VELO3D Releases Assure for 3D Metal Printing: Stratasys Direct Manufacturing as First Customer

With the release of the VELO3D Assure™ Quality Assurance and Control System for its Sapphire® 3D metal printers, VELO3D also brings on board a heavy hitter in their first customer as Stratasys Direct Manufacturing, a subsidiary of Stratasys, Ltd., will be the first to integrate Assure into their manufacturing processes.

VELO3D’s Assure™ quality control dashboard enables engineers to track the quality and progress of Sapphire® machines in real-time.

Assure offers unprecedented monitoring and substantiation of part quality, offering the following features:

  • Detects process anomalies
  • Flags issues
  • Highlights necessary corrective actions
  • Offers traceability

“Assure is a revolutionary quality-control system, an inherent part of the VELO3D end-to-end manufacturing solution for serial production,” says Benny Buller, founder and CEO of VELO3D. “Assure is part of our vision to provide an integrated solution to produce parts by additive manufacturing with successful outcomes.”

Upon receipt of their own Sapphire 3D printer earlier this year, Stratasys Direct not only began using Assure, but they produced an entire study from their evaluation, which included:

  • Monitoring integrity of builds
  • Validating bulk material density
  • Observing ongoing process metrics
  • Verifying calibration of the system

Assure predicts defectivity as a function of layer number. An increase in the defectivity metric is correlated with increasing defectivity in the bulk core of the part.

Before and during a build, Assure validates that critical parameters stay within control limits ensuring high quality parts. Clicking on individual squares reveals details on the underlying event.

These results were published in ‘Stratasys Direct Manufacturing Performs Field Validation of VELO3D Assure™,’ after the Stratasys Direct team used Assure for 12 weeks, verifying findings produced by VELO3D. They are now using the system in ongoing production efforts.

“AM can print parts and meet requirements for single units but scaling from a single part into serial production has been challenging. OEMs lack confidence in AM process control, and AM users struggle to demonstrate it. Without visibility into each part’s deposition lifetime AM becomes a risk,” states author Andrew Carter, Sr. Manufacturing Engineer at Stratasys Direct Manufacturing.

Assure boosts manufacturing techniques for the user as they can understand tool health better, calculate part quality, and perform field validation. Engineers 3D printed test structures during their study, producing wedges measuring 20mm x 41mm in width and length respectively. The wedges could be stacked into a tower shape, making a structure to match the build z-height. For each test run, they created two towers.

Test structure added to production builds to enable destructive testing. Image from ‘Stratasys Direct Manufacturing Performs Field Validation of VELO3D Assure™.’

Ultimately, 75 test structures were created and then analyzed via X-rays. Bulk porosity measured at 0.02 percent, and the researchers pointed out that there was no ‘single part exhibiting porosity higher than 0.1 percent. There were no deviations in print quality for the test builds.

Bulk defectivity measured on test parts by x-ray imagery. Image from ‘Stratasys Direct Manufacturing Performs Field Validation of VELO3D Assure™

“Stratasys Direct has built a culture of continuous improvement that means we are continually setting new standards for our industry on quality,” said Kent Firestone, CEO of Stratasys Direct Manufacturing. “We integrated Assure into our quality control workflow because it produces highly actionable insights. The user interface features intuitive graphs and charts that enable us to see and interpret the vast amount of data collected during builds. This information helps our engineers verify the quality of the build each step of the way and enables them to make quick decisions in the event of an issue. Assure helps us reduce production variation, improve yields, and circumvent anomalies to ensure consistent additive manufacturing.”

If you are interested in finding out more about Assure, check out the webinar on November 14th at 10 am PST, offered by Stratasys Direct. Click here to register. Also, if you are attending formnext in Frankfurt, Germany, don’t miss the joint press conference at the VELO3D booth (Hall 11, E79) on November 19 at 10 a.m.

VELO3D continues to be a dynamic presence in the 3D printing realm, from fabrication of a supersonic flight demonstrator to their efforts to expand on design and build limitations. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Assure provides true z-height quantitative powder bed and part metrology. Note the sections of parts with red lobes indicating metal protruding >300um above the powder bed but still below control limits.

