Wi3DP: Experts Discuss Challenges and Trends in 3D Printing Sustainability

A virtual panel discussion and networking event by Women in 3D Printing (Wi3DP) gathered three industry experts and leaders to share their insights and experiences on sustainability trends in additive manufacturing (AM) and how they will impact the industry’s choice of materials, energy usage, and waste.

Hosted by AM-Cubed President and Founder, Kristin Mulherin, and supported by AM service company Link3D, the live event featured Ellen Jackowski, HP’s Chief Sustainability and Social Impact Officer; Sherry Handel, the newly appointed Executive Director of the Additive Manufacturer Green Trade Association (AMGTA); and Cindy Deekitwong, Global Head of Marketing and Strategy for 3D Printing at Henkel Adhesive Technologies. The group touched on several hotly debated topics, like the lack of research on the environmental benefits and challenges of AM and how to generate a fully circular economy for the industry, underlying the importance of finding ways to enhance the already visible benefits of the technology.

Mulherin asked the experts to discuss how sustainability initiatives can respond to many of the challenges facing 3D printing. For Jackowski, companies need to start making more sustainable decisions that will help move the industry forward in a responsible manner. Adding that everyone in the industry, no matter what role they play, need to have what she likes to call “sustainability contact lenses,” meaning that, even if the job description does not involve sustainability, they need to figure out a way to make decisions that will have an impact on the carbon footprint, the community, or the health and safety of a manufactured product.

“We certainly don’t want to start seeing 3D printed parts bobbing around in the ocean like we see so many other things these days. We all need to continue to drive the energy efficiency of this business,” suggested Jackowski. “For example, when you plug those 3D printers in, they suck up a lot of energy, and that is certainly an area for innovation. So, I would say that whatever part of the 3D printing industry you are in, think about your impact on sustainability. It is also crucial to understand the implications of the materials we use, where we source them from, and how our customers use them in the most sustainable manner.”

Ellen Jackowski visiting an FSC-certified forest to see responsible forest management in action. (Image courtesy of HP)

The other panelists agreed that sustainable impact is about collaborative efforts, and having everyone involved in reinventing the company for sustainable impact. Deekitwong highlighted that the technology itself lends to more efficient designs that create less waste and eco-friendly supply chains, but she believes the industry should enhance sustainability efforts by reducing fuel consumption, working with suppliers to find biorenewable materials and collaborate with ecosystem partners and consumers to recycle end-of-life parts. Deekitwong shared how Henkel’s recycling initiatives led the company to collaborate with TerraCycle to upcycle garbage from used 3D printed parts, resins, and packaging.

For Handel, who is focused on promoting the inherently positive environmental benefits of AM within key industries and the public at large, the existing research does not provide enough good metrics in data. This is why AMGTA is commissioning academic research through life-cycle assessment (LCA), to quantify and provide data and metrics on what it takes to produce a particular part via both traditional and additive manufacturing processes. Eventually, this will help the industry better understand what the eco-footprint is, and reveal some areas that will make the industry even more sustainable in the future.

Handel then centered on one of AMGTA’s core projects that will help create a more circular economy by empowering companies to develop a global set of standards to properly and cost-effectively recycle powder condensate, a vaporized metal powder that collects on the chamber walls and in the filter unit during a build process.

“The powder condensate cannot be reused and is considered a hazardous waste by the US Environmental Protection Agency (EPA). It usually ends up in a landfill, so we want to find a way to repurpose it, recycle it, and publish a a set of standards in early 2021 that we can share with our member companies and industry to help mitigate this challenge,” indicated Handel.

Then, Mulherin shared an overview of the importance of avoiding greenwashing, an unsubstantiated claim to deceive consumers into believing that a company is environmentally friendly. For both Deekitwong and Jackowski, this point is crucial, especially since both Henkel and HP have over 50,000 employees, and need to convey the message to everyone that the company’s reputation could be destroyed with one wrong move. Jackowski further described how it could be easy for employees to make a judgment call that could lean toward greenwashing, but said HP is “very aware of the boundaries of greenwashing.”

Cindy Deekitwong. (Image courtesy of Henkel Adhesive Technologies)

Both companies have seemingly strong objectives in place. For Henkel, reducing carbon footprint in operations means a 65% reduction by 2025, 75% by 2030, and becoming “climate positive” in 2040. While HP’s awareness of its responsibility around creating a circular economy led to policies to use fully recyclable materials in 3D printers.

“Our eye is looking at how we set up this industry, and as we’ve transitioned, we have seen increased adoption during the pandemic because of the flexibility and speed that 3D printing offers. But I think there are a lot of opportunities to continue to innovate and, as we stand up this industry, as we all transform from traditional manufacturing to 3D, we need to think about it holistically and doing it right from the beginning,” said Jackowski.

