U.S. Army Researchers create 3D printed customized ear plugs for soldiers

Researchers from the US Army Aeromedical Research Laboratory have used 3D printing to produce and test customizable earplugs for members of the US Armed Forces.  The army scientists’ new technique for producing ear protection, could be deployed to prevent hearing loss among members of the armed forces. Damage to soldiers’ hearing can cause them to […]

Formlabs Tells Us How to Make Good Looking 3D Printed Dentures

More than 36 million Americans do not have any teeth, and 120 million people in the US are missing at least one tooth. With these numbers expected to grow in the next two decades, the market for 3D printed dentures is expected to grow significantly.

Sam Wainwright, Dental Product Manager at Formlabs, suggested during the company’s latest webinar that he wouldn’t “be surprised to see 40% of dentures in America made with 3D printing,” claiming that it makes sense “at the technology level because there is no loss of material.” The expert delved into some of the techniques that have proven to work for aesthetically better 3D printed dentures. The webinar, titled Can 3D printed dentures look good?, offered dentists, technicians, and anyone interested in using 3D printing to improve dentures, tips on how to cut material costs by up to 80% (compared to traditional denture cards and acrylic); perform fewer steps to attain high-quality results, and overall prevent teeth from looking unnatural. 

“This is an ever expanding market with many options. 3D printed dentures are a very new thing, especially for removable prosthetics (something that has never been digitalized) so it is going to take some time for labs, dentists and patients to become used to it. The material is indicated for long term use but the most rapid adoption of this technology will be immediate conversion and provisional dentures, which have lower risk allowing dental professionals to walk not run into this new technology. We also expect the resins to get better, stronger and more aesthetic in time,” said Wainwright.

In fact, in the last year, Formlabs has already managed to upgrade the resins it sells for medical professionals to make oral prostheses, called Digital Dentures. These new FDA-approved resins not only resemble traditional dentures but they are also cheaper than other options. At $299 for the denture base resin and $399 for the teeth resin, the company estimates that the total resin cost for a maxillary denture is $7.20. Moreover, Formlabs also recently released the new Form 3 printer, which uses light touch supports: meaning post-processing just became much easier. Support removal is going to be quicker on the Form 3 than the Form 2, which translates to fewer materials costs and time.

“We are trying to prevent teeth from looking unnatural, and sometimes with these 3D printed dentures, the aesthetics are really suffering from it. We like to think that dentures should have life-like gingiva, natural cervical margins, individual looking-teeth, and be easy to assemble,” Wainright said.

The general basic workflow proposed by Wainright is to follow the traditional workflow until the final models are poured and articulated with wax rim, that set-up needs to be made digital with a desktop dental 3D scanner allowing for the digital design in any open CAD dental system, followed by 3D printing the base and teeth, and finally post-processing, assembling and finishing the piece. 

“After making so many parts, printing a ton of denture teeth and bases, and assembling them, we’ve come up with three techniques for an aesthetic 3D printed denture. What we want is to avoid some of the outcomes of today’s digital dentures, like products with an opaque base or gingiva, which is a bit of a mess in my opinion. Or you come about a semi transluscent base which leaves the roots exposed, and lastly when you use the splinted tooth workflow you can end up with a bulky interproximal connection. And since the papillae are a really thin printed parts, it’s really easy to see the teeth connecting, looking unnatural.”

The three aesthetic denture techniques suggested by Wainwright include:

  1. Natural gingival connection and cervical margin are based on the CAD output for optimal result
  2. Splinted arch ease of assembly without a bulky interproximal
  3. Life-like gingiva, inspired by “Brazilian Dentures”

Wainright suggests that for his first aesthetic dental technique, users can control the depth of penetration of the tooth as well as the angle it comes in or goes out, by using a new function in the 3Shape Dental System CAD software (version 2018+). The option is called coupling mechanism, and gives the user much more control than before, something which comes in very handy considering that “the more subgingival length the tooth has, the stronger the bond is with the base.” 

“The reason why 3D printed dentures are different than traditionally made dentures is that resins for the base and the teeth are like cousins. When the parts come out of the printer and you wash them, they are almost soft and even sticky, because they are only partially cured, between 25 and 35 percent. But during the final UV curing process, the tooth and the base become one solid part.”

In fact, the dentures specialist indicates that users should cure the combined base and teeth with a handheld UV cure light, moving towards the interior, just to really hold the parts together. Once the user has checked that all the cavities have been filled up and removes any residual base resin, the denture is complete and ready to be submerged for 30 minutes in glycerine at 80 degrees celsius, for a total hour of cure time. At that point, the piece can be finished up with a UV glaze or wheel for a high shine polish.

