Dan Wellers, Digital Futures Lead at SAP “3D Printing will Expand into 4D Printing”

We’re seeing an increased focus by software firms in our teeny tiny industry. Simulation, PLM, CAD, the Digital Twin, Industry 4.0 have some very large and influential firms salivating about that peanut butter and jelly sandwich that is the combination of the digital and manufacturing. If we are to grow digital manufacturing and 3D printing then our soft and hard assets will have to be managed and controlled through software. The more conventionally manufactured parts we replace with 3D printing the more files, settings, and process information will have to be monitored and accessed through software packages. This in part explains Dan Wellers’ interest in 3D printing and enthusiasm around the technology. He leads Digital Futures at SAP Global Marketing where in effect he has to be SAP’s Nostradamus and predict the impacts of technologies such as ours.

What is 4D printing?

Building upon existing 3D printing technology, 4D printing uses dynamic materials that perform differently when they encounter changing conditions such as water, light, heat, or electrical current. These materials—hydrogels, shape memory polymers, carbon fiber, custom textile composites, and more – have properties that enable objects to self-assemble, reshape themselves, or otherwise react to changing events or conditions. It’s called 4D printing because it incorporates what’s often referred to as the fourth dimension: time.

Why is it important?

4D printing can expand what is currently achievable in prototyping, design, manufacturing, and post-production adaptability and usage. Examples include: self-flattening boxes to be used in warehouses and logistics companies; plumbing system pipes capable of changing their diameter in response to flow rate or water demand. 4D printing has opened up entirely new innovations, such as medical implants made of dynamic biomaterials, which are already saving lives.

Because of its self-assembling capability, objects too big to be printed via conventional 3D printers can be compressed for printing and then expand after manufacturing. 4D printing could also be used to eliminate the mundane problem of furniture assembly. In addition, researchers have demonstrated how smart materials used in 4D printing can enable an object to “remember” its shape. That capability could be used to flat-pack a self-assembling shelter that springs into place after a natural disaster, or develop bridges and temporary roads made from materials that expand to heal damage and cracks.

How important will 3D printing be?

3D printing represents the digital transformation of both design and production in the manufacturing industry and will have a profound impact on everything from logistics to extended supply chains to trucking. 3D printing eliminates many of the design and production constraints inherent in traditional manufacturing. Product design can now be optimized for customer need and function, instead of production efficiencies.

Over the last few years, 3D printing has advanced in the way it employs different materials—not only plastic, but also metal, resins, sandstone, wax, and ceramics—increasingly incorporating multiple materials at once. These improvements are paving the way for significant benefits, including cost reductions, streamlined supply chains, faster time to market, increased personalization, optimized resource usage, improved prototyping, and the manufacture of new designs not possible in the past.

Commercial applications continually emerge to power 3D printing of everything from everyday household products to customized medical devices and prosthetics to nearly all the components of a house. 3D printing will expand into 4D printing in the coming years by adding a fourth dimension: time. By using specially engineered materials that perform differently when they encounter changing conditions, 4D printing promises to further shift the shape of manufacturing.

How will people and machines work together in the future?

Artificial intelligence is getting better at solving increasingly complex problems. If we want to retain humanity’s value in an increasingly automated world, we need to start recognizing and nurturing skills that are uniquely human.

To learn more, read “The Human Factor In An AI Future” and “Human Skills for the Digital Future”.

 

TU Delft: 3D Printed Chaise Lounge Morphs into a Bed

Netherlands-based Delft University of Technology (TU Delft) is one of the world’s leading higher learning institutions, evidenced by continual innovations in student research. We have followed as TU Delft faculty have 3D printed electronic devices, students have fabricated parts for racecars, and even performed studies regarding some pretty amazing potential for 3D printed bacteria and its uses in space; however, student research at TU Delft also seems to have a recent and strong focus on delving into the 4D, giving us a glimpse into the future as we move even beyond the third dimension and look forward to objects that can adapt and morph—depending on the needs of their users.

No strangers to the world of soft robotics, 3D printed shape-shifting assemblies, as well as the fabrication of a variety of metamaterials, researchers have now set their sights on 3D printed pieces that could change the way furniture is designed and manufactured in the future. Arwin Hidding is a student at TU Delft, centering around current work with the Robotic Building research group. After finishing his master’s degree in architecture (and just before embarking on his PhD in 3D printed architecture), Hidding began working on a design for an innovative chaise lounge that sounds as if it could spoil consumers forever in terms of features and comfort.

Transforming from a lounge chair into a bed within mere seconds, this 3D printed piece is all about giving the user what they require in the moment—whether they want to sit and relax—or lie down, activating movement as they lean against the rear of the chaise.

“In the past, furniture could only take on a different shape in cartoons. 3D robot printing, variable stiffness, and adaptive structures were unheard of at the time,” Hidding told 3DPrint.com.

“The aim of the project was to develop a 3D printable pattern that would allow control over the stiffness over the material. Variable stiffness is employed in this project as an adaptation strategy to achieve multi-functionality.”

Using growing expertise in the field of both 3D printing and architecture, Hidding and a team of TU Delft researchers experimented with the concept of shape-shifting furniture. Along with progressive design concepts, they relied on intricate structural analysis, robotic path simulations, and 3D robotic printing for creating the ‘adaptive structure.’ The design is meant to support an average-sized human, with the morphing mechanism activated by their weight on the back of the structure.

“This shape change is achieved by combining variation in material distribution and use of thermoplastic elastomers,” Hidding told 3DPrint.com.

Other project members from TU Delft included Henriette Bier, Patrick Teuffel, Qing Wang, and Senatore Gennaro. The 3D printed chaise lounge is slated to be on display for the public at the Dutch Design Week from 20-28 of October in Eindhoven. Find out more about this project and other Robotic Building projects here.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.