Sherry Handel, Executive Director of the Additive Manufacturer Green Trade Association. (Image courtesy of AMGTA)

A clear challenge for Handel is the lack of awareness of environmental management system certifications. AMGTA encourages member companies to get ISO 14001 certified, an international standard that helps set the framework for a company to benchmark where they are and help them improve environmental criteria over time, like energy use. But Handel said that “not everyone is going to be able to flip on a dime and hit the easy button to get things accomplished and starting somewhere is better than nothing,” which is why AMGTA suggests third party certifications, like the Green Business Bureau, taking companies on a pathway towards more environmentally sustainable practices.

Toward the end of the conversation, Mulherin suggested that organizations need to recognize that sustainability efforts will generate revenues, instead of simply costing the companies money. In fact, Jackowski indicated that customers are taking notice of a company’s sustainability initiatives, detailing how HP saw $1.6 billion in new sales in 2019 due to the company’s actions in sustainability, a 70% increase year over year.

“We are seeing a shift, an awakening of general consciousness in consumer behavior and purchase patterns surrounding sustainability, and we only expect it to get stronger. That provides financial motivation for everyone in this space to continue to accelerate what we are doing. Whatever part of the value chain you are in, you are going to start feeling it more: the pressure to go sustainable,” said Jackowski, who also emphasized HP’s continued commitment to sustainability since founders David Packard and Bill Hewlett created the company in 1939. “As it has evolved over the years, sustainability has gone from being founder-led to across the DNA of the company.”

The virtual event gathered a wide array of participants worldwide, most of them working in the AM industry and eager to learn about sustainable practices thriving in 3D printing. As with previous panels, this Women in 3D Printing event facilitated a networking experience both before and after the speakers virtually took the floor, with crowded tables and a lot of simultaneous chats about the importance of environmentally sound practices in additive.

The post Wi3DP: Experts Discuss Challenges and Trends in 3D Printing Sustainability appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printed Turbine Combines 61 Parts into One

In July this year, Velo3D had qualified a new nickel-based alloy, Hastelloy X, due to its suitability in the additive manufacturing of power generation components such as gas turbines, using the company’s Sapphire metal AM platform. This announcement had followed relatively quickly on the back of securing the company’s largest order yet, worth $20 million, and raising $40 million in funding which increased the company’s total investment to $150 million till date.

Industrial gas turbines are a priority application for Velo3D, and offering optimized materials for power generation applications is critical to driving full-scale adoption among its clients. Following the approval of Hastelloy, the company swiftly moved to partner with Sierra Turbines and nTopology, provider of generative design solutions, to test the material in 3D printing 95% of a unicore of a 20-kilowatt microturbine engine. The material is optimized to have high resistance to oxidation or corrosion cracking, resulting in better performing microturbines which require lower maintenance.

Image Courtesy of Sierra Turbines

The results from the additively manufactured Aurelius Mk1 core really bring home the advantages of using AM over the traditional manufacturing approach. Part count was reduced from 61 separate components to one. This alone eliminates the need to procure and transport various raw materials to manufacture individual parts using different process, as well as the need for assembly of course, involving dissimilar material joints, seals, fasteners. It also reduces post-processing requirements. The reduction of joints, and the ability to design with closer tolerances additionally prevents the possibility of leaks, improving engine efficiency.

AM also allowed designers to build in internal oil and fuel circuits, as well as re-think the fuel spray and flame shape in the combustion chamber. Using the nTop generative design platform, Sierra Turbines modeled a specific lattice geometry to atomize the fuel and a 360-degree fuel injector to distribute fuel equally around the circumference of the combustor. By redesigning from scratch, designers were also able to make the turbine more mass efficient (reducing weight by 50%), resulting in an expected thrust-to-weight ratio (10x increase in power density) significantly higher than existing state-of-the-art turbines of similar power. Regarding the ability to advance design using AM, Roger Smith, CEO of Sierra Turbines, stated,

“My design team is freed from the constraints of traditional manufacturing and even existing metal AM technologies such that they can focus purely on defining the geometry needed to maximize performance and differentiation.”

Image Courtesy of Sierra Turbines

This was enabled in no small part by the Velo3D Sapphire Platform, with support-free metal 3D printing, and the new specialized Hastalloy material. The case study from nTopology notes,

“This high level of integration however wouldn’t have been possible using machines other than the VELO3D Sapphire metal 3D printer. The no-contact re-coater blade used in the VELO3D machine allows support-free printing of overhangs down to 30 degrees, which in terms of additive manufacturing freedom is the equivalent of the falling of the Berlin wall.”

Altogether, every one of the benefits AM contributes to increasing the operational time of Aurelius Mk1, with time before overhaul (TBO) 40x greater than existing comparable turbines, and reducing operational cost. This is no small feat, small turbine engines average 40-50 hour between overhaul, and the Aurelius will average a significant 1000+ hours, comparable to that of commercial aircraft. It provides a remarkable demonstration of the difference AM can make in industrial power generation applications, and the results in bringing together specialized AM hardware and software solution providers to develop a revolutionary product.

