 was to reduce the peel force that is common in all SLA technologies and can have some negative consequences on printing processes. So to come up with LFS, this powerful form of SLA technology that decreases the forces of the peel process, we came up with two new features: a flexible tank and a light processing unit,” outlined Sheikh.

The face of the tank is made of a flexible film and reduces print forces to deliver high quality and printer reliability so that when the part comes out it is with a gentle release compared to traditional SLA. Sheikh explained that the company tested the peel forces and determined that there was a ten-time reduction on the Form 3, compared to its predecessor Form 2. That is a significant improvement between printer models. He also suggested that the flexible tank will impact on the surface finish, making it “incredible” as they say, and allow for a faster clean up and finishing after the parts are done the printing. 

Steve Jobs sculpture designed by Sebastian Errazuriz, 3D printed in White Resin powered by the low-force tech of the Form 3

“Incredible surface finish is the result of good layer registration, that is, how accurately each layer is aligned with the previous layer. The more accurately they are aligned, the better surface finishes you will have as well as more translucent and clear parts. The greater sharpness in the edges is ideal for the jewelry industry which usually looks for delicate feature-capability and fine level of detail. While the bio and medical industry can benefit from models that will look so much more representative of what they are trying to do.”

Comparing DNA Helix models printed in Clear Resin in the Form 2 and Form 3 (clear and translucent)

The company suggests that 47% of Form 2 users said removing supports where their biggest pain points, while 62% said Formlabs could improve their machines to make the finishing process easier. So Formlabs developed the LFS which allows for easy support removal thanks to tiny touchpoints, or what Sheikh called “light-touch support” that can easily tear away so that being able to just pop off the part becomes a real improvement for users. 

Light-touch support structures on the Form 3 leave behind four times less support material than supports printed on Form 2

“If you can finish faster and have a faster clean up it means that you have more time to work on the printing process and spend more time on the product. We want to make your life easier so you don’t have to worry about the printing process.”

Sheikh preparing to print on the Form 3

The printing process with the Form 3 is simple, the user picks any of more than 20 material options from Formlabs, then prepares the design (Sheikh did it using the PreForm software, a free tool offered by the company), print the part and then wash and cure it (done on the FormWash and FormCure machines). The printing of the chosen speaker model by Sheikh takes six hours, but the preparation and post-processing can all be done in just over 30 minutes. 

The speaker prototype printed on the Form 3

Sheikh shows how simple it is to use the PreForm software, which has automatic algorithms and helps the user orient the part and generates the supports with just one click. And since the part is going to be printed upside down, it needs supports layer by layer. Then, the print file is sent wirelessly to the printer and it starts printing. Since it takes six hours to print a prototype speaker of 753 layers, the printer will send a text message when it’s ready.

Considering the webinar is less than an hour long, Sheikh shows his audience how easy it is to release the part from the supports once it’s done, with another part that was already done printing.

“Taking off the supports is so simple with LFS, you can easily twist and all the supports come off in one second.”

Formlabs aims to create easy-to-use printers. Sheikh claims that Form 3 is an accessible machine, coming up to $3,500, with an industrial quality that can produce strong parts, making it an ideal successor to Form 2. Formlabs is looking to, not just create a very popular desktop SLA machine, but build a whole culture of innovation, impacting entire teams, enabling anyone to tackle their design, building machines that work remotely so that the printing process is easy and becoming a leading force in many industries.

[Images: Formlabs]

The post Formlabs Focuses on the Advantages of 3D Printing With the New Form 3 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: October 14, 2019

In today’s 3D Printing News Briefs, everything is new, new, new! Carbon is announcing a new RPU 130 material, and STERNE Elastomere introduces its antimicrobial silicone 3D printing. Protolabs launches a new polypropylene 3D printing service in Europe, and Hydra Research has officially released its flagship Nautilus 3D printer.

Carbon Introduces RPU 130 Material

At this week’s International K Trade Fair in Dusseldorf, Carbon will debut its new RPU 130 resin, a rigid polyurethane that’s rigid, tough, impact resistant, and stands up under high temperatures, making it a perfect choice for the automotive industry in applications such as brake caliper covers. Made exclusively for Carbon’s Digital Light Synthesis, the dual-cure engineering resin is comparable to unfilled thermoplastics, and Carbon also partnered with DuPont Tate & Lyle Bio Products to make RPU 130 out of sustainable Susterra propanediol, a 100% bio-based material that uses 46% less nonrenewable energy from cradle-to-gate and produces 48% less greenhouse gas emissions as well.

