3D Printing News Briefs: October 18, 2019

The stories we’re sharing in today’s 3D Printing News Briefs run the gamut from materials to new printers. Altair has launched its new industrial design solution, and Remet opened a metal 3D printing lab in Poland. Innofil3D is sharing lots of material news, and Equispheres has released the test results for a unique 3D printing powder. Finally, Hackaday published a micro 3D printer project.

Altair Launches New Industrial Design and Rendering Solution

The “Geko Ring Collection,” jewelry by Luca Palmini, designed and rendered with Inspire Studio. Image courtesy of Luca Palmini.

Global technology company Altair has launched Inspire Studio, its new 3D design and rendering solution, to help architects, designers, and digital artists create, evaluate, and visualize designs. The solution builds on the functions of Altair Evolve, and includes 3D rendering and animation software Inspire Render, which helps users rapidly generate photorealistic product renderings and animations. Both Inspire Studio and Inspire Render run on MacOS and Windows, and help designers open up their creativity to go beyond traditional CAID tools. The solutions will be introduced next month during a one-day launch event in Italy, and you can also get a free ticket to formnext 2019, where you can learn more about Inspire Studio and Inspire Render at Altair’s booth E11, hall 11.1.

“We are very pleased with these two new solutions for the global industrial design community. Inspire Studio builds on our previous industrial design tool, Evolve, while going beyond Evolve’s capabilities. Inspire Studio will enhance designers’ creativity by letting them drive their designs. It offers an intuitive user interface and a powerful construction history, allowing them to quickly create and explore multiple iterations of their design. Relying on the same modern user experience with powerful interactive, full progressive and raytracing rendering engine, Inspire Render will help designers quickly run photorealistic renderings and walkthrough animations on GPUs and CPUs,” said James Dagg, CTO at Altair.

3D Design and Rendering Software | Altair Inspire Studio

Remet Opens Modern Metal 3D Printing Laboratory

Polish steel structures manufacturer for the oil and gs mining industry, Remet, has launched a metal 3D printing laboratory equipped with a range of high quality machines and devices. The first of these is the DMP Flex 350 by 3D Systems, followed by 3D Systems’ Figure 4, the office-friendly metallic powder atomizer ATO Lab, and plenty of other specialized research equipment. Remet completed the project together with 3D Lab, a top Polish industrial 3D printer distributor and manufacturer of the ATO Lab.

The ATO Lab metal atomizer, which enables testing and fabrication of many powdered metal alloys, was the starting point for this unique laboratory. A new branch of the enterprise, called Remet Metal Labs, is where the company will work on comprehensive additive manufacturing and industrial applications projects. Its goal is to create highly flexible conditions for creating prototypes in the powder production field, and automotive, aviation, and space industry customers are invited to work with Remet to take advantage of the lab. 3D Lab and Remet will present their solutions together at formnext in Frankfurt next month.

Innofil3D Materials and Design Rules Video

This week, Innofil3D, and its parent company BASF, have a lot of news to share. First up, Ultrafuse BVOH, its water-soluble support filament, is now available for purchase, along with its new Ultrafuse 316L metal filament. Designed for easy FFF 3D printing, this is the company’s first metal material – 80% stainless steel with a 20% polymer content.

For users interested in 3D printing their Innofil3D PRO1 filament on a Raise3D printer, you can now join the Raise3D Open Filament Program to take advantage of optimized settings and print profiles. This new program is a collaboration between Raise3D and filament manufacturers, like Innofil3D, to find the top-performing materials for its 3D printers. Finally, Innofil3D has released its second video tutorial for design rules and principles of FFF 3D printing. Check out the video below, and be sure to visit BASF at its large K-Fair exhibit in Hall 5, C21/D21.

Equispheres Releases Test Results for Unique AM Powder

Materials science technology company Equispheres has released the results from its first powder testing phase, completed by a facility that certifies AM materials for applications in aerospace and defense. The results have confirmed that the powder has exceeded expectations, allowing for a 20-30% increase in mechanical performance and a 50% increase in production speeds. In light of this news, Equispheres is launching new equity financing in order to, as the company wrote in a press release, “grow and unlock the vast potential of Additive Manufacturing.”

“The unique properties of our powder, including the high sphericity, narrow particle size distribution and low surface area results in significantly increased packing density.  This allows an increase of powder layer thickness by a factor of 2 which significantly increases build speed. Most importantly, this boost to build speed does not come with a mechanical performance penalty.  Instead, the uniform nature of our powder ensures that parts are produced with reliable and consistent mechanical properties.  The minimal variance in our performance results provides design engineers the statistical confidence to produce stronger, lighter parts,” said Equispheres’ CTO, Dr Martin Conlon.