Image Courtesy of Sierra Turbines

The Aurelius Mk1 will complete development shortly, with a few engines running by end of this year, and commercialization will begin with UAV manufacturers, with whom the company has already signed agreements. The company will to advance optimization and improvement of their Aurelius Mk1 microturbine, stating

Once the combustor has been thoroughly tested and benchmarked, he intends to pursue additional performance improvements. He’s also planning to work on the microturbine’s rotating components, an unorthodox move that many aerospace pundits would agree is beyond the pale. Here again, Smith is determined:

“VELO3D believes that you can use additive for full-scale production, and so do I,” he says. “For future gas turbine development, we aim to leverage the power of additive manufacturing to integrate features such as an efficiency-boosting recuperator, printed-in sensors, and more novel insulating and cooling geometries.”

You can learn more about the development of the Aurelius Mk1 in this webinar, and the full case study can be found here. Earlier this month, Velo3D had also partnered with Lam Research to explore potential applications for its metal 3D printing solutions in the semiconductor industry.

The post 3D Printed Turbine Combines 61 Parts into One appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Could 4D Printing Enable the Next Generation of Soft Pneumatic Actuators?

Although 3D printing of actuators is a relatively new field of research, interest in the area has grown due to the potential applications of highly customizable, programmable, small scale actuators in micro/mesoscale robotics., including 3D printed hair-like actuators. A common area of research has been into soft actuators for possible industrial applications, where various 3D printing technologies – FDM, DLP, SLS, inkjet, Direct Ink Writing (DIW) and customized SLA platforms, have been used to build multi-material actuators with improved performance, functionality, design flexibility, and manufacturing efficiency.

Soft Actuator industrial gripper applications. Image Courtesy of Virtual and Physical Prototyping 21 Journal

Traditional manufacturing methods for miniature actuators in soft robotics, molding and soft lithography, were limited—and 3D printing has brought several advantages over them. With 3D printing, the inherent design freedom means actuators can be customized at the very small scale easily and can even be designed to accurately mimic bio-inspired architectures. Applications have now advanced to include 4D printing, as researchers from Deakin University and Trent University have established in this study.

Published in the Visual and Physical Prototyping journal in July, the study applies 4D printing/3D printing technologies in fabricating Soft bending-type Pneumatic Actuators (SPA), that respond to changes in air pressure. These 4D/3D printed actuators are made using elastomers and are able to deliver a range of motions, such as bending, twisting, rotating, rolling, jumping, in response to simple changes in air pressure.

                                                                                                                                   Image Courtesy of Virtual and Physical Prototyping 21 Journal

These actuators are superior to traditional robots in industrial applications such as food packaging, fruit harvesting, space exploration or non-invasive surgery, and provide improved properties in flexibility, lightweight, amplitude and repeatability of motion, ease and cost-effectiveness in fabrication among others. Such 4D/3D printed fabrication methods could also potentially allow for the integrated manufacturing of embedded electronics including sensors (resistive, capacitive, chemical or biological) in elastomeric materials to provide control mechanisms for such miniaturized SPAs.

                                                                                                         Image Courtesy of Virtual and Physical Prototyping 21 Journal

4D/3D printing enables the development of such high-resolution microscale functionalities for microscale applications although it comes with its own set of challenges, as the study notes,

“Miniaturising and scaling down the 3D/4D printed SPAs are highly desirable, particularly by adding the micrometer-size functionalities for practical applications in the manipulation of microscale delicate objects, e.g. cells. Yet, such feature should be scalable in all the key components of the SPAs, including the integrated sensors, flexible electronics, and controllers. However, miniaturising the SPAs is constrained by the resolution of 3D printers and challenges in 3D printing such as avoidance of microscale voids and channels.”

DIW, an extrusion-based 3D printing technology using photocurable resins, was used to fabricate a programmable bio-inspired SPA with tunable mechanical properties. The fabrication approach using DIW had advantages over FDM, SLA, SLS, inkjet, and DLP – producing few voids, required variable stiffness and fatigue properties, higher strength and elongation at break. New approaches to 4D printing SPA’s have developed self-exciting vibration capabilities, or incorporated bellow-type and embedded fibre into the 3D printed elastomer matrix. In terms of sustainability, 3D printed SPA’s could be designed using recyclable materials to have lower environmental impact, with optimized parameters to reduce its carbon footprint and waste.

Such research has opened up a wide range of possibilities in the design, automated fabrication, modeling and control of 4D printed SPAs, and with further improvements in materials, will guide the way to the next generation in soft robotic actuators that will enable better performance, customization, new applications, cost-efficiency, and sustainability while also making human-robot interactions safer than ever before.

The post Could 4D Printing Enable the Next Generation of Soft Pneumatic Actuators? appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Dubai Electrical and Water Authority Deploys Markforged Metal X 3D Printer

Thanks in large part to its ambitious 3D Printing Strategy, the city-state of Dubai, which is the most populous city in the United Arab Emirates (UAE), has used the technology for a wide variety of applications, from mobility and environmental applications to medical and construction, and many of the opportunities and initiatives have come from the Dubai Electricity and Water Authority (DEWA).

