POLYLINE Project: Developing Digital Production Line for 3D Printing Spare & Series Automotive Parts

Because 3D printing can ensure complex structures and geometry, mass production of individualized products seems closer than ever. But, since standards are somewhat lacking across process chains, and automated levels of handling and transport processes are low, it’s only possible to achieve horizontal and vertical AM integration in production lines on a limited basis. Additional obstacles include limited monitoring and a lack of transparency across the process chain, due to a non-continuous digital data chain at lots of interfaces. But the potential benefits of integrating AM into assembly and series production lines in the automotive industry are great, which is why the POLYLINE project was launched.

With 10.7 Mio. Euro in funding by the German Federal Ministry of Education and Research (BMBF), this “lighthouse project” is bringing together 15 industrial, science, and research partners from across Germany with the shared goal of creating a digital production line for 3D printed spare and series automotive parts.

The three-year project officially began at a kick-off meeting of the consortium partners this spring at the Krailling headquarters of industrial 3D printing provider EOS, which is leading the project. The other 14 partners are:

BMBF is funding POLYLINE as part of the “Photonics Research Germany – Light with a Future” program in order to set up AM as a solid alternative for series production. The resulting next-generation digital production line will 3D print plastic automotive parts in an aim to complement more traditional production techniques, like casting and machining, with high-throughput systems.

The project is looking to disrupt the digital and physical production line system, and is using an interesting approach to do so that, according to a press release, “takes a holistic view and implements all required processes.” To succeed, all of the quality criteria and central characteristic values from the CAD model to the printed part need to be recorded and documented, and individual production sub-processes, like the selective laser sintering, cooling, and post-processing, will be automated and added to the production line. For the first time, all technological elements of the SLS production chain will be linked as a result.

Schematic representation of a laser sintering production line

Per the application partner’s requirements, the production line will be realized with “a high degree of maturity,” and uses cases for POLYLINE will include large amounts of both serial and customized components.

Each partner will add its own contribution to the POLYLINE project. Beginning with the leader, the EOS P 500 system will have real-time monitoring and automated loading of exchange frames added to its features; the printer will also be embedded in an automatic powder handling system. Premium automotive manufacturer the BMW Group, already familiar with 3D printing, has a massive production network of 31 plants in 15 countries, and is creating a catalog of requirements for the project to make sure that the new line will meet automotive industry standards. Additionally, the demonstrator line will be set up near its Additive Manufacturing Campus, and cause-and-effect relationships will be jointly researched.

Iterations of a BMW Roof Bracket made with 3D printing. (Image: BMW Group)

Industrial process automation specialist Grenzebach will be responsible for material flow and transport between AM processes, as well as helping to develop automated hardware and software interfaces for these processes. 3YOURMIND is setting up a data-driven operating model, which will include “qualified digital parts inventories, orders processing, jobs and post-processing planning and execution, material management, and quality control,” while software solutions developer Additive Marking is focusing on quality management optimization and resource efficiency.

Post-processing specialist DyeMansion will develop a process for certified, UV-stable automotive colors, create Industry 4.0-ready solutions for cleaning and mechanical surface treatment with its PolyShot Surfacing (PSS) process, and contribute its Print-to-Product platform’s MES connectivity. Bernd Olschner GmbH will offer its customer-specific industrial cleaning solutions, Optris will make fast pyrometers and special thermal imaging cameras adapted for plastic SLS 3D printing, and air filter systems manufacturer Krumm-tec will work to upgrade the manual object unpacking process.

(Image: DyeMansion)

Along with other project partners, Paderborn University is “working on the horizontal process chain for the integration of additive manufacturing in a line process,” while the Fraunhofer Institute for Casting, Composite and Processing-Technology IGCV is developing a concept for POLYLINE production planning and control, which will be tested in a simulation study for scalability. The Fraunhofer Institute for Material Flow and Logistics IML will work on “the physical concatenation of process steps,” paying specific attention to flexibly linking the former manual upstream and downstream AM processes.

TU Dortmund University will help apply deep learning, and implicit geometric modeling, for data preparation and analysis, along with online monitoring and quality management, in order to achieve sustainable automation and efficiency for the project. The University of Augsburg’s Chair of Digital Manufacturing works to integrate AM processes into current production methods, and will apply its expertise in this area to the POLYLINE project, helping to develop strong vertical process chains. Finally, the University of Duisburg-Essen will focus on creating quality assurance for the material system, and its laser sintering process.