“We are focused on ways to incorporate more sustainable approaches to developing materials, and our partnership with DuPont Tate & Lyle emphasizes that commitment,” stated Jason Rolland, SVP of Materials at Carbon. “We believe that sustainability can go hand-in-hand with improved performance. In the case of RPU 130, we believe it will make the material even more appealing for our customers, as it makes it possible to create better quality products that are also ultimately better for the environment.”

You can learn more about Carbon’s new RPU 130 at its K-Show booth, H7.2, F12 from October 16-23.

Antimicrobial Silicone 3D Printing by STERNE

French silicone 3D printing specialist STERNE will also be attending K 2019 this month. Three years ago, the company unveiled its silicone 3D printer at K 2016, and its SiO-shaping 3D silicone printing technology makes it possible to fabricate very small pieces, according to standard ISO 3302-01 :2014 (M2) tolerances, at hardness from 30 to 60 Shores A. The printer also offers a full panel of colors in opaque, phosphorescent, and translucent.

The company is now combining 3D printing with antimicrobial silicone, in order to keep the silicone odor-free, avoid bacteria developing, improve the hygiene of a 3D printed object, and strengthen its immune barrier as well. You can learn more about this antimicrobial silicone 3D printing at STERNE’s Stand E23, Hall 8A, at K 2019.

Protolabs Offering Polypropylene 3D Printing in Europe

For the first time, digital manufacturing company Protolabs is offering polypropylene 3D printing, with the launch of a new service in Europe. The company has invested a lot in developing the material to be used with selective laser sintering (SLS) technology, on an SPro 60 system. SLS 3D printing with polypropylene plastic allows design engineers to rapidly develop and test prototypes, and fabricate complex designs as well, like internal channels and honeycomb structures.

“Polypropylene is one of the most used plastics available to modern manufacturers and is widely used for a number of applications. Polypropylene is one of the most used plastics available to modern manufacturers and is widely used for a number of applications. Now that we can produce a prototype in polypropylene, design engineers can develop and test it in an application using the same material that it will be manufactured from. The product design can then be quickly reiterated and retested until they have the perfect solution, before committing to tooling. This breakthrough takes product development to the next level using the most versatile of plastics, ” said Andrea Landoni, 3D printing product manager for Protolabs.

“Before, if you wanted to use polypropylene then you were limited in what you could design by the manufacturing technology available to you. Now the only limitation is your imagination.”

Hydra Research Releases Flagship 3D Printer

Oregon company Hydra Research, which began in a closet three years ago as a peer-to-peer print service, has announced the release of it flagship 3D printer, the Nautilus. The fully enclosed, industrial-grade desktop system – assembled in Portland – features a quick-change Tool Cartridge system that integrates E3D’s V6 hotend for fast nozzle switching, in addition to an integrated software solution. It also supports a variety of materials, provides Cura profiles for easy slicing, has a small footprint in a sleek frame, and offers customizable HydraCare support and consulting packages

“As a company, our primary goal is producing world-class hardware on an open source platform,” explained John Kray, the Founder and CEO of Hydra Research. “Manufacturers like E3D, Duet3D, and Fillamentum combine these values perfectly.”

You can now purchase Hydra’s Nautilus 3D printer on the company’s website, in addition to spare parts, accessories, and filament.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

The post 3D Printing News Briefs: October 14, 2019 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

New 3D Printing Resin Made with Nanodiamond Powder

Nanodiamonds are diamond particles produced by explosions, and are very thermally conductive. Nanodiamond powder is made up of non-toxic diamond nanoparticles, with a large surface, that are about 5 nm in size, and feature some interesting properties.

Researchers Krzysztof Królewski, Aleksandra Wieloszyńska, Aleksandra Kamińska, and Katarzyna Kardacz from Poland’s Gdańsk University of Technology (GUT), wanted to investigate a particular property, and published a paper on their work, titled “Optical properties of daylight curable resin doped with nanodiamond powder.”