Mohammed Bin Rashid Al Maktoum Solar Park (Image courtesy of Littlegate Publishing)

DEWA’s vision is to be an innovative, sustainable utility, and uses 3D printing to create both spare parts and prototypes for its distribution, generation, and transmission divisions, as well as to support the digitizing of its inventory. Its Research and Development Center at the Mohammed bin Rashid Al Maktoum Solar Park supports rapid prototyping through 3D printing, in addition to offering mechanical testing, training, techno-economic analysis, and additive manufacturing R&D. Now, DEWA is working to create advanced infrastructure and special AM software through the R&D Center, in order to develop solutions that can increase Dubai’s operational efficiency and productivity.

To that end, it’s the first organization in the Cooperation Council for the Arab States of the Gulf, originally and colloquially referred to as the Gulf Cooperation Council or GCC, to deploy the Metal X 3D printer by Markforged for this purpose.

“The 3D printing programme at DEWA has been selected as one of the Dubai 10X initiative projects. The initiative was launched by His Highness Sheikh Mohammed bin Rashid Al Maktoum, Vice President and Prime Minister of the UAE and Ruler of Dubai, which mandates the Government of Dubai to be a global leader that is 10 years ahead of all other cities,” stated HE Saeed Mohammed Al Tayer, MD & CEO of DEWA, in a press release. “The programme also supports the Dubai 3D Printing Strategy, which is a unique global initiative to use technology for the service of humanity and promote the status of the UAE and Dubai as a global hub for 3D printing technology, by 2030. Our use of the latest Fourth Industrial Revolution technologies and world-class standards aligns with our continuous efforts to improve efficiency in the production, transmission and distribution of energy and water, develop future services and projects that enhance DEWA’s position as one of the best utilities in the world, and enhance Dubai’s leading position globally.”

The Metal X system uses Markforged’s accurate Atomic Diffusion Additive Manufacturing, or ADAM, technology, and is able to print with a variety of metals, such as stainless steel, Inconel 625, and copper. It allows for rapid prototyping, low volume production, and on-demand spare parts 3D printing, all of which will help DEWA increase 3D printing innovation, decrease costs, and improve efficiency.

“We work on innovating and developing new 3D printing facilities across DEWA’s divisions and draft quality procedure protocols. DEWA’s R&D Centre supports 3D printing of components that can endure high temperatures and harsh weather conditions. It includes the latest 3D printing technologies, such as reinforced plastic printers using a mixture of carbon fibre or fibreglass; CYBE printers; and Markforged Metalx metal printers,” Al Tayer explained. “The Centre strengthens DEWA staff’s capabilities in 3D printing, through workshops and training sessions. Besides, it develops the experiences of its engineers and researchers and consolidates their knowledge of additive manufacturing, which supports national capabilities. The number of Emirati researchers at the Centre has reached 70%, including 40 male and female researchers. 20 of whom are PhD and master’s degree holders.”

Markforged Metal X

DEWA’s R&D Center includes DEWA’s Robotics & Drone laboratory, which contains drones and rovers that are designed and built on site. Speaking of on site, the laboratory was the UAE’s first building to be 3D printed completely on site and, according to DEWA, the first 3D printed lab in the world.

(Source: Dubai Electricity and Water Authority)

The post Dubai Electrical and Water Authority Deploys Markforged Metal X 3D Printer appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

How Does Thermal Aging Impact 3D Printed Carbon Fiber Parts?

Advances in developing composites for additive manufacturing have accelerated in the last few years, with increasing research and innovation in both, desktop and industrial AM using composites, using chopped or continuous fiber technology, with carbon fibers or nanotubes, or glass fibers most typically used for reinforcement.

3D printed composite materials and sandwich structures (lightweight core sandwiched by thin face sheets) have been the subject of increasing research at universities and national laboratories. But the focus has been more on studying compressive failure, load-carrying capacity, ductility, morphology, tensile or friction properties. This study, published in the Polymer Testing Journal, is a collaboration between researchers at Deakin University (Australia) and University of Siegen (Germany), and the focus was to investigate the impact to performance or properties in 3D printed composite (specifically cores) structures caused by accelerated thermal aging.

The authors chose to focus here due to a lack of investigative research in this area, and more pertinently, because such 3D printed materials/structures will be applied in various temperature conditions, and understanding how temperature impacts their mechanical properties and molecular structures would inform future applications and materials development. Indeed, composite material development and applications using AM are rapidly growing with the market for composites expected to reach $10 billion by 2028, as per SmarTech’s 2018 report, including part production, hardware and materials. Aerospace and medical industry applications are key drivers for composites at present, but that is expected to expand soon into other industries of automotive, construction, energy and consumer products.

FDM (using a FlashForge Creator Pro) was chosen to fabricate two types of composite structure, using ABS and ASA (acrylonitrile styrene acrylate) with carbon fiber face sheets. Two topological structures for the core were fabricated, one truss or triangle-like, and the other, honeycomb or hexagonal. To understand the effects of loading and thermal aging on the structures, compression, tensile and three point bending tests were used to study the mechanical behavior and failure of these components.

   Image Courtesy of Polymer Testing 91 (2020) Journal / Deakin University

The study also hinted toward how continuous fiber reinforcement may provide improved failure load properties over chopped fiber, since initial failure tended to occur at filament intersections within cell walls: “the honeycomb cells had better properties, as there is more continuous filaments between cell walls. The thermal aging also had a greater affect on these joins, as the relaxation and restructuring of the molecules increased the toughness of the join.”