[Source / Images: VELO3D]

The post VELO3D Releases Assure for 3D Metal Printing: Stratasys Direct Manufacturing as First Customer appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: May 16, 2019

We’ve got plenty of business news for you in today’s 3D Printing News Briefs, starting with Additive Manufacturing Technologies’ impressive growth as of late. ExOne has announced a collaboration with Oak Ridge National Laboratory, and DigiFabster has announced several updates to its platform. Moving on to new product launches, Shining3D has a new industrial metrology system, and peel 3d introduced a new affordable 3D scanner.

Additive Manufacturing Technologies Showing Rapid Growth

L-R: Gavin Minton and David Manley

UK-based Additive Manufacturing Technologies (AMT) was founded in 2017 and is now emerging from semi-stealth mode and into full commercial production with its automated post-processing and finishing solutions for 3D printed parts. The company is showing rapid growth forecasts, and has been opening new US facilities, announcing partnerships, and hiring important personnel to help with its mission of providing the industry with industrial AM post-processing. AMT has made two important strategic additions to its Global Innovation Centre in Sheffield, appointing David Manley as Non-Executive Chairman and hiring Gavin Minton as the Aftersales and Customer Experience Manager.

“These are indeed exciting times at AMT as we aggressively market and sell our PostPro3D post-processing systems for AM parts having moved from the semi-stealth mode we have been operating in for a couple of years. We have been growing rapidly, but now we are moving to the next level — with our technology capabilities, our facilities and our brilliant team. We are really excited to welcome David and Gavin to AMT — they will be fundamental to our continued growth strategy,” said Joseph Crabtree, CEO at AMT.

“The post-processing step has long been the Achilles heel for AM as it moves to being a true mass manufacturing technology, and we are proud to offer our fully automated solution, which is already revolutionising the ways in which manufacturers integrate AM as a mass production tool. AMT is working in partnership with numerous OEMs, vendors and material suppliers to take the pain out of post-processing with an intelligent and collaborative approach, and we are scaling up production globally in order to share the progress we have made with our post-processing solutions. David and Gavin will join our team to provide key support in this mission.”

ExOne Announces Collaboration with Oak Ridge National Laboratory

The ExOne Company, which manufactures 3D printers and provides 3D printing services to industrial customers, is collaborating with Oak Ridge National Laboratory (ORNL) to continue advancements in binder jet 3D printing technology. Binder jetting is important because it offers lower operating costs, and maintains higher levels of productivity, than many other AM technologies, and ExOne is an industry leader in non-polymer binder jet 3D printing. Its collaboration with ORNL is targeted initially on developing technology for new binder jet systems, leveraging ORNL’s instrumentation and advanced data analysis methodologies, as well as the Department of Energy’s Manufacturing Demonstration Facility (MDF) at ORNL, in order to optimize chemistry and process parameters for its sand and metal systems.

“By collaborating with a world-class lab like Oak Ridge National Laboratory, we accelerate ExOne’s binder jetting technology capabilities,” said Rick Lucas, ExOne’s Chief Technology Officer. “We believe these collaborative efforts will effectively and efficiently result in the establishment of new materials, binders and process developments, retaining our significant edge over competitors and other technologies in the industrial manufacturing space.”

DigiFabster Announces Platform Updates

3D printing software and services provider DigiFabster, which uses its software-as-a-service (SaaS) platform to help companies easily automate and streamline certain business processes, announced that it had made several important enhancements to its platform this spring that will benefit many different types of users, including 3D printing service bureaus. The company has many customers who use HP’s Multi Jet Fusion technology, which accepts the 3MF file format, and DigiFabster’s platform now supports 3MF direct uploads through its web-based widget.

DigiFabster also enabled a new feature so that customers can accept purchase orders as a form of payment, and modified the code for its Floating button installation so that it can adapt to different screen widths. Another new capability makes it possible for CNC users, like machine shops, to easily change their pricing based on how complex the machine work is, and the DigiFabster system was also updated to automatically check for wall thickness, so that the files customers receive are ready.

SHINING 3D Launched New Metrology Products

Chinese 3D printing and digitizing company SHINING 3D recently attended the international Control trade fair for quality assurance, and released its latest industrial metrology solution at the event. Three products make up the portable system – the FreeTrak optical scanner, Freescan Trak 3D scanner, and FreeTrak Probe – which work separately and together to offer a comprehensive industrial scale measurement solution.