The abstract reads, “In this paper a new material for 3D printing was elaborated on. Since diamond has very good optical properties, an idea occurred to us to apply it in a 3D printing process. A mixture of nanodiamond powder and standard 3D printing resin was created and several printouts have been completed. They have been tested for their abilities to transmit and absorb light in a wide spectrum of wavelengths. It turned out that nanopowder doped resin in comparison to standard one has worse optical properties. However, it shows that a mixture of resin and nanopowder can control optical properties of printouts.”

Fig. 1. Prototypes of 3D printed cylindrical lenses. L-R: convexo-convex lens, convexo-concave lens, plano-concave lens, plano-convex lens, and concavo-concave lens.

The team prepared and analyzed a new 3D printing material made out of diamond nanoparticles and amber 3D Daylight Hard resin from Photocentric, which caused unique optical properties. They fabricated a few examples of their material on the Liquid Crystal 10′ 3D printer, and then tested the optical properties, along with the optical properties of the Photocentric polymer resin for comparison.

Fig. 2. Prototypes of 3D printed spherical lenses. Bottom L-R: plano-concave lens, plano-convex lens, and convex-concave lens. The top row shows two convex-concave lenses.

“The 20 mm × 20 mm plates were printed as test samples which were prepared with different thickness (0.2 mm, 0.5 mm, 0.8 mm, 1 mm, 1.5 mm, 2 mm and 5 mm),” the researchers explained.

A spectrometer was used to obtain transmission characteristics of the 3D printed sample plates, in the 200-1100 nm wavelength range at room temperature. These characteristics are defined by, as the researchers wrote, “increasing transmission with decreasing the thickness of plates.”

Fig. 3. Two series of flat plates (first series at top and second at the bottom). The thinnest plate is on the left.

For the first series of 3D printed plates, the transmission was almost zero for light waves in the 200-400 nm range, while the greatest transmission was for those in the 800-1100 nm range. The transmission for series #2 was even higher, which was easy to see with thicker plates. These characteristics are comparable with those of other optical materials, such as fused silica, and are definitely appropriate for a number of optical applications.

“In the first series, the maximal transmission is 60% and 44% for 2 mm and 5 mm thick plate, respectively. In turn, in the second series, this value is 75% and 65%, respectively,” the researchers noted.

The team then determined the absorption characteristics for the plates, and found that the greatest absorption is for light waves in the 200-400 nm, due to their orange color; the lowest absorption was for waves in the 600-1100 nm range.

Fig. 8. One series of flat plates, printed from the mixture of resin and nanodiamond powder which was obtained by evaporating DMSO from the suspension with nanodiamond.

More plates were then 3D printed out of the team’s novel material of nanodiamond powder and resin. The researchers then went into a little more detail as to how they obtained, and created, the material.

“The nanodiamond powder was obtained by evaporating DMSO (dimethyl sulfoxide) from the suspension with nanodiamond,” they wrote. “Then the 66.835 g liquid resin was mixed with 0.069 g powder. First, the magnetic stirring was carried out for an hour and after that, the sonication was done for 45 minutes. The sonicator worked in pulse mode with power set at 10%.”

The team used a series of OCT measurements to evaluate the material properties of the 3D printed plates, and got single B-scans from three plates with diamond nanoparticles, and one without, for reference. The images show that because of nanoparticles being present, and “the lack of tendency to agglomeration,” the prepared material was in fact homogeneous.

Fig. 9. OCT image of the plate with nanopowder. There are scattering centers in the sample (bright spots in the image), which indicates the occurrence of diamond nanoparticles.

Fig. 10. OCT image of polymer used for printing. Lack of the scattering centers indicates no occurrence of the diamond nanoparticles.

“In this research we have shown that the presence of nanodiamond affects the optical characteristics of the mixture,” the researchers concluded. “It gives premises that other nanoparticles can modify the optical properties, especially absorption characteristics. Therefore, it may lead to new opportunities for a low-cost, quick and easy method for rapid prototyping of optical filters.”

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

The post New 3D Printing Resin Made with Nanodiamond Powder appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: October 10, 2019

We’re talking about events and business today in 3D Printing News Briefs. In November, Cincinnati Inc. is presenting at FABTECH, and Additive Manufacturing Technologies and XJet are heading off to formnext. Moving on, Thor3D has announced a new partnership with Rhinoceros.