To simulate thermal aging, specimens were ‘aged’ by subjecting them to changing temperatures in a climate test chamber. The max/min temperatures were 60 degrees and 22 degrees Celsius (below the glass temperature of polymers), with an automated, high precision and accuracy device, controlling the rate of temperature change at 1 degree Celsius/minute.

Image Courtesy of Polymer Testing 91 (2020) Journal / Deakin University

It was found that the honeycomb structure with ASA had the higher flexural strength, higher strain-to-load properties, and overall higher load carrying capacity (with ABS or ASA), and that thermal aging increased the maximum strength due to annealing (and molecular structure changes) in specimens with both patterns and materials. The annealing seemed to strengthen the bonds between layers and the print beads. The impacts due to thermal aging could also largely be attributed to aging time, with aging temperature having no significant effect. Thermally aged specimens also had better stiffness and failure load properties, with flexural stress being 15% higher than unaged specimens. In addition, the ASA core failed at a higher strain than the ABS core.

Interestingly, Deakin University is considered to be among the leading research and educational institutions in AM in the country, and worldwide. In 2017, Ian Gibson, Professor of Additive Manufacturing at the university, received the International Freeform and Additive Manufacturing Excellence (FAME) recognizing his lifetime achievements and contributions to 3D printing – which include coauthoring the influential ‘Additive Manufacturing Technologies’ that sold over 300,000 copies, establishing the Rapid Prototyping Journal and the Global Alliance of Rapid Prototyping Associations. Last month, the university launched a research and education program focused on MELD technology, an innovative open-air metal AM technology that can build parts, large or small, without melting any metal. In collaboration with US-based MELD Manufacturing Corporation, the university has placed a MELD machine at its Advanced Metal Manufacture Facility and plans to fund further research into materials, efficiency, and applications for MELD technology.

The post How Does Thermal Aging Impact 3D Printed Carbon Fiber Parts? appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Michigan Tech Develops Open Source Smart Vision for 3D Printing Quality Control

Monitoring and quality control systems are becoming more widespread in additive manufacturing as a means of ensuring repeatability and aiming for first-time-right parts. A greater need for quality control are now trickling down to items that are more commonly made by the average consumer using FFF 3D printers, as detailed in “Open Source Computer Vision-based Layer-wise 3D Printing Analysis,” by Aliaksei L. Petsiuk and Joshua M. Pearce.

Dr. Joshua Pearce, an associate professor of materials science & engineering, and electrical & computer engineering at Michigan Technical University has performed extensive research into 3D printing, recyclability, and open-source platforms, along with protocrystallinity, photovoltaic technology, nanotechnology, and more.

As a proponent of 3D printing household items rather than purchasing them, Pearce foresees that the technology will infiltrate the mainstream and the average household much more deeply in the future. While there are many skeptics, this thinking is in line with many other tech visionaries who see great potential for 3D printing on all levels.

In a press release sent to 3DPrint.com, Pearce explains that quality control continues to be an issue at the household level—leading him to create a visual servoing platform for analysis in multi-stage image segmentation, preventing failure during AM, and tracking of errors both inside and out. In referring to previous research and development of quality control methods for “more mature areas of AM,” the authors realized that generally there is no “on-the-fly algorithm for compensating, correcting or eliminating manufacturing failures.

Analysis in Pearce’s program begins with side-view height validation, measuring both the external and internal structure. The approach is centered around repair-based actions, allowing users to enjoy all the benefits of 3D printing (speed, affordability, the ability to create and manufacture without a middleman, and more) without the headaches of wasted time and materials due to errors that could have been caught ahead of time. The overall goal is to “increase resiliency and quality” in FFF 3D printing.

3D printing parameters allowing failure correction

“The developed framework analyzes both global (deformation of overall dimensions) and local (deformation of filling) deviations of print modes, it restores the level of scale and displacement of the deformed layer and introduces a potential opportunity of repairing internal defects in printed layers,” explain Petsiuk and Pearce in their paper.

Parameters such as the following can be controlled:

  • Temperature
  • Feed rate
  • Extruder speed
  • Height of layers
  • Line thickness

While in most cases it may be impossible to compensate for mechanical or design errors, a suitable algorithm can cut down on the number of print failures significantly. In this study, the authors used a Michigan Tech Open Sustainability Technology (MOST) Delta RepRap FFF-based 3D printer for testing on a fixed surface improving synchronization between the printer and camera, based on a 1/2.9 inch Sony IMX322 CMOS Image Sensor and capturing 1280×720 pixel frames at a frequency of 30 Hz.

Visual Servoing Platform: working area (left), printer assembly (right): a – camera; b – 3-D printer frame; c – visual marker plate on top of the printing bed; d – extruder; e – movable lighting frame; f – printed part.

Projective transformation of the G-Code and STL model applied to the source image frame: a – camera position relative to the STL model; b– G-Code trajectories projected on the source image frame. This and the following slides illustrate the printing analysis for a low polygonal fox model [63].