The versatile FreeTrak system of the wireless solution can capture the scanner structure’s spatial position in real time, and also allows the user to move the part, or tracker, during measurement without the results being compromised, which makes it perfect for use in unstable environments. The FreeTrak Probe, a portable CMM probing system created for use in industrial environments, is not “susceptible to environmental influences” like position changes and vibration, and can be used to generate highly accurate data even in challenging places. The FreeTrak system is now being integrated into SHINING 3D’s metrology and industrial solution ecosystem.

peel 3d Introduces Affordable 3D Scanner

Canadian 3D scanner developer peel 3d is on a mission to provide universal access to affordable, professional-grade 3D scanning technology. Located in Québec, the peel 3d team just launched the peel 2, a brand new variant of its peel 1 scanner that has three cameras instead of just one, for maximum accuracy, resolution, and realism. Powered by Creaform technology like its predecessor, the easy to use peel 2’s integrated color-capture functionality allows users to archive objects in high definition, as well as in their original colors, and monitor the accuracy and progress of the surface coloring. The new peel 2 also features new and improved peel 2.0 software with more functionalities, in addition to a system that uses a scanned object’s texture to improve its ability of positioning itself accurately in space.

“peel 2 pushes back all technical boundaries and redefines the concept of affordable 3D scanners,” stated François Leclerc, the head of the peel 3d initiative. “It will appeal as much to artists wishing to switch over to digital as it will to medical professionals wanting to scan the human body or mechanics working with existing components. It is by far the most comprehensive entry-level scanner on the market.”

The peel 2 is available for purchase online from peel 3d and select retailers for $7,490.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

3D Printing News Briefs: May 1, 2019

In today’s 3D Printing News Briefs, we’ve got stories on events and business for you, followed by an innovative piece of 3D printed furniture. The fourth Metal Additive Manufacturing Conference will be held in Sweden this November, and Oerlikon AM will soon be hosting the grand opening event for its new Innovation Hub. Link3D is partnering up with Additive Rocket Corporation, and an industrial designer created a 3D printed chair that can fold up flat.

MAMC 2019 Coming to Sweden this November

From November 25-27, 2019, the fourth Metal Additive Manufacturing Conference (MAMC 2019) will take place in Örebro, Sweden. In addition to keynotes and other presentations, there will also be site visits to metal additive manufacturing companies and users AMEXCI, Lasertech LSH, and Siemens Industrial Turbomachinery. Then, directly following the conference, the Austrian Society for Metallurgy and Materials (ASMET) will be holding a two-day metal Design for Additive Manufacturing (DfAM) course in the same city.

The specialized course is for designers and engineers with basic CAD experience, in addition to technical and managerial personnel in industry who are interested in learning more about AM. Hands-on exercises in DfAM will occur during the course, and several experts from around the world, such as Professor Olaf Diefel from the University of Auckland, will be lecturing. The registration fee is €490, and the deadline to register is September 1st, 2019. Please contact Mrs. Yvonne Dworak with ASMET to register.

Grand Opening for Oerlikon AM’s Innovation Hub

On May 29, Oerlikon AM will be hosting an industry event to celebrate the grand opening of its new Innovation Hub & Advanced Component Production facility. The event, which will take place at the company’s new Huntersville, North Carolina facility, will showcase major developments in advanced manufacturing to guests including academics, business leaders, community members, customers, and lawmakers. This is an important step for the Swiss aerospace components manufacturer and will give them the opportunity to enter the US market and serve customers there.

After a brief welcome and breakfast, there will be remarks from 9:45-10:15 on the front lawn of the facility, located at 12012 Vanstory Dr. Then there will be a ribbon cutting, after which attendees can enjoy cake, coffee, and networking opportunities. A tour of the facility will follow, and then Oerlikon will have a BBQ lunch and a children’s program, in addition to several information booths.

Link3D Partnering with Additive Rocket Corporation

At this week’s Aerodef event, AM software company Link3D announced a new partnership with California-based Additive Rocket Corporation (ARC), which makes high-performance 3D printed metal rocket engines. This is ARC’s first step towards adopting Link3D’s digital Additive Manufacturing Execution System (AMES), and will enable standards compliance, in addition to streamlining its 3D printing production for affordable, reliable propulsion solutions. Link3D’s workflow software allows companies like ARC to track and trace data in a secure environment, and adherence to quality assurance and quality control requirements from regulatory standards board will also be embedded in the software.