Hackaday Project: Micro Deltesian 3D Printer

A new Hackaday project by architect Ekaggrat Singh Kalsi was just published – a micro Deltesian 3D printer, which he says offers a quality that’s on par with any Cartesian 3D printer. The printer has a solid aluminum frame, with a standard slider Y axis and a Delta mechanism for the XZ axis. A 3.5″ LCD touchscreen, with a built-in SD card, is fast and easy enough for his young daughter to use, which was his ultimate goal. With an 80 x 100 x 85 mm build volume and a print bed held in place with magnets, the biggest challenge in making the minuscule 3D printer easy to use was the filament loading; Singh Kalsi used a lever-based latch mechanism for this.

“the micro deltesian was born out of the curiosity of building the convoluted deltesian mechanism,” he explained. “Later on it evolved into the idea of building a 3d printer simple enough to be used by my daughter. The deltesian mechanism seem very wierd when i first saw it but eventually i thought maybe i should give it a try and hence this printer was born.”

Watch the video below to see just how easily his daughter uses the micro Deltesian 3D printer:

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

The post 3D Printing News Briefs: October 18, 2019 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: May 26, 2019

This year’s RAPID + TCT ended late last week at the Cobo Center in Detroit, so we’re again starting off today’s 3D Printing News Briefs with more news from the busy show floor. DyeMansion launched a new extended color series at RAPID, while 3D Systems made the announcement that its Figure 4 Modular is now available. Moving on, SLM Solutions just celebrated the grand opening of its new Shanghai application center. Finally, a Reddit user made an adorable miniature 3D printer.

RAPID 2019: DyeMansion’s New Colors

DyeMansion at RAPID 2019 [Image: Sarah Saunders]

Munich startup DyeMansion, a leader in finishing and coloring solutions for 3D printing, launched its new ColorsX extended color series for end-use products at RAPID last week, in order to continue helping its customers achieve the perfect finish for all of their applications. Automotive ColorsX and Neon ColorsX are the first solutions under the startup’s X Colors for X Industries premise, with more to follow in the future. The automotive color line has improved light and heat resistance for better 3D printed polyamide components and interior car parts, and features Automotive BlackX, which has a less saturated black tone than DyeMansion’s basic DM Black 01 and was created according to ISO EN 105 B06 method 3’s hot irradiation standards. The luminous neon color line includes GreenX, YellowX, OrangeX and PinkX to help create striking end-use products. Both of these new color lines are compatible with DyeMansion’s PolyShot Surfacing (PSS) and VaporFuse Surfacing (VFS).

“Some of our earliest customers who made use of DyeMansion Print-to-Product technologies for serial production are from the Automotive and Lifestyle industries,” explained Kai Witter, DyeMansion’s Chief Customer Officer. “While working closely with our customers, joint strategies are always about creating even more value to their businesses. So, I feel very delighted to now offer additional value creating products. Automotive and Neon ColorsX are only the beginning of providing more specific industry offers.”

Once DyeMansion decided to launch its ColorsX series, it also named the coloring process it established back in 2015: DeepDye Coloring (DDC), which can be easily controlled and traced through integrated RFID technology and offers a limitless choice of custom colors.

RAPID 2019: 3D Systems Announces General Availability of Figure 4 Modular

Also at RAPID last week, 3D Systems announced the general availability of its scalable Figure 4 Modular production platform. The flexible digital light printing (DLP) system has multiple configurations that can print parts with high surface quality, and allows manufacturers to iterate designs more quickly, as well as produce end-use parts without having to worry about a minimum order quantity. Three models make up the Figure 4 – Standalone, Production, and Modular – and several customers, such as D&K Engineering and Midwest Prototyping, are reaping the benefits. Additionally, 3D Systems also announced five new DLP and SLS materials, the first of which is the immediately available Figure 4 FLEX-BLK 10. The other new Figure 4 materials, such as TOUGH-BLK 20, MED-AMB 10, MED-WHT 10, and HI-TEMP-AMB 250, are expected to be available in Q3 and Q4 of 2019.

“The newest additions to our plastic 3D printing portfolio demonstrate our commitment to driving the adoption of digital manufacturing. With the industry’s first, truly scalable plastic production platform and our robust selection of materials, 3D Systems enables customers to rethink manufacturing and realize improved agility, reduced complexity, and lower overall total cost of operation,” said Vyomesh Joshi, the President and CEO of 3D Systems.

3D Systems also announced that its customers Rodin Cars (based in New Zealand) and North Carolina-based Stewart-Haas Racing are using its plastic and metal 3D printing solutions to improve the speed and performance of their cars.

SLM Solutions Celebrates Opening of New Shanghai Application Center

The same year that SLM Solutions opened an applications and demonstration center in Germany, it also established Chinese operations in Shanghai. Earlier this week, the selective laser melting experts celebrated the grand opening of their expanded office facilities and application center in Shanghai, which will help the company continue to grow its presence on the Asian market. The new center has installed four SLM systems: one SLM 125, one SLM 500, and two SLM 280 printers. Additionally, the facility also has equipment to represent an SLM build’s supporting process chain, such as a metallurgical lab and post-processing capabilities. The grand opening included a tour through the new new customer service and application engineering center.