Cincinnati Incorporated Showing at FABTECH

Machine tool manufacturer Cincinnati Incorporated (CI) is going to FABTECH 2019 next month in Chicago, and plans on showcasing its recently announced partnership with Hendrick Motorsports, along with the #88 car driven by Alex Bowman, and its latest machines at the event. CI is now a full-season associate sponsor of the team’s four-car stable for the next ten years, in addition to its Official Metal Fabrication and Additive Equipment Provider. The racecar will be in booth #A2973 at the show, along with CI’s Hyform and AFX press brakes, Roboform cell, and new CLX laser, which was built specifically for automation-minded metal fabricators. The company’s high temperature Small Area Additive Manufacturing (SAAM HT) machine will be on display in booth #A3839, and its Medium Area Additive Manufacturing (MAAM) machine will make its official debut to the public.

“We’re ready to get to FABTECH and show the fabricating world what we’ve been up to in the past year. Walking through our facility, you can feel the energy and see the production happening. It’s exciting and it’s contagious, and we can’t wait to share it,” said Matt Garbarino, Director of Marketing Communications at Cincinnati Incorporated.

XJet Bringing Extended Carmel Product Line to formnext

FABTECH isn’t the only show in November – formnext is taking place in Frankfurt from November 19-22, and XJet announced that it will be introducing two new versions of its Carmel 1400 3D printer at the event. The Carmel 1400M for metals and the Carmel 1400C for ceramics, both of which use XJet’s NanoParticle Jetting technology, are part of the company’s continuing work to, as XJet put it, “redefine metal and ceramic AM.”

“Formnext is always a highpoint on XJet’s calendar. Each year we hit new milestones, and this is particularly evident at Formnext. From Formnext, XJet will offer two systems, the Carmel 1400C devoted to ceramics and the Carmel 1400M dedicated to metals. While both systems use the same NanoParticle Jetting technology, they are different and have been optimized to handle the different materials. Both will be demonstrated on our booth throughout the show,” said XJet’s CBO Dror Danai.

At Booth C01 in Hall 12.1 of formnext, XJet will demonstrate multiple applications and sample parts that showcase its NPJ technology for both metal and ceramic 3D printing. Representatives from the company’s distribution network will be on hand to answer question, and visitors can also enjoy an immersive, virtual reality experience into XJet’s NanoParticle Jetting at the booth.

Additive Manufacturing Technologies Presenting Modular, 3D Printed Booth at formnext

Sheffield-based Additive Manufacturing Technologies (AMT) will also be attending formnext as it officially exits stealth mode. The company will be showcasing a customizable, modular, and sustainable stand construction at the event, with over 6,000 3D printed parts that will connect 1,100 meters of aluminum tubing to create the booth, which was designed and constructed by Steel Roots Design. Materialise printed the parts out of Nylon PA 2200 material, using SLS technology by EOS, and they were then post-processed with AMT’s own PostPro3D platform. The lightweight parts have complex geometries, with moving features and internal threads that would have been impossible to create using another fabrication process.

“The whole point of exhibiting at a show like Formnext is to demonstrate your technologies and capabilities. At AMT we don’t want to just tell people how good our technologies are, we want to really show them. Our unique stand will show how functional and sustainable 3D printed parts — even at higher volumes — can be utilised when using our automated post processing technologies,” stated AMT’s CEO Joseph Crabtree.

“This level of sustainability commitment is a fundamental principle for AMT at every level of the business. Every decision we make takes sustainability into consideration.”

See AMT’s 120 kg stand structure for yourself at Booth 361, Hall 12.1, at formnext next month. Once it’s been constructed, several other company innovations will be showcased inside, such as the automated Digital Manufacturing System (DMS).

Thor3D and Rhinoceros Sign Partnership Agreement for New Product

3D scanner manufacturer Thor3D and Rhinoceros software developer McNeel have signed a partnership agreement so that Rhino software can now be resold by Thor3D’s distribution partners, along with multiple plug-ins, in a bundle with the Calibry handheld 3D scanner. Rhino’s set of tools for analysis, animation, engineering, free-form 3D modeling, and engineering can now be supplemented by Calibray scans, which can be used as base models. In addition, the bundle can also be extended using Brazil and Penguin rendering software, the Flamingo nXt rendering engine, and integrated animation by Bongo.

“Rhino software is widely known and used worldwide. Many of our customers already use it and our goal is to make it even more accessible to a wider audience. Engineers and digital artists alike, will find this software, in combination with our 3D scanners, extremely helpful in their day-to-day work,” said Anna Zevelyov, the CEO and Co-Founder of Thor3D.