“Link3D is the perfect compliment to our design process, streamlining our manufacturing operations and building quality into the workflow,” said Kyle Adriany, the Co-Founder & CTO of ARC. “Link3D’s Standards Compliance Program is a built-in solution of its additive manufacturing workflow software that tremendously helps organizations in Aerospace & Defense increase productivity and reliability, improve its market position, reduce costs and advance new technologies.”

3D Printed Chair Folds Up Flat

Industrial designer Patrick Jouin has long used 3D printing in his work, including his unique One Shot Stool, but his latest prototype really pushes the limits of the technology’s material process. His TAMU chair, developed together with Dassault Systèmes, was launched during the recent Milan Design Week and was inspired by nature and origami. Jouin utilized Dassault’s generative design software to create the chair, which not only helps it look delicate and ornate but also makes it possible to fold it down so it’s almost completely flat. The goal was to use as little material as possible to create the chair, which only weighs a little over five pounds. Jouin’s team in Milan 3D printed 1,643 individual components and assembled the prototype chair by hand, but he hopes to make the chair in one continuous 48-hour print in the future.

“Previously designers were inspired by ‘organic’ as a style, but what is completely new is that designers are now inspired by the organic process itself, and how to emulate it. Manufacturing has fallen into the habit of producing more material than necessary. but with the help of innovative digital technologies, we are now able to create with much more efficiency and less waste, even as early as the design process,” Jouin stated.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

AMS 2019 Day 3: Keynote Speaker Lars Neumann from TRUMPF Discusses 3D Printed Medical Devices

At last week’s second annual Additive Manufacturing Strategies (AMS) summit, held in Boston and co-hosted by 3DPrint.com and SmarTech Markets Publishing, there were several firsts, including an exhibition floor, a startup showdown, dedicated workshops, and two separate tracks for medical and dental 3D printing. During the official opening of AMS 2019, “The Future of 3D Printing in Medicine and Dentistry,” Lawrence Gasman, the President of SmarTech Markets Publishing, said that while last year’s event had participants from roughly 11 countries, this year 24 countries, along with 27 US states, were represented.

The first keynote speaker at AMS 2019 was Dr. Ali Tinazli, the Head of Healthcare and Life Sciences Strategy for HP; he discussed the democratization of medicine and the implications of this. On the final day of the summit, Lars Neumann from German machine tool supplier TRUMPF took the stage for the final keynote presentation, titled “Integrating Additive Manufacturing Into Medical Device Production” and centering around 3D printed instruments and implants.

Neumann, who works at the company’s south German location, explained that TRUMPF is a family business, and that after 90 years in the manufacturing business, it has “quite a bit of a track record” in the medical field, noting examples like using lasers to cut stents.

“If there are any doctors here, typically I’m not talking to you…my presentation today is the production of these devices,” Neumann stated at the beginning, explained that he was mostly talking to the medical device manufacturers.

Neumann noted that in the previous days at the summit, attendees had seen and heard lots of numbers, and said that he was going to be “looking at growth, more than the actual numbers.”

Speaking of those numbers, he mentioned that growth rates for 3D printed medical devices were around 10-15%, which is “quite a significant growth year on year.” But when it comes to fusion devices, Neumann said that people in the industry believe that additive manufacturing will be used 100% in the future.

Some of the main things Neumann said we need to keep discussing to allow serial additive manufacturing to become economically viable for more implants and devices include system and process capability, cost per part, and quality assurance, as “driving up quality lowers cost.”

But how can we assure quality when it comes to 3D printing? Neumann said lots of input, such as CAD data, are necessary when attempting to fabricate a medical device that fulfills all of its defined specifications, since the regulations and standards (like ASTM and ISO) aren’t complete yet. While the lengthy old guard of quality assurance centered around manually maintaining the quality of inputs, like powder, during 3D printing and post-processing and then again checking the completed product, now that imaging equipment and sensors are being added to help ensure quality during the build, we can ideally intervene, if necessary, during the actual 3D printing process.

It’s equally as important to lower the cost per part. In manufacturing environments, such as factory floors, ideally the 3D printers should be working on builds around the clock, instead of having to take time for set-up and cleaning. Neumann said that to help ensure this notion, laser off times need to be reduced, and that all other processes, such as post-processing, should be moved to different locations so that the printers can just keep doing what they do.

