3D Printing Webinar and Virtual Event Roundup, August 16, 2020

We’ve got virtual events and webinars this week covering everything from sustainability and forming to metal and medical additive manufacturing. Read on to learn what’s available!

NatureWorks 3D Considers Sustainability in AM

Biotechnology company NatureWorks 3D is hosting a webinar this Tuesday, August 18th, at 1 pm EDT, titled “Printing Consciously: Considering Sustainability in 3D Printing.” The free webinar will last about one hour, and cover topics such as circular vs. linear model of materials, mechanical and chemical recycling, best practices for used FFF 3D printing materials, environmental impacts of using bio-based and petrochemical-based filaments, and more. Dan Sawyer, the company’s Business Development Manager, and Deepak Venkatraman, Applications Development Engineer for NatureWorks, will share some thoughts and insights into how polymers fit into the circular economy approach in order to decrease the AM industry’s impact on the world.

“A renewed focus on climate change and the impacts petrochemical plastics have on the environment has many individuals and companies considering how they can incorporate more sustainable practices into their efforts. The additive manufacturing industry has long been a leader in how technology can fit into a progression toward a more sustainable production. In this webinar, we will dig into the sustainability attributes behind the materials often used in fused filament fabrication (FFF) processes that have an environmental impact. We’ll also talk about how 3D prints fit within common waste scenarios as well as new sustainability frameworks like the circular economy.”

There will be a question and answer session at the end of the webinar; register here to attend.

EOS Introduces the INTEGRA P 450

Also on August 18th, EOS is holding a webinar at 2 pm EDT to introduce its latest system, titled “From R&D to Production: Introducing the INTEGRA P 450.” This mid-size, SLS industrial additive manufacturing system was developed by EOS North America, based off of direct feedback from the manufacturing community and built to “meet the demand for additive manufacturing of polymers, it empowers designers, production engineers and material makers alike.” In addition to gaining an understanding of the INTEGRA P 450‘s material compatibilities and development opportunities, attendees will also learn about the company’s new open software platform. Speakers will be Fabian Krauss, EOS North America’s Global Business Development Manager, Polymers; Mohit Chaudhary, Additive Manufacturing Specialist, Polymers – Solution Engineering, for EOS North America; and Mike Conner, EOS North America’s Vice President of Service and Support.

“Discover how the INTEGRA P 450 is truly the most flexible and accommodating SLS industrial 3D printer on the market, with an impressive array of new user-friendly features that offer unprecedented productivity, material compatibility, and simple serviceability.”

Register for the webinar here.

Protolabs Discussing Forming and Formed Features

As part of its ongoing webinar series, Protolabs will be discussing sheet metal forming during its webinar, “A Deep Dive on Forming and Formed Features,” on Wednesday, August 19th, at 2 pm EDT. James Hayes, Protolabs Applications Engineer and the company’s technical applications engineering expert for sheet metal fabrication, will offer insight into forming techniques and equipment, as well as important design considerations for sheet metal forming, and how they can impact part geometry. You’ll leave with new knowledge and insight into how to leverage formed features, and improve sheet metal part designs.

“Understanding the ins and outs of sheet metal forming can be fraught with challenges, however there are some important things to know that can result in better designed, more cost-efficient parts. In addition, considerations between how different formed features can impact your product throughout its’ lifecycle can help you achieve your product goals and bring your ideas to market at record speeds.”

Register for the webinar here.

ASME’s AM Medical Live Webinar

Last week, ASME was powering the AM Industry Summit, for 3D printing professionals working in the aerospace and defense and medical device manufacturing fields. Now it’s hosting a live webinar this Thursday, August 20th, from 2-3 pm EDT, supported by Women in 3D Printing and titled “Integrating 3D Printing with Other Technologies at the Point of Care.” Speakers will be Sarah Flora, the Radiology Program Director for the 3D Lab at Geisinger Health; Amy Alexander, MS, Senior Biomedical Engineer at the Mayo Clinic’s Anatomic Modeling Lab; and the Director of the 3D Imaging Lab at Montefiore Medical Center, Nicole Wake, PhD. They will be discussing how 3D printing is often a very important medical tool when it comes to patient care.

“Whether anatomical models or guides are used for education or surgical planning, radiologists, surgeons, and engineers work together to improve the patient experience. Leveraging 3D printing with other technologies can expand the value within a clinical setting. Three leading clinical engineers will discuss technologies that can be used together to extend the usefulness of 3D printing including silicone casting, surface scanning, augmented reality, and more. Join the discussion to explore the unexpected ways to increase the benefits of 3D printing.”