Recommended retail price for the new Calibry and Rhino bundle will be €5,700.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below. 

The post 3D Printing News Briefs: October 10, 2019 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Improved FDM 3D Printing with Lignin Biocomposites

In the recently published ‘Lignin: A Biopolymer from Forestry Biomass for Biocomposites and 3D Printing,’ international researchers Mihaela Tanase-Opedal, Eduardo Espinosa, Alejandro Rodríguez, and Gary Chinga-Carrasco explore a very specific area of materials related to biopolymers.

As composites are used more often these days to improve existing materials—especially in 3D printing—alternative materials like wood are being experimented with also. Fiber-based biocomposites and lignin can be better options than petrochemical-based products. For this study, the authors gleaned lignin from spruce trees being reduced to pulp. They used the material to create composite filaments, printing sample dogbones to test mechanical properties.

Natural-fiber biocomposites offer the following:

  • Affordability
  • Good mechanical properties
  • No emission of toxins
  • Light weight

PLA is a popular polymer used in 3D printing, and as the authors remind us, it is actually a biopolymer—featuring good mechanical properties, biodegradability, easy melt-processability, and much more; however, it is also not always cost-effective or suitable for every project. As a composite, however, PLA becomes more versatile.

“Each year, over 50 million tons of lignin are produced worldwide as a side product from biorefineries, of which 98% are burned to generate energy. Only 2% of the lignin has been used for other purposes, mainly in applications such as dispersants, adhesives, and fillers,” state the researchers.

“Without modification, lignin can be directly incorporated into a polymeric matrix, such as UV-light stabilizer, antioxidant, flame retardant, plasticizer, and flow enhancer to reduce production cost, reduce plastic, and potentially improve material properties.”

As 3D printing brings so many advantages forth to industrial users, with the ability to create affordable and complex structures, as well as leaving behind less waste and energy usage, materials like lignin are attractive for use when mixed with other polymers. For this study, the researchers focused on PLA/soda lignin biocomposite filament for 3D printing.

“A motivation for selecting soda lignin is that it is sulphur-free. Soda lignin was thus expected to reduce the typical smell that is experienced when melt-processing biocompounds containing kraft lignin or lignosulfonates,” stated the researchers.

Samples were assessed for:

  • Mechanical (tensile testing)
  • Thermal (TGA, DSC analysis)
  • Morphological (SEM)
  • X-ray diffraction
  • Antioxidant properties

An original Prusa i3 MK3S was used in FDM 3D printing of the dogbone samples, with a length of 63mm and width of 3mm. Three sets were printed, as well as a phone case. The biocomposite demonstrated an increase in mechanical properties when temperatures were increased, with elastic modulus decreasing by 25% to 32%. Lignin offered an improvement in ductility, but a decrease in plasticity.

Mechanical properties of PLA and PLA/Lignin biocomposites.

 

Stress−strain curves for the different biocomposites

Antioxidant properties were also confirmed, showing that 3D printed samples with lignin had even more antioxidant capability than PLA, meaning there is the potential for use for other applications such as food packaging.

“The suitability of the PLA/lignin biocomposite filament for 3D printing was also tested, by printing a smartphone protective case,” stated the researchers. “The printing process revealed a good performance of the lignin-containing filament, and a functional protective case was effectively 3D printed. PLA/Lignin filaments are a plausible option for lignin utilization with potential in, e.g., rapid prototyping and consumer products. It is worth to mention that the typical smell from some lignins was not detected during the extrusion of the filaments or during the printing process, which is an additional advantage of using soda lignin in PLA biomaterials.

“Biocomposites exhibited good extrudability and flowability with no observable agglomeration of the lignin. This suggests that lignin-containing biocomposites are plausible alternatives for 3D printing applications.”

3D printing of a smartphone protective case with PLA/lignin biocomposite filament

The use of composites today is a growing trend due to the ability to improve prototypes and parts, from glass composites to copper metal to particle reinforced nanocomposites. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images – ‘Lignin: A Biopolymer from Forestry Biomass for Biocomposites and 3D Printing’]

 

The post Improved FDM 3D Printing with Lignin Biocomposites appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Single & Multimode Silica Optical Fibers Drawn from 3D Printed Preforms

In the recently published, ‘Silica optical fiber drawn from 3D printed preforms,’ the authors created single and multimode fibers that can be used to create designs and parts for a range of networks, likely related to telecommunications and Internet of Things (IoT) technology.