“As we continue to grow our Chinese team, the opening of our Shanghai Application Center is an important milestone in SLM Solutions’ development and indicates the confidence in the Chinese market,” stated Jerry Ma, General Manager of SLM Solutions (Shanghai) Co., Ltd. “As part of the global strategy for growth we have the capacity to more than double our number of employees and the equipment to support all Chinese users with the technological resources shared by our applications centers around the world. We can also provide high-quality, fast technical services to better promote the development of selective laser melting and create more value for customers.”

Mini 3D Printed 3D Printer

A reddit and imgur user by the name of “Mega Andy” used 3D printed parts and DVD drive motors to make his own miniature 3D printer. And by miniature, I mean that he used a banana for scale, which was taller than the 3D printed 3D printer itself! It’s a really interesting project – the device runs Marlin, and features a glass bed and an E3D V6 hotend. The black and gold parts of the mini 3D printer were made out of PLA material, while PETG was used to make teeth for the leadscrews. Speaking of this, Mega Andy said that the printer is “fairly unreliable” because it easily ruins the teeth that guide the device on the leadscrew. Additionally, he’s also working to improve and lengthen the Z axis due to binding problems. Mega Andy released the STLs onto Thingiverse so others could try to make their own versions of the miniature 3D printed 3D printer…say that five times fast.

“So this project is nothing new, people have made 3d printers, CNC, engravers before using this hardware. What I wanted to do differently with this is have a designed 3D printed frame to hopefully fit standard parts. Instead of mounting full metal dvd drive assembly’s together and look like a DIY project I wanted a something that could be more compact and neat,” Mega Andy wrote on Thingiverse.

“This project is not for everyone and would only recommend to someone with a decent knowledge of 3d printers, basic soldering and lots of patience. Also some fiddling was needed to get the right amount of tension on the leadscrew, this bit is a massive pain but hopefully no one else needs to go through quite as much issues as i did with this bit. They will wear out though and a 3d printer will be needed to print new parts for it when they inevitable wear out.”

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

Free 3D Systems Whitepaper Discusses Scalable, Digital Molding Process and Figure 4 3D Printing

Injection molding was invented nearly 150 years ago, and while the manufacturing process has been improved several times over the years, something that hasn’t changed about the technology is its need for tooling, which can take weeks and even months to complete. Digital molding is a scalable 3D printing process that can increase the speed and simplicity of producing plastic parts, allowing designs to move from CAD to manufacturing without the use of tooling, and can make parts too complex for injection molding to handle.

This disruptive technology – a good alternative for low-volume plastic part production – is also the focus of the latest whitepaper by 3D Systems. The company’s tool-less digital molding is backed by its configurable, modular Figure 4 manufacturing process, making it possible to facilitate part design iterations on the spot and increase product transitions without retooling.

“This paper outlines the evolution of digital molding, explains how it works, details benefits for manufacturers, reveals business drivers for the technology, and provides perspectives from an industry expert,” 3D Systems writes. “Cost and time savings claims are documented by benchmarks that demonstrate the performance of digital molding versus traditional injection molding.”

Chuck Hull with his 1984 patent that inspired the Figure 4.

Figure 4 technology can manufacture parts out of hybrid materials that are biocompatible and durable, and feature elastomeric properties and high temperature deflection. The process uses arrays of manufacturing modules, serviced by robotics, to rapidly output a finished geometry; downstream workflows are also used to optimize throughput, and the Figure 4’s processing speed “enables use of reactive plastic resins with short vat lives, leading to tough, functional parts such as those used in thermoplastic applications.”

The Figure 4 SLA configuration was patented by 3D Systems’ co-founder Chuck Hull 30 years ago, when the technological advancements he needed to make the process a reality were not yet available. But progress in advanced robotics systems, continued SLA and materials advancement, digital texturing, CAD/CAM software that enables 3D design, and higher speed in processing raw materials in the vat have led to the technology’s current digital molding process.

“The digital molding process invented by 3D Systems is comprised of discrete modules for every step required in direct 3D production. Each stage is automated, reducing the need for human intervention. Following input of the digital benchmarking vent file, the first part was produced within 92 minutes, followed by additional vents at rates equivalent to one recurring unit every 95 seconds,” 3D Systems wrote in its whitepaper.

“The Figure 4 technology that drives digital molding comprises an array of super-fast membrane micro-DLP (Digital Light Processing) printers. The array enables the digital molding process to take advantage of parallel processing efficiencies. Printers within the array are called “engines,” and each one is extremely fast at producing physical objects. So fast, in fact, that 3D Systems characterizes the process as a motion or velocity. Depending on the geometry and material, a 3D object can be pulled from a 2D plane at speeds measured in millimeters per minute.”