The webinar is free to attend, and you can register for it here.

IDTechEx on Metal Additive Manufacturing

Finally, also on August 20th, IDTechEx will be holding its latest free, expert-led webinar, “Metal AM: Short-Term Pain, Long-Term Gain.” Presented by Dr. Richard Collins, IDTechEx’s Principal Analyst, the webinar, which shares some research from the company’s detailed “Metal Additive Manufacturing 2020-2030” report, will provide an overview of the latest key trends and market forecast for metal additive manufacturing, the latest material considerations and entrant analysis, technology benchmarking, the impact of COVID-19, and more.

“Metal additive manufacturing has been gaining traction. Increased number of use-cases, end-users progressing along the learning curve, more competition, and a maturing supply chain. The applications have been led in high-value industries most notably aerospace & defence and medical, many more are emerging in automotive, oil & gas, and beyond. These sectors have had very different fates during the global pandemic and the knock-on effect will be profound. There are some silver-linings and the long-term outlook is positive for this industry, but it will not be an easy ride. IDTechEx forecast the total annual market for metal additive manufacturing to exceed $10bn by 2030. This is not before a very challenging immediate future; a result of the COVID-19 pandemic.”

Three different sessions of this 30-minute webinar will be offered, the first of which will actually take place at 9 pm EST, on the 19th. The next one will be at 5 am EST, and the final session will be at 12 PM EST. You can register for your preferred session here.

ASTM’s AM General Personnel Certificate Program

Don’t forget, the ASTM International Additive Manufacturing Center of Excellence (AM CoE) is still offering its online AM General Personnel Certificate course, which continues through August 27th and is made up of eight modules covering all the general concepts of the AM process chain. Register for the class here.

Will you attend any of these events and webinars, or have news to share about future ones? Let us know! 

The post 3D Printing Webinar and Virtual Event Roundup, August 16, 2020 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Interview with James Nordstrom of 3DPrintClean

James Nordstrom

James Nordstrom

James Nordstrom is the founder of 3DPrintClean, which specializes in 3D Printer Filtration and Safety Enclosures. They are looking to solve various issues in terms of safety and public health within the industry of 3D Printing.

What has gotten you to where you are now?

I spent 20 years in software IT, but I always had a fascination in engineering. I did a robotics project in 2010 and that taught me a lot about CAD and various skills. I also worked for various startups in my career.

Can you explain what you do with 3DPrintClean?

My brother’s girlfriend was into comic con. She was building a huge costume with 3D printed parts. Then my brother and I found research on filtration from the Illinois Institute of Technology on various articles on how emissions of 3D printing can be detrimental to one’s health. We then were able to build a prototype quickly. Then we became very involved as one of the first advocates of this. It was interesting as we first were selling a lot to Canada and Europe as they were very health sensitive. Then eventually America started to come around as well. This then allowed us to go more in depth with our solution as well. We started thinking about things like fire safety.

What are your thoughts on sustainability and the circular economy?

This is definitely something we have been thinking about. We have learned a ton about this. The amount of plastic produced with the plastic part and the scaffolding parts is large. PLA is a much better recycling material than typical plastic. If you put it in a landfill, it will not be recyclable. Recycling companies do not know what to do with the material. People use different filament types and that makes them impossible to recycle. There is some great work done in the space from companies like Filabot.

What are some typical areas of concern when a 3D printer is producing a part in terms of sustainability and safety?

Safety is our bread and butter. Filtration and unauthorized access are big areas of concern. I have seen teachers who have had problems as well. I also think it is important to know about the safety behind these materials as well. Resins are a huge problem as well. Metal Sintering powders are also very explosive as well. It is important to keep these things in mind when dealing with 3D Printing and the future of its development.

3D Print Clean

Can you talk about the technology behind 3DPrintClean’s fume and particle filtration system?

We developed proprietary solutions. Most filters do not do well based on the size of the particle. These go straight to your bloodstream when you inhale them. The filter tech addresses various nanoparticles. We also address VOC’s. We pride ourselves on being experts in this field. We constantly look for new ways to filter various products.

The filament side is really interesting. Then are loads of printers that are doing great in terms of safety, but some printers are prone to fire. One thing that shocked us about the filaments is that most printers state that they should be used in a well ventilated area. Everyone also moved to PLA because they thought it was safe.

PLA does produce ultrafine particles as well. This does not mean it is safe. It is especially important in the school when you have growing lungs. A dean from a school we go to used to be a toxicologist and she instantly realized the value of the work we were doing. She then mandated all of their 3D Printers should be using our ventilation systems.