Silica optical fibers are ‘the holy grail of 3D printing optical fiber,’ according to the authors, due to a ubiquitous nature and levels of low loss; in fact, the researchers state that there is not another alternative able to compete. For this study, the researchers investigate the process of creating a silica preform through both 3D printing and thermal processing—no small feat, considering it requires temperatures over T = 1900 ℃. To avoid this issue, the researchers tried using a lower melting polymer—a hybrid polymer-glass mix—via DLP printing. Steps involved in this process include:

  • Photocurable resin preparation
  • 3D printing of preforms
  • Core fabrication
  • Thermal debinding
  • Final fiber drawing

Fabrication of the step-index silica optical fiber using 3D printing.

The researchers polymerized the mixed resin with the DLP printer and went on to fabricate arbitrary structures. They designed the preform with Inventor CAD, and then it was 3D printed, cured with UV light. After debinding, the researchers placed the preform into a quartz tube for support, with a lower drawing temperature to eliminate water, air, and residual polymers.

“As the temperature gradually increased, the polymer is ablated leaving behind the silica nanoparticles, which come closer together leading to preform shrinkage,” state the researchers. “Sintering at higher temperatures fuses them together.”

Refractive index difference profile

The quality of the fiber was examined with an optical microscope, demonstrating the cross-section of both 3D printed single and multi-mode.

a) experimental configuration of loss measurement b) loss spectrum of the 3D printed multimode.

Fibers, with both minimum and maximum eclipse diameters, showed more elevated uniform tension. With ‘increased loss’ the potential for interfacial scattering is suggested, with ‘significant contribution’ from water—meaning that the bubbles may be holding trapped water. The researchers theorize that this could be resolved with the use of:

  • Higher purity, drier starting chemicals
  • Sintering and debinding
  • Removal of the outer silica tube

“In conclusion, whilst there remains considerable scope to improve the transmission properties of this fiber, the first single mode and multimode silica optical fibers have been drawn from a 3D printed preform. The relative ease in which this was achieved suggests additive manufacturing will disrupt optical fiber fabrication,” concluded the researchers.

“Unlike conventional labor-intensive, lathe-based methods, the design and fabrication are not limited by a centrally spun or finely stacked preform, enabling configurations such as improved multicore and complex optical fibers, such as optimized Fresnel fibers, to be made. More broadly, painstakingly difficult complex patterns, multicore and multi-size and shaped fibers can be made that are not otherwise possible. This work, building off the original polymer versions, marks a new and exciting time for fiber fabrication and application.

3D printing is a technology very centered around materials usage, from silicate bone scaffolds to printing with silicone and epoxies, composites, and more. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: ‘Silica optical fibre drawn from 3D printed preforms’]

 

The post Single & Multimode Silica Optical Fibers Drawn from 3D Printed Preforms appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: October 6, 2019

We’ve got lots of material news for you in today’s 3D Printing News Briefs, starting with a Material Development Kit from RPS. Polymaker and Covestro are releasing three new materials and EOS has introduced a new TPU material for industrial 3D printing. Moving on, CASTOR and Stanley Black & Decker used EOS 3D printing to reduce costs and lead time, and Velo3D is partnering with PWR to make high performance heat exchangers.

RPS Introduces Material Development Kit for NEO800

UK 3D printer manufacturer RPS just launched its NEO Material Development Kit, which was designed by company engineers to be used as a polymer research and development tool for its NEO800 SLA 3D printer. The MDK comes in multiple platform and vat sizes, and allows developers to work with different resin formulations, so that R&D companies can work to develop a range of polymers that are not available in today’s industry. Users can print single layer exposure panes with Titanium software and the 1 liter vat in order to find the photo-speed of the formulation they’re developing; then, tensile testing of different material formulations can commence. Once this initial testing is finished, developers can scale up to the 13 liter vat – perfect for 3D printing prototype parts for use in optimizing final configuration settings.

“This NEO Material Development Kit now opens the door for large industrial chemical companies such as BASF, DSM and Heinkel to push the boundaries of UV photopolymers,” said David Storey, the Director of RPS. “The industry is looking for a quantum jump in materials to print end-user production parts from the stereolithography process.”