The second recommended aesthetic denture technique involves a splinted arch ease of assembly without a bulky interproximal.

Wainright explained that he sets up “these cases up in CAD so they are 100% splinted together because it is so much easier to have consistent placement of teeth, instead of doing it one by one which can be labor-intensive. I first export the arch splinted, but the question here is how to make the connection between the teeth interproximally look natural, especially when you have a very thin papilla. So before assembly, during our support removal part of the process, we’ll take a cutting disk and reduce the interproximal connection down from the cervical margin up towards the incisal. This really helps the aesthetics of the denture without worrying about any spaces.”

He also recommends that during the assembly process, users can easily brush in gingiva resin in the spaces to make sure there is no air, gaps or voids, maintaining the strength.

“Keep your eye out for bubbles,” repeated Wainright many times, explaining that “if you do minimal interaction to get the resin in the spaces, it really reduces the bubbles.”

He also added that the key is to “flow in more resin at first, instead of just wetting it, and when it’s squeezed together it will flow into that area. Finally, the overflow can be wiped away with a gloved finger.” 

“It seems quite simple but this are the things we learn over time. I repeated many of these processes a handful of times and got better, today it may take me up to 10 minutes at the most to finish up one denture. Moreover, if you think about the soft touch supports in the Form 3, post processing will be even easier, as anyone will be able to rip them off and add very little finishing to the product.”

For the last aesthetic denture technique, Wainwright suggested following up the “Brazilian dentures” example, which offers an inspiring way to create life-like gingiva. He says he noticed Brazilians have become experts in creating dentures, adding translucent resins in the base that allow for the patient’s own gingiva color to show through. He proposed the LP resin Formlabs resin is also quite translucent, but when tested on a model or patient’s mouth, “it adds a nice depth to the gingiva itself giving a reflection of light useful in aesthetics.”

“When the denture is seated intraorally, the patient’s natural gingiva shows through making the prosthetic come to life.”

Formlabs is known for creating reliable, accessible 3D printing systems for professionals. According to the company, in the last decade, the dental market has become a huge part of the company’s business and that Formlabs is trusted by dental industry leaders across the globe, “offering over 75 support and service staff and more than 150 engineers.” 

It has shipped over 50,000 printers around the world, with tens of thousands of dental professionals using Form 2 to improve the lives of hundreds of thousands of patients. Additionally, using their materials and printers in more than 175,000 surgeries, 35,000 splints and 1,750,000 3D printed dental parts. One of the aims at Formlabs is to expand the access to digital fabrication, so anyone can make anything, this is one of the reasons why the company is making webinars, to help everyone get there.

Wainright also revealed that Formlabs will be releasing two new denture bases, RP (reddish pink) and DP (dark pink), as well as two new denture teeth shapes, A3 and B2, that will complement the already existing A1, A2, A3.5, and B1. 

If you are a big fan of webinars, make sure to check out more at 3DPrint.com’s webinars under the Training section.

Discuss this article and more on 3DPrintBoard.com or comment below to tell us what you think.

[Images: Formlabs]

The post Formlabs Tells Us How to Make Good Looking 3D Printed Dentures appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Voodoo Manufacturing launches Clear Aligner Service and expands Brooklyn factory

New York-based 3D printing bureau Voodoo Manufacturing, has launched Voodoo Clear Aligners, a new dental manufacturing and distribution service, for its first partnering direct-to-consumer brand Smilelove. Coinciding with the launch is the expansion of its high-volume 3D printing factory in Brooklyn. This new wing of Formlabs 3D printers will enable Voodoo to manufacture and ship […]

3D Printing News Sliced: Magic Leap, EOS, Evonik, America Makes, PostProcess Technologies

An electric violin created using additive manufacturing technologies. Photo via 3DVariusIn this edition of Sliced, 3D Printing Industry’s news digest, we ask: How can 3D printing help visually impaired students? Can rapid prototyping mobilize soldiers on the battlefield? Are musicians using 3D printed instruments? Can a 3D printed activist halt the legalization of 3D printed guns? The following stories features PostProcess Technologies, EOS, Evonik, America […]

TUM researchers apply 3D printing to treat cleft lips and palates

Researchers in Germany are using 3D printing to improve treatments for babies with cleft lips and palates. In a study conducted at the Technical University of Munich (TUM), scientists have used 3D printing and semi-automated workflow to improve the process of nasoalveolar molding (NAM), a medical procedure used to help children with birth defects that […]

Newborns with Cleft Lip and Cleft Palates to be Helped Through 3D Printing

It’s scary to think about newborn babies undergoing surgeries and other medical procedures, but 3D printing has come into play several times to help make these successful. Now, the technology is being used again to help newborns with cleft lip and palates (CLP) in a new study conducted by the Technical University of Munich (TUM).