The algorithm monitors for printing errors with the one camera situated at an angle, watching layers being printed—along with viewing the model from the side:

“Thus, one source frame can be divided into a virtual top view from above and a pseudo-view from the side.”

3D printing control algorithm

Currently, the study serves as a tool for optimizing efficiency in production via savings of time and material but should not be considered as a “full failure correction algorithm.”

Example of failure correction

Interested in finding out more about how to use this open-source analysis program? Click here.

[Source / Images: “Open Source Computer Vision-based Layer-wise 3D Printing Analysis”]

The post Michigan Tech Develops Open Source Smart Vision for 3D Printing Quality Control appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing in India: Slow Adoption & What the Future Holds

Researchers from India are exploring the economic potential of 3D printing technology globally, and in relation to their own country, releasing the findings of their study in ‘A Study on The Entrepreneurial Opportunities, Global and Indian Economy in 3D Printing Sector.’

Taking a look at Industry 4.0 and the transformative nature of 3D printing in manufacturing, the authors consider the future, and especially the opportunities that should be available within India. This is especially true as digital fabrication has evolved substantially from a rapid prototyping tool to a catalyst for change in manufacturing complex, functional components—many of which are already critical to organizations like NASA, the military, automotive companies, and more.

India has been slower to embrace 3D printing, with the exception of medical applications where progress has been notable—especially in the area of implants (check out the case we followed on their 3D printed ear).

3D fabricated implantable ears [Image courtesy of: Times of India]

As 3D printing and accompanying technologies continue to evolve at an accelerated rate, they are impacting many industries in India; however, the authors point out the realities of converting from traditional methods to more progressive technologies—mainly that within the scientific realm—embracing such change can be overwhelming and many are resistant.

The construction industry in particular has a long way to go in India, along with other applications where 3D printing remains surprisingly unused in comparison with Europe and the US. As for startups, the authors realize that, while they may be entirely focused on 3D printing, it may not be “sufficient to show significant GDP growth.” Affordability and accessibility to technology are still needed in India, along with “more knowledge, and developmental work in terms of performance.”

3D printing service bureaus may prove to be profitable for some entrepreneurs, and in some cases, it may be the only technological service they offer, while yet others still have a stronger focus on conventional methods of manufacturing parts. The researchers also mention the importance of “3D printing groups” as users encourage each other to innovate further. In the midst of such evolution and revolution, the usefulness of prototyping should not be downplayed either.

In referring to data from a previous annual Wohlers report, the authors cite the following data:

“… more than 278,000 desktop IMAGES printers (less than $5,000) were purchased worldwide this past year. The additive manufacturing (AM) markets were up 25.9% by the Wohlers Review 2016 to $5.165 million in 2015.”

Their 2018 report shows the following:

“In 2017 the AM industry was generally about 21 trillion, with nearly all AM goods and services around the world exceeding $7,336 billion. The rise in 2017 will be comparable to a 17.4 percent increase in 2016 if Airbus, Adidas, Kia, Toyota, Stryker and many other rms, big and small, achieved a $6.063 and a $25.9 percent growth by 2015. This entire industry estimates $7.336 billion excluding domestic sales.”

Materials have also been up significantly, according to the most recent report, showing that revenue from the metal 3D printing realm grew 41.9 percent, in line with a five-year growth trend over 40 percent each year. Wohlers Associates also stated that “this kind of strong activity among materials suppliers and customers is a telling indicator of the increasing use of AM for production applications.”

It is interesting to note in other recent news (and opinion) also, that the country seems to be on the precipice of entering the market further, but they aren’t there quite yet, citing further 2018 Wohlers data:

“Industry analysis from the Wohlers Report, published in 2018, shows that India accounts for roughly 3% of total units installed across the Asia Pacific region when China hits 35% and Japan 30+%,” says Rajiv Bajaj, managing director, Stratasys India.

Overall, the authors see a “new phase” for 3D printers in India, and recent accessibility to printers like those of HP just introduced in the country last January show definite progress—and in terms of affordability too.

Along with stating that considering the true potential of the future of 3D printing “could make the least materialistic person drool,” the authors point out that there are still questions as to how manufacturing will really be impacted. While they do not expect traditional factories to be eliminated, it is certainly feasible that they will experience a “massive makeover.”

“The moment AM technology will dissipate as typical production procedures, it is rational to expect the decrease of AM systems expense, and consequently, soon the breakeven point will be expected to shift towards the creation of larger production amounts than the one considered. Under Indian native economic circumstances, a large GDP growth has been achieved. In addition, AM systems replace conventional and common production technology,” concluded the researchers.

Other researchers project that India’s presence in the 3D printing market will approach $79 million by 2021, but this depends on further education regarding the technology and whether the average consumer or business owner understands the benefits.