The consortium of the POLYLINE project (Image: EOS GmbH)

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

The post POLYLINE Project: Developing Digital Production Line for 3D Printing Spare & Series Automotive Parts appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: October 18, 2019

The stories we’re sharing in today’s 3D Printing News Briefs run the gamut from materials to new printers. Altair has launched its new industrial design solution, and Remet opened a metal 3D printing lab in Poland. Innofil3D is sharing lots of material news, and Equispheres has released the test results for a unique 3D printing powder. Finally, Hackaday published a micro 3D printer project.

Altair Launches New Industrial Design and Rendering Solution

The “Geko Ring Collection,” jewelry by Luca Palmini, designed and rendered with Inspire Studio. Image courtesy of Luca Palmini.

Global technology company Altair has launched Inspire Studio, its new 3D design and rendering solution, to help architects, designers, and digital artists create, evaluate, and visualize designs. The solution builds on the functions of Altair Evolve, and includes 3D rendering and animation software Inspire Render, which helps users rapidly generate photorealistic product renderings and animations. Both Inspire Studio and Inspire Render run on MacOS and Windows, and help designers open up their creativity to go beyond traditional CAID tools. The solutions will be introduced next month during a one-day launch event in Italy, and you can also get a free ticket to formnext 2019, where you can learn more about Inspire Studio and Inspire Render at Altair’s booth E11, hall 11.1.

“We are very pleased with these two new solutions for the global industrial design community. Inspire Studio builds on our previous industrial design tool, Evolve, while going beyond Evolve’s capabilities. Inspire Studio will enhance designers’ creativity by letting them drive their designs. It offers an intuitive user interface and a powerful construction history, allowing them to quickly create and explore multiple iterations of their design. Relying on the same modern user experience with powerful interactive, full progressive and raytracing rendering engine, Inspire Render will help designers quickly run photorealistic renderings and walkthrough animations on GPUs and CPUs,” said James Dagg, CTO at Altair.

3D Design and Rendering Software | Altair Inspire Studio

Remet Opens Modern Metal 3D Printing Laboratory

Polish steel structures manufacturer for the oil and gs mining industry, Remet, has launched a metal 3D printing laboratory equipped with a range of high quality machines and devices. The first of these is the DMP Flex 350 by 3D Systems, followed by 3D Systems’ Figure 4, the office-friendly metallic powder atomizer ATO Lab, and plenty of other specialized research equipment. Remet completed the project together with 3D Lab, a top Polish industrial 3D printer distributor and manufacturer of the ATO Lab.

The ATO Lab metal atomizer, which enables testing and fabrication of many powdered metal alloys, was the starting point for this unique laboratory. A new branch of the enterprise, called Remet Metal Labs, is where the company will work on comprehensive additive manufacturing and industrial applications projects. Its goal is to create highly flexible conditions for creating prototypes in the powder production field, and automotive, aviation, and space industry customers are invited to work with Remet to take advantage of the lab. 3D Lab and Remet will present their solutions together at formnext in Frankfurt next month.

Innofil3D Materials and Design Rules Video

This week, Innofil3D, and its parent company BASF, have a lot of news to share. First up, Ultrafuse BVOH, its water-soluble support filament, is now available for purchase, along with its new Ultrafuse 316L metal filament. Designed for easy FFF 3D printing, this is the company’s first metal material – 80% stainless steel with a 20% polymer content.

For users interested in 3D printing their Innofil3D PRO1 filament on a Raise3D printer, you can now join the Raise3D Open Filament Program to take advantage of optimized settings and print profiles. This new program is a collaboration between Raise3D and filament manufacturers, like Innofil3D, to find the top-performing materials for its 3D printers. Finally, Innofil3D has released its second video tutorial for design rules and principles of FFF 3D printing. Check out the video below, and be sure to visit BASF at its large K-Fair exhibit in Hall 5, C21/D21.

Equispheres Releases Test Results for Unique AM Powder

Materials science technology company Equispheres has released the results from its first powder testing phase, completed by a facility that certifies AM materials for applications in aerospace and defense. The results have confirmed that the powder has exceeded expectations, allowing for a 20-30% increase in mechanical performance and a 50% increase in production speeds. In light of this news, Equispheres is launching new equity financing in order to, as the company wrote in a press release, “grow and unlock the vast potential of Additive Manufacturing.”