In terms of system and process capability, Neumann asked the room what the industry could be doing better to arrive at not only different implants, but also more of them. His personal impression is that, since the additive manufacturing field is developing so quickly, process chain integration is one of the main topics at the moment, along with software, and that machine technology will need to be pushed again a few years down the road.

Neumann stated that in terms of additive manufacturing, the main medical device categories are:

  • standardized implants
  • personalized implants
  • medical instruments
  • non-implantable devices

He also noted what he called “three key advantages” for 3D printing in the medical field: mass personalization, which provides new treatment options; using porous structures to improve osseointegration; and cost-effective manufacturing, such as low- to mid-volume, less expensive materials, and the ability to create complex shapes. Neumann said that this last point is “slowly coming into focus,” because when it comes to medical 3D printing, hundreds of thousands of parts are not always needed, which can definitely help keep costs down.

Because of increased interest by medical device manufacturers to use 3D printing, Neumann believes that instrumentation as an application will definitely grow, and mentioned that about 100 3D printed medical devices are already FDA-approved.

Switching the focus to the metals used to 3D print many of these instruments and devices, Neumann said that while many people have been excited about titanium in recent years, new materials like cobalt chrome and stainless steel are the talk of the town at this point in time. With a nod to one of his previous points, he also brought up how preheating implants 3D printed with Ti64ELI can affect the overall quality of the final component by ensuring less distortion. Neumann said that more information on this will come from TRUMPF later in the year, but did note that in the future, it may no longer be necessary to use as much heat treatment, which also helps lower costs.

Finishing up, Neumann said that aerospace companies are the only ones that possess guidelines to follow when installing metal 3D printers, and that it would be helpful if this would eventually spread to other sectors as well, such as the medical field.

“I hope someday this norm is valid for all industries equally,” Neumann stated.

Some of the questions asked at the end of Neumann’s keynote were quite interesting. One person approached the mic and asked his opinion on the currently available simulation tools, and Neumann said that the software is interesting and seeing a lot of investment at the moment, as many companies, such as OEMs, that use 3D printing are running simulations ahead of nearly every component they’re manufacturing in order to predict defects early on. But, he also noted that the data coming from these simulation solutions has yet to be validated.

Another attendee mentioned again the demand for new, exotic materials in medical instrument 3D printing, and asked Neumann for any specific examples. While it may not sound exotic, he said that stainless steel is one material that many manufacturers can use without having to change the production or post-processing methods, meaning that re-certification won’t be required, so lead times will likely decrease.

Plans have already been laid in motion for the third annual Additive Manufacturing Strategies summit, which will be held from January 29-30, 2020 and will include a metal 3D printing track. To keep up to date on registration information and everything else for AMS 2020, sign up for our newsletter here.

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below.

[Images: Sarah Saunders]

Acoustics Play a Role in Determining 3D Print Quality

Metal 3D printing is constantly under study to improve its quality and repeatability. A new research paper focuses on direct metal laser sintering (DMLS), also known as selective laser melting (SLM) and Powder Bed Fusion for Metal. DMLS still has its shortcomings, which include delamination between base plates and inaccuracy among various orientations. The paper, entitled “Characterization of acoustic signals during a direct metal laser sintering process,” points out that sintered parts tend to still be relatively large, soft and porous, hampering their widespread use, so improving part quality and repetability is crucial, especially for industries like aerospace and medicine.

The researchers look at acoustic signal processing as a way to monitor the build quality of a 3D printed part while in progress.

“This paper reports the relationship between acoustic signals, laser power as well as its laser scanning speed,” the researchers state. “The variety of acoustic signal power spectrum density (PSD) is presented and then the mechanism of acoustic signal formation is elaborated. A good mapping between acoustic signals and laser parameters has been found during the DMLS process. This lays a good foundation for monitoring the process and quality by acoustic signal and will enhance the part quality during the powder-based laser sintering and melting processes in the future.”

Several methods of in-process monitoring exist, such as optical, thermal, ultrasound and acoustic signals. Each has its drawbacks, but acoustic signals have been found to be an effective method as long as they are not disrupted by environmental noise. In this study, acoustic signals generated during the DMLS process were sampled and utilized for online monitoring.

