3D Printing News Briefs: April 10, 2019

We’ve got some business news for you in today’s 3D Printing News Briefs, before moving on to an upcoming industry event and new materials. 3DVinci Creations and the American University in Dubai will establish a facility for concrete 3D printing, while Telset signed a contract with Relativity. Lincoln Electric has acquired Baker Industries for its 3D printing technology, and Jabil is sharing the results of its survey report on 3D printing. Next month is the NAMIC Summit, with its flagship DfAM event, and Nile Polymers has announced two new PVDF filaments.

Agreement Signed to Establish Center for 3D Concrete Printing

A cooperation agreement was signed between 3DVinci Creations, the American University in Dubai (AUD), Arabtec Construction Company, and global engineering consultancy firm Robert Bird Group to establish The Center for 3D Concrete Printing and Digital Construction on AUD’s campus. The scientific research center, equipped with a 3DVinci Creations 3D printer, will serve researchers from the university’s three project partners, as well as university students and members of the Faculty of Engineering and Architecture. It will build partnerships, create a consortium of academic, government, and industry entities interested in the growing 3D concrete printing and digital construction fields, work with state officials to promote 3D printing culture in construction, and eventually develop and administer training workshops and seminars on concrete 3D printing.

“With this cooperation agreement, we aim to perform strategic analyses of the present and future capabilities of 3D Concrete Printing and of digitally-driven construction systems. The Center will work with local regulatory bodies to develop newly updated building codes that pertain to 3D printed buildings and structures,” said Edouard Baaklini, CEO of 3DVinci Creations. “We will also develop cost models of 3D Printed Concrete buildings and structures together with tools for value analysis vis-à-vis traditional construction methodologies.”

Relativity Signs Contract with Telesat

Los Angeles 3D printed rocket manufacturer Relativity just signed its first public, multi-year commercial contract with satellite services vendor Telesat. This is a big deal, as it’s the first agreement between a major satellite operator and a venture-backed “New Space” industry company. It costs about $10 million for Relativity to launch a 1,250 kg payload to low Earth orbit – a price that’s $10 to $20 million less than it would be using a European Ariane rocket or Indian PSLV rocket. The company can keep its costs down by using automation and metal 3D printing in its design and manufacturing processes, and claims its rockets can be made in just 60 days, with far less components. Relativity has completed 136 engine tests and is currently testing its avionics systems, with the first launch of its 3D printed Terran 1 rocket scheduled for the end of 2020.

“Early in our LEO program we decided that, in addition to working with outstanding leaders in satellite manufacturing and launch services who we know well, Telesat should also include New Space companies whose technologies and manufacturing methods offer lower costs and greater flexibility for deploying our constellation. Relativity is just such a company with their metal 3D printing, use of robotics and other advances,” said Dave Wendling, Telesat’s CTO. “Telesat continues to establish a world-class supplier team to construct, deploy and operate our