New Polycarbonate-Based Materials by Polymaker and Covestro

Advanced 3D printing materials leader Polymaker and polymer company Covestro are teaming up to launch three polycarbonate-based materials. These versatile new materials coming to the market each have unique properties that are used often in a variety of different industries.

The first is PC-ABS, a polycarbonate and ABS blend which uses Covestro’s Bayblend family as its base material. Due to its high impact and heat resistance, this material is specialized for surface finishings such as metallization and electroplating, so it’s good for post-processing work. Polymaker PC-PBT, which blends the toughness and strength of polycarbonate with PBT’s high chemical resistance, is created from Covestro’s Makroblend family and performs well under extreme circumstances, whether it’s subzero temperatures or coming into contact with hydrocarbon-based chemicals. Finally, PolyMax PC-FR is a flame retardant material that’s based in Covestro’s Makrolon family and has a good balance between safety and mechanical performance – perfect for applications in aerospace motor mounts and battery housings.

EOS Offers New Flexible TPU Material

In another materials news, EOS has launched TPU 1301, a new flexible polymer for industrial, serial 3D printing. Available immediately, this thermoplastic polyurethane has high UV-stability, great resilience, and good hydrolysis resistance as well. TPU materials are often used in applications that require easy process capabilities and elastomeric properties, so this is a great step to take towards 3D printing mass production.

“The EOS TPU 1301 offers a great resilience after deformation, very good shock absorption, and very high process stability, at the same time providing a smooth surface of the 3D printed part,” said Tim Rüttermann, the Senior Vice President for Polymer Systems & Materials at EOS. “As such the material is particularly suited for applications in footwear, lifestyle and automotive – such as cushioning elements, protective gears, and shoe soles.”

You can see application examples for TPU 1301 at the EOS booth D31, hall 11.1, at formnext in Frankfurt next month, and the material will also be featured by the company at K Fair in Dusseldorf next week.

CASTOR, Stanley Black & Decker, and EOS Reduce Costs and Lead Time

Speaking of EOS, Stanley Black & Decker recently worked with Tel Aviv startup CASTOR to majorly reduce the lead time, and cost, for an end-use metal production part that was 3D printed on EOS machinery. This was the first time that 3D printing has been incorporated into the production line of Stanley Engineered Fastening. In a CASTOR video, EOS North America’s Business Development Manager Jon Walker explained that for most companies, the issue isn’t deciding if they want to use AM, but rather how and where to use it…which is where CASTOR enters.

“They have a very cool software in which we can just upload the part of the assembly CAD file, and within a matter of minutes, it can automatically analyze the part, and give us the feasibility of whether the part is suitable for additive manufacturing or not. And in case it is not suitable, it can also let us know why it is not suitable, and what needs to be changed. It can also tell us what is the approximate cost, which material and printer we can use,” said Moses Pezarkar, a Manufacturing Engineer at Stanley’s Smart Factory, in the video.

To learn more, check out the case study, or watch the video below:

PWR and Velo3D Collaborating on 3D Printed Heat Exchangers

Cooling solutions supplier PWR and Velo3D have entered into a collaborative materials development partnership for serial manufacturing of next-generation heat exchangers, and for the Sapphire metal 3D printer. PWR will be the first in the APAC region to have a production Sapphire machine, which it will use to explore high-performance thermal management strategies through 3D printing for multiple heat exchange applications. Together, the two companies will work on developing aluminum alloy designs with more complex, thinner heat exchange features.

“PWR chose Velo3D after extensive testing. The Velo3D Sapphire printer demonstrated the ability to produce class-leading thin-wall capabilities and high-quality surfaces with zero porosity. Velo3D and PWR share a passion for pushing the limits of technology to deliver truly disruptive, class-leading, products. We are a natural fit and look forward to building a strong partnership going forward,” said Matthew Bryson, the General Manager of Engineering for PWR.

“Heat exchanger weight and pressure-drop characteristics have a huge impact on performance and are significant factors in all motorsport categories. Using additive manufacturing to print lightweight structures, enhancing performance with freedom-of-design, we have the ability to further optimize these characteristics to the customer’s requirements whilst providing the necessary cooling. The broad design capabilities and extremely high print accuracy of the Velo3D Sapphire 3D metal printer will help us optimize these various performance attributes.”

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below. 

The post 3D Printing News Briefs: October 6, 2019 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.