Bahubali’s Mahishmati empire arrangement [Image courtesy of: Sahas Softech][Source / Images: ‘A Study on The Entrepreneurial Opportunities, Global and Indian Economy in 3D Printing Sector’]

The post 3D Printing in India: Slow Adoption & What the Future Holds appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Open Source Grinding Machine Cuts Cost of Pellet 3D Printing

In pursuing the Distributed Recycling and Additive Manufacturing (DRAM) approach to open-source hardware development, a significant challenge lies in addressing the high cost of the compression screw component for alternative 3D printers, such as Fused Particle Fabrication (FPF) or Fused Granular Fabrication (FGF).

Platform solutions such as RepRap and Arduino, have allowed users and professionals worldwide to access or manufacture products or scientific tools themselves, cheaper and more effectively than commercial hardware products. Yet, as Dr. Joshua Pearce, of Michigan Technological University (MTU), notes in his study on the topic, open hardware lags the success of the open software community by about fifteen years. It is initiatives such as Dr Pearce’s Open Lab that are helping to bridge this gap—and in this case, with open hardware solutions that make FPF and FGF cheaper, more accessible, and more efficient than they are at present. The details of the lab’s work on the subject are described in a recent study, “Open Source Grinding Machine for Compression Screw Manufacturing.”

FPF or FGF are more effective than the traditional Fused Filament Fabrication (FFF) for DRAM, since they use raw plastic particles or granules which are more easily available and cheaper, instead of filament, to 3D print objects. Although it is has proven much cheaper and technically viable to produce filament from a variety of waste polymers, using an open-source waste plastic extruder (or recyclebot) – the process degrades the mechanical properties of the filament material over time, and limits its recyclability. In addition, commercially 3D printing filament is more expensive, at $20 per kg, than raw plastic pellets which are priced at $1-5 per kg.

This is why FPF and FGF printers are seen as a more effective alternative for the DRAM approach, and are already being used by academia, maker communities and businesses—the best example for the latter being GigabotX, an open-source industrial 3D printer than can use a range of materials from Polylactic Acid (PLA) to polycarbonate (PC). However, FPF/FGF 3D printers are more expensive, primarily due to the high cost of the precision compression screw, compared to FFF printers, and commercially available screws are not only very expensive (over $700 for the filabot screw) but also limited in handling larger pellets due to their small scale and size.

Image courtesy of MDPI

This is where Dr. Pearce’s open source hardware solves the problem: by providing a low-cost open-source grinding machine, so users of FPF/FGF can fabricate a precision compression screw for about the cost of the bar stock. Users will no longer be limited to commercial designs, and will be able to customize or optimize the screw to suit their requirements in terms of channel depth, screw diameter or length, pitch, abrasive disk thickness, handedness, and materials (three types of steel, 1045 steel, 1144 steel, and 416 stainless steel).

Image courtesy of MDPI

These compression screws will make recycling polymer particles/granules cheaper, more efficient, and flexible for FPF/FGF users, thus strengthening the case for DRAM as it pushes towards a circular economy.

Image courtesy of MDPI

The grinding machine is made using an off-the-shelf cut-off grinder (approximate cost $130, ideally suited only for steel or stainless steel) and less than $155 in parts. It is classified as an outside diameter cylindrical grinding machine. All the 3D printed parts can be made using any desktop printer using PLA (in this case a Lulzbot Taz 6), and the plywood parts were prepared using a CNC wood router.

Dr Pearce has long been an advocate of open source, distributed manufacturing, and DIY solutions for students, businesses, and, in particular, for scientists and researchers. To help accelerate innovation, empower scientists and users dependent on or limited by expensive commercial equipment and supply chains, and to reduce the cost of scientific tools, Dr.Pearce has led the way with his open source software or hardware solutions and initiatives. He has helped develop the Recyclbot, respirators, ventilators, specialized 3D printers, scientific or medical device components, and more.

Among other work, he has also worked to show how DIY 3D printing could impact the toys and game market (reducing costs of simple and complex toys or games by 40-90%), how to develop open-source, affordable metal 3D printing solutions using GMAW, and to 3D print slot die cast parts, that cost thousands of dollars, for just cents. He is also the author of Open-Source Lab: How to Build your Own Hardware and Reduce Research Costs and teaches a renowned open source introductory course in additive manufacturing at MTU, which is now online and free.

This latest work shows just how far his lab is going to make manufacturing technology accessible, even down to the compression screw needed for FPF/FGF 3D printing. The design, instructions and files for the device are free, and available here.

The post Open Source Grinding Machine Cuts Cost of Pellet 3D Printing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

MULTI-FUN Consortium Aims to Improve Metal 3D Printing

As the focus continues to shine on metal additive manufacturing (MAM), 21 partners are coming together from eight countries (Austria, Switzerland, Germany, Spain, United Kingdom, Poland, Portugal and Belgium) in a three-year, multi-tiered project to advance AM processes, materials, and equipment for multi-material parts.

Dubbed MULTI-FUN, this long-term endeavor will solve issues in metal printing with powder bed fusion, where only basic alloys are available. Overall, key performance indicators expected are improvement in AM products by 40 percent, better use of resources and with smaller environmental footprint, and the emergence of greater potential and opportunities for businesses in Europe.