What are some simple things we should all be aware of in terms of 3D printing safety?

I think knowing the basics about mechanical properties is important. Knowing about the heated head is important. Material handling is important especially in SLA printers. Really teaching people to wearing respirators is important. General post processing is important, but knowing about acetone as a flammable object is important. A lot of people used to make their own glue for the bed. One would take acetone and some plastic to make a slosh, but this is actually very dangerous. We realize that with all of these safety concerns taken care of it helps to make a higher quality print. When we have our enclosed system, it allows for air to not affect the temperature.

How important is public health within the growing trend of consumers using 3D printers?

Extremely. It is super critical. People are getting toys and they do not understand them. We have to make people aware of the challenges. It is not something you just put in your bedroom. Professional labs are important to be kept safe. How to be around these items is important. ABS is also flammable, so we have to think about all of these ignition spots.

What are the future plans of 3DPrintClean?

We are continuing to evolve our filters. We will also launch new sizes for printers. We will also continue to build new accessories. We will continue to improve and evolve based on what customers want. People have asked us for fire alarms and text communication to help them know about problems as a remote user. We are just making sure we cover our bases in terms of how we can aid our customers and their safety.

Optimizing the 3D Printing of Natural Materials on a Large Scale

Many people are concerned about the effects of additive manufacturing on the environment, and are making efforts to find ways to 3D print more sustainably. This often involves finding new materials that are more environmentally friendly than, for example, plastic. In a paper entitled “Control of Process Settings for Large-Scale Additive Manufacturing with Sustainable Natural Composites,” a group of researchers describe an additive manufacturing system they developed for 3D printing large-scale objects using natural biocomposite materials.

According to the researchers, composites made from natural materials with good mechanical properties have been limited in use so far as they are often mixed with plastics or hazardous solvents, and for the most part their use has only been demonstrated on a smaller scale. Because most natural biocomposite materials are water-based, they present their own set of challenges because when they dry and harden, the removal of moisture results in changes in structure and dimension.

In the study, the researchers used a cellulose-chitin material that is both recyclable and compostable. In its dry state, its mechanical properties are similar to that of Rigid Polyurethane Foam. In its wet state, it is pliable and exhibits thixotropy, meaning that it is viscous while in a static state but flows under pressure from an extruder. As it dries, it shrinks anisotropically.

“Our additive manufacturing approach with this material resembles the Direct Ink Write method given the colloidal state of the material used,” the researchers explain. “However as in a Fused Deposition Modelling process, we also employ a filamentary layering approach. With the extruder mounted on an industrial robotic system, the scale of the process extends to the physical reach of the robot.”

The system consisted of three main components: a six-axis articulated industrial robot, a precision material dispenser and a material pump system. Two cameras were used to capture the top and side views of the filaments, allowing the researchers to measure the dimensions of the material. They used mathematical models to “uncover the possible dimensions of a filament that can be obtained within operating boundaries of our system,” and to optimize the machine parameters.

To test the models, the researchers 3D printed three replicates of filaments with different machine settings. The width and height of the filaments in both wet and dry states were measured along with their tensile strengths upon drying. Overall, the results affirmed the accuracy of the researchers’ models.

“The linear scaling of shrinkage of overall width along with constant shrinkage in length and height of the repeating units provides valuable insights on developing pathing algorithms which predict and suitably compensate for shrinkage,” they add.

The researchers’ experiments allowed them to develop “the fundamental knowledge pertaining the interplay between the material and the extrusion process, relating controllable parameters to geometric and physical properties of individual filaments.” They identified the lateral overlap settings that fuse filaments together with strength greater than individual filaments, and “mitigated cross-sectional tapering of walls and showed linear scalability of shrinkage models in 3D space which can be used to preset toolpaths and allow for accurate prints.”

Over the course of the study, the researchers successfully 3D printed a vertical single wall tubular structure of 0.25m height, a 1.2m long wind turbine blade and a 5m tall structure composed of multiple ruled-surface segments. More work is required, they state, to understand complex layer compression and bucking phenomena in single and multi-walled structures, and to explore the behavior of free-form designs and internal structural lattice patterns.

“While 3D printing with natural materials is certainly more challenging compared to well-behaved industrial grade material products, positive results towards understanding and controlling 3D printed biomaterials, positive steps towards this direction presented here, may impact general manifesting towards a more sustainable future,” the researchers conclude.

Authors of the paper include Yadunund Vijay, Naresh D. Sanandiya, Stylianos Dritsas and Javier G. Fernandez.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below.