“The unique properties of our powder, including the high sphericity, narrow particle size distribution and low surface area results in significantly increased packing density.  This allows an increase of powder layer thickness by a factor of 2 which significantly increases build speed. Most importantly, this boost to build speed does not come with a mechanical performance penalty.  Instead, the uniform nature of our powder ensures that parts are produced with reliable and consistent mechanical properties.  The minimal variance in our performance results provides design engineers the statistical confidence to produce stronger, lighter parts,” said Equispheres’ CTO, Dr Martin Conlon.

Hackaday Project: Micro Deltesian 3D Printer

A new Hackaday project by architect Ekaggrat Singh Kalsi was just published – a micro Deltesian 3D printer, which he says offers a quality that’s on par with any Cartesian 3D printer. The printer has a solid aluminum frame, with a standard slider Y axis and a Delta mechanism for the XZ axis. A 3.5″ LCD touchscreen, with a built-in SD card, is fast and easy enough for his young daughter to use, which was his ultimate goal. With an 80 x 100 x 85 mm build volume and a print bed held in place with magnets, the biggest challenge in making the minuscule 3D printer easy to use was the filament loading; Singh Kalsi used a lever-based latch mechanism for this.

“the micro deltesian was born out of the curiosity of building the convoluted deltesian mechanism,” he explained. “Later on it evolved into the idea of building a 3d printer simple enough to be used by my daughter. The deltesian mechanism seem very wierd when i first saw it but eventually i thought maybe i should give it a try and hence this printer was born.”

Watch the video below to see just how easily his daughter uses the micro Deltesian 3D printer:

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

The post 3D Printing News Briefs: October 18, 2019 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Adafruit Designs 3D Printed Mount, Plus Add-Ons, for Its Crickit PCB

Universal arm mount holder by junnno

We often see 3D printing used to fabricate various mounts, whether they’re for your OtterBox iPhone case, your GoPro video camera, or your Garmin unit. In today’s world, it’s common to go hands-free with your assorted devices…who wants to hold something when you can prop it up on a unique and kicky little mount or stand instead?

We often enjoy writing about the various 3D printed projects conducted by Adafruit, from the gaming-centric (HD video goggles and GameBoys) and artistic to the more unique, such as customizable hat graphics and a detachable drone trophy.

Now, the New York-based open source hardware company has published a how-to video on its latest project – a 3D printed mount for its Crickit PCB. Not to be confused with the Cricit cutting machine, which many of my craftier friends covet, Crickit is Adafruit’s robotics platform, an add-on to the company’s popular Circuit Playground Express that helps you make your own creative robot projects.

“Sometimes we wonder if robotics engineers ever watch movies. If they did, they’d know that making robots into slaves always ends up in a robot rebellion,” Adafruit wrote. “Why even go down that path? Here at Adafruit, we believe in making robots our friends!

“So if you find yourself wanting a companion, consider the robot. They’re fun to program, and you can get creative with decorations.

“With that in mind, we designed Crickit – That’s our Creative Robotics & Interactive Construction Kit.”

Adafruit’s Crickit is powered by its “I2C-to-whatever bridge firmware,” also known as seesaw. Only two data pins are needed to control all of the inputs and outputs on the Crickit, as the rest of its sensors, timers, and PWMs are offloaded to its co-processor. The kit comes with all sorts of fun goodies, all powered via 5V DC, like a Class D audio amplifier, four servo controls with precision 16-bit timers, and eight signal pins.

So, if you have your own Crickit board, but want to secure it to another project in order to keep your hands free for other important tasks, Adafruit has the answer with its simple, multi-purpose 3D printed Crickit PCB mount.

The design also has several additional add-ons you can create, so you can mount it in a variety of ways on multiple surfaces, like acrylic, cardboard, and wood. The first has openings for multiple terminal blocks and various ports so there’s still room for wires and cables, while the second features a slot for inserting a removable tripod screw.

The third add-on is designed to secure an AA battery pack. For this one, you’ll want to make sure that you’ve secured the pack to the mount before you add the Crickit.

The final add-on is perfect for prototyping LEGO projects, which will require some screws to secure the PCB.

“If you’d like, you can design your own custom add-ons or modify our existing designs,” Adafruit said in their how-to video. “The design files are free to download and they’re linked in the description of this video.”

Happy mounting!

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Images: Adafruit]