According to the study, nasoalveolar molding (NAM) is a “presurgical orthofacial treatment modality” for newborns afflicted with CLP. The method uses a plastic plate to reshape an infant’s gums, nostrils, and lip before undergoing the actual CLP surgery. The plate is inserted and adjusted according to the child’s alveolar development, and then a nasal stent is used to extend the plate during treatment. The technique is considered complete once the primary surgical closure of the lip is performed.

RapidNAM device in frontal (A) and dorsal (B) view.

While NAM does work, the treatment is lengthy, with many weekly adjustments; it also requires that several impressions be taken when the baby needs new plates, and the treatment modality is only offered in special centers. However, by introducing CAD/CAM technology and 3D printing into the NAM treatment, the amount of impression-taking, along with the cost of the treatment, can be decreased, and the production modality is better facilitated.

A team of researchers based at TUM recently published a paper, titled “A semi-automated virtual workflow solution for the design and production of intraoral molding plates using additive manufacturing: the first clinical results of a pilot-study,” in the Nature journal.

Graphical User Interface for the design of RapidNAM devices. (A) Automated detection of alveolar crest. (B) Selection of bridging area. (C) Gap closure. (D) Pin positioning. (E) Virtual plate.

The abstract reads, “Computer-aided design and computer-aided manufacturing (CAD/CAM) technology has been implemented in the treatment of cleft lip and palates (CLP) by several research groups. This pilot study presents a technique that combines intraoral molding with a semi-automated plate generation and 3D-printing. The clinical results of two intraoral molding approaches are compared. This is the first clinical investigation of semi-automated intraoral molding. Our study included newborns with unilateral CLP. Plaster models were digitalized and measured by two independent observers. Two methods of CAD/CAM-assisted intraoral molding were compared: (i) stepwise manual design of molding plates (conventional CAD/CAM-intraoral molding) and (ii) a semi-automated approach with an automated detection of alveolar ridges (called RapidNAM) assisted by a graphical user interface (GUI). Both approaches significantly narrowed the clefts and resulted in a harmonic alveolar crest alignment. The GUI was easy to use and generated intraoral molding devices within minutes. The presented design solution is an efficient technical refinement with good clinical results. The semi-automated plate generation with a feasible GUI is fast but allows individual adaptations. This promising technique might facilitate and foster the more widespread use of CAD/CAM-technology in intraoral molding therapy.”

In their study, the researchers described their virtual workflow, and also analyzed how effective semi-automated intraoral molding plate generation, or RapidNAM, is for helping to treat CLP.

“Healthy newborns with unilateral CLP (n = 14) were included in the study,” the researchers wrote in their paper. “Two groups were formed: one group was treated with conventional CAD/CAM-intraoral molding plates as published previously with digitally designed intraoral molding plates serving as a reference group and the other group with RapidNAM-plates. In both groups, impressions were taken from the upper jaw within the first few days of life and at the end of molding therapy when primary lip closure was performed at the age of approximately 3–4 months.”

Selected landmarks.

A 3D triangulation scanner from 3Shape in Denmark was used to digitalize the casts, and after creating a graphical user interface (GUI), an algorithm automatically detected the alveolar ridge, in order to find the monthly growth rate in the anatomical study of 32 healthy newborn babies. Special 3D software was used to help with plate expansions during the manual plate molding.

The study concludes, “RapidNAM overcomes previous limitations of conventional CAD/CAM-intraoral molding plates by its semi-automated workflow. The GUI creates a series of molding plates within a few minutes but still allows changes by the user. The resulting plates are as adaptable as conventional NAM-devices. The algorithm automatically detects the edentulous alveolar ridges and may also have further dental applications. RapidNAM gives good clinical results and may bring nasoalveolar molding to a broader practice.”

Co-authors are Florian D. Grill, Lucas M. Ritschl, Franz X. Bauer, Andrea Rau with the Friedrich Alexander Universität Erlangen-Nürnberg, Dominik Gau, Maximilian Roth, Markus Eblenkamp, Klaus-Dietrich Wolff, and Denys J. Loeffelbein.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.