Acoustic signals in a DMLS process are generated by several factors, mostly by the vibration from the friction of flow medium with liquid or solid matter, as well as flow motion. The signals in this study were sampled by an electret condenser microphone and processed with MATLAB 2015b.

The results of the experiment showed that there was a good correlation between the laser frequency and laser power as well as the laser scanning speed and acoustic signals.

“Through the investigation of the acoustic signal, information on the laser scanning characteristics can be extracted,” the researchers explain. “The second frequency peak is more promising for detecting the laser scanning attributes.”

The study showed that there was a good mapping between the acoustic signals and laser scanning status as well as the resulting laser sintering quality. These results, according to the researchers, will lead to future monitoring techniques for DMLS and provide a strong foundation for real-time control of metal printing processes.

“Future studies will be carried out on part qualities such as surface roughness, porosity, density and composition of the powder mixture interpreted via acoustic signals,” they conclude. “Defects can be predicted automatically for quality monitoring and feedback control.”

Studies like this one are important steps toward understanding what is happening during the metal 3D printing process, so that defects can be caught and avoided. Metal 3D printing is far from a perfect process, but the more technology is applied to understanding it, the more effective it will be.

Authors of the paper include Dongsen Ye, Yingjie Zhang, Kunpeng Zhu, Geok Soon Hong and Jerry Fuh Ying His.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

CT Scanning Proves to be an Effective Method for Qualifying 3D Printed Parts

Many things can go wrong with an additively manufactured part, and those things are not always visible. Particularly in powder-based 3D printing, there are several things that can happen during the print that cause issues such as cracking and voids, which may be inside the part and invisible to the eye. There are ways, however, of discovering these defects without having to break apart the part and look inside. In a new paper entitled “The Role of Computed Tomography in Additive Manufacturing,” which you can access here, a group of researchers argue that computed tomography, or CT scanning, is the most effective way of performing quality checks on 3D printed parts.

Complex parts are especially challenging to inspect for quality purposes, as they can contain internal channels or structures that are prone to voids or inclusions, which are unmelted particles or powder residues. These flaws are difficult for traditional non-destructive testing, or NDT, techniques to fully assess. These techniques include ultrasonic, infrared, eddy current, radiographic inspection, and light-based technologies. Optical methods of defect detection can only detect flaws at the surface or through a surface opening.

“Eddy-current testing and ultrasonic techniques can detect defects within the volume if they are not located very deep inside the testing sample, but the one drawback is the limited spatial resolution of detection, which is in the millimeter range or some fraction of millimeters in the most optimal situations and for even more limited depths into the surface,” the researchers explain.

The best method for nondestructive inspection of complex geometries inside a part, they argue, is X-ray CT, which has a resolution from millimeter to micrometer ranges, and even sub-micron levels in some cases. In fact, they continue, in many cases it is the only viable option. It can detect cracks, porosity, dimensional deviations from CAD models, and powder residues or inclusions.

“In general, tactile CMMs (coordinate measuring machines) or optical measuring instruments like laser scanners are limited to the measurement of the external surface of an AM part and can provide additional measurements for partial qualification of CT measurements,” the researchers add. “In addition, tactile CMMs can produce compressive stresses and friction during sliding that could produce wear at the surface. In contrast, X-ray CT eliminates the above difficulties because it is a non-contact technique that can access internal features.”

X-ray CT analysis of a 3D printed turbine blade

The importance of qualification for additively manufactured parts cannot be overstated. If a part is being used for an aerospace application, for example, it’s absolutely critical that that part is perfect, with no hidden flaws. There are many methods for checking the quality of parts, but most of them come up short in terms of detecting flaws that are hidden deep inside a part. The paper goes on to highlight a case study in which X-ray CT was able to detect minute deviations in dimension from the CAD model to the final part, as well as material inclusions in the internal cavities.

It can be challenging to use CT technology with metal parts, as metal parts can scatter X-rays, disrupting CT reconstructions and producing unwanted artifacts in the data. The solution, the researchers say, is to use a 2D fan beam of X-rays and a linear detector, which can reduce the scattering. Overall, they conclude, CT technology is an effective method of non-destructive testing.

Authors of the paper include Herminso Villaraga-Gómez, Christopher M. Peitsch, Andrew Ramsey and Stuart T. Smith.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.