The consortium members involved plan to refine 3D printing with metal using new active and structural materials like aluminum and low-alloyed steel for wire arc additive manufacturing (WAAM). They also plan to design complex parts without any restrictions due to size—whether printing on the nano-level or the large scale.

Research into the use of nano-materials spans studies from integration of conductive materials into textiles to economic analysis of nano-metals within a wide range of applications—including critical industries like automotive and aerospace. In the MULTI-FUN project, the researchers will explore nano-materials further, integrating them into thermal materials, electronics, sensors, and more as four different objectives are explored:

  1. Development of five new materials (with at least three related to nanotechnology), customized for AM processes.
  2. Study of new processes and development of AM hardware and software for the production of desired materials. The consortium has outlined a plan for a minimum of ten new materials combinations using five new materials to be displayed by seven demonstrators engaged in different applications.
  3. Manufacturing and evaluation of seven physical demonstrators using multiple materials and functionalities. Three use cases in the areas of structural parts, molds, and testing equipment will serve as examples to show the potential in four applications like automotive, aeronautics, space, and production.
  4. Ongoing evaluation and improvement in AM processes in regard to the economy and the environment, use of materials, strategies, and demonstrator design—ultimately all leading to better standards and support of necessary regulatory bodies.

Consortium members follow.

A turnkey solution from WAAM3D (Image: WAAM3D)

[Source / Images: Chronicle]

 

The post MULTI-FUN Consortium Aims to Improve Metal 3D Printing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

French Researchers Examine Heat Transfer & Adhesion in FFF 3D Printing

Researchers from Laboratoire de thermique et énergie de Nantes uncover some of the challenges in 3D printing versus thermoplastic injection, releasing the findings of their recent study in ‘Heat Transfer and Adhesion Study for the FFF Additive Manufacturing Process.’

Mechanical properties are often the topic of study today—from researching helpful additives to studying the influences of color, to issues with porosity, and far more—as users attempt to improve the functionality of parts. Adhesion between layers is a common problem, usually leading to further examination of technique and materials. In this study, the researchers focused on heat exchanges in an attempt to improve 3D printing.

Temperature remains one of the most important settings for users, leading to good quality and performance in printed parts—or in other unfortunate cases, major structural issues.

“To find precisely the limit of this optimal processing area,  the thermal history needs to be predicted accurately,” stated the researchers.

Polymer printability rules for FFF process.

With a better understanding of thermal factors, users may be able to avoid macro-porosities and adhesion problems. During FFF 3D printing, the following heat transfers occur:

  • Heat from the extruder
  • Convection cooling of filament
  • Exchanges between filaments
  • Heat from the support plates
  • Radiative losses
  • Heat from exothermal crystallization for semi-crystalline polymers

At least 6 different heat transfer phenomena are identified in the FFF process.

(a) Comparison of the heat transfer model existing in the literature of FFF process and (b) geometry for the 2D analytical model. Adapted from [7]

While controlling the 3D printing process with high temperatures, the researchers also reinforced PEKK materials with short carbon fibers. In the beginning of the experiment, however, the team used ABS due to ‘greater ease of implementation.’ An experimental bench was 3D printed on a CR-10 3D Printer from Creality3D for measurements of temperature, and then a simulation model was created via COMSOL Multiphysics® v5.4 for predicting temperature and healing.

Experimental bench showing the heated chamber for 3D printing of high temperature polymers and the infrared camera for temperature measurements.

Before printing, the authors customized the 3D printer in their lab, modifying the hardware so it would be able to attain the proper temperatures of up to 400°C.

“The extruder was changed, for a full-metal unit, with a water-cooling closed circuit system. A closed insulated chamber maintains the part in a 200°C atmosphere. It does not block the three translation moving system of the 3D printer  inside  the  chamber. Electronics and mechanical parts are kept   outside the chamber.  This heating chamber is mandatory for printing polymers like PEKK,” said the researchers.

Experimental set-up. A single filament wall was 3D printed. The pyrometer measures the temperature from the side in situ.

Geometry and boundary conditions used in the heat transfer model

The other specimen was a basic structure 3D printed with both ABS and PEKK, in the form of a 60×2.2×50 mm wall. For ABS, the researchers took qualitative measurements with a pyrometer, with quantitative measurements taken for both ABS and PEKK.

IR camera qualitative analysis for ABS.

“Because of the poor knowledge of the rheological properties,  the calculated degree of healing was found to be equal to 1 very quickly for ABS. However, this is the opposite for PEKK material, which reaches only a degree of healing of 0.45 after the cooling-down of the filament,” concluded the researchers.

“The  bench  was  designed to handle high temperature and future work will consist in studying deposition of PEKK more precisely,  and  also  for  carbon  fibers  reinforced  PEKK  with  different process parameters. The  short-term  perspectives  are  to  use  the  model  with  the  thermo-dependent  thermal properties, which were characterized in the  LTeN  laboratory  on  PEKK  polymer.”

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: ‘Heat Transfer and Adhesion Study for the FFF Additive Manufacturing Process’]

 

The post French Researchers Examine Heat Transfer & Adhesion in FFF 3D Printing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.