3D Systems’ Figure 4

Robotic arms that move the parts through each process step allow for streaming parts production, and digital inspection can also be integrated into the Figure 4 modules.

There are many benefits to digital molding technology, such as lower costs, more efficient part customization, greater part complexity, no minimum order quantity or batching, no more physical storage issues, and because there’s no waiting for tooling, production can start right away. This means more flexibility, and multiple products can also be created at the same time. Additionally, digital molding configurations complement existing production methods used on the shop floor.

“The advantage of digital molding is that it gets rid of tooling. Design for digital molding needs to address functionality only, not draft angles, undercuts, side inserts and other features required for injection molding. As compared to the several weeks it takes for the initial design of a textured injection molded part, digital molding can be done in a matter of hours,” 3D Systems stated in the whitepaper.

The whitepaper also discusses the implications of digital molding on cost and Product Lifecycle Management, in addition to revealing the results of its benchmarking study that compared the design and production of an automotive vent using traditional injection molding versus digital molding. Perspective from industry expert Tim Shinbara, vice president of the Association for Manufacturing Technology (AMT), was also shared.

Figure 4 Direct 3D Production vs. Injection Molding

“Digital molding, as implemented in high-speed, modular and massively scalable configurations by 3D Systems, has the immediate potential to be a disruptive alternative to traditional injection molding for low volume plastic part production,” the 3D Systems whitepaper concluded.

You can download the 3D Systems whitepaper for free on the 3DPrint.com website.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

Figure 4 Technology and Dental 3D Printing

The dental industry is increasingly looking to 3D printing as a method for creating implants, guides and tools. The technology allows dental professionals to easily and quickly create implements and implants that are customized to the patient, saving time and money compared to more traditional methods of fabrication. An exciting development in dental 3D printing has come from 3D Systems‘ Figure 4 technology, which promises unparalleled speed and precision in the manufacturing of crowns, aligners and more.

Philip Schultz, Senior Vice President, General Manager, On Demand Manufacturing & Plastics, recently discussed Figure 4 and Digital Molding, which he calls “the next advancement for 3D printing.”

“It provides an immediate solution to tool-based thermoplastic molded production using lab-proven rigorous repeatability,” he says. “New and advanced 3D printers will now behave like other manufacturing equipment, offering longer production runs and comparable repeatability. The tedious process of mold development and tooling is substituted by digital design that can be finished in a matter of hours instead of days or weeks. Although this methodology will not replace injection molding-based mass production, it offers an immediacy of production and a very rapid change of parts being produced. This occurs while tooling is still being designed and machined.”

He explains that recent testing showed that Digital Molding based on Figure 4 technology offers print speeds of up to 100 mm per hour, at six sigma repeatability. Digital Molding can compete with injection molding in aesthetics, function, cost and durability – the key is knowing when to use which technology.

“Digital Molding is a toolless, volume production method for plastic parts,” he says. “To work at volume, the technology must scale to meet a variety of factory situations. To be viable it must equal or exceed traditional injection molding in quality as well have acceptable speed. Benchmark testing found a Figure 4 Digital Molding system of eight modules can turn out 10,000 units of a textured automotive vent in 11 days; traditional injection molding tooling would be produced during those 11 days. Assuming injection molding starts after 11 days, Digital Molding could produce an additional 4,000 units of the vent in the same time that injection molding could produce 10,000.”

Digital Molding’s CAD-to-production speed makes it ideal for Low Rate Initial Production, Schultz continues, or bridge manufacturing. Companies can get to market more quickly by starting with Digital Molding and then switching to or adding injection molding to ramp up production as demand increases.

For the dental industry, Figure 4-based Digital Molding is particularly ideal, as the industry often requires small batches of individually customized pieces. This summer, 3D Systems is introducing NextDent 5100, a new 3D printer that combines Figure 4 technology with the company’s broad portfolio of dental materials. The high-speed system is designed for the production of dental appliances and sacrificial castings, and is compatible with 30 different dental materials offered in a variety of colors to match patients’ teeth and gums.

The dental industry may be the one that most reveals how 3D printing has come to compete with injection molding – though “compete” may not be the best term. “Complement” may be more accurate. As Schultz says, 3D printing is not going to replace injection molding completely, nor does it need to. In the dental industry, however, it may replace injection molding for certain applications. The manufacturing of dental appliances requires high levels of customization, for which injection molding has never been the most efficient. One of the greatest appeals of 3D printing is its ability to customize and to create multiple unique pieces in a single build.

Certain industries benefit more from 3D printing than others, and the dental industry is one of them. It won’t be surprising to see 3D printing continue to infiltrate the dental market, especially as technology like Figure 4 advances and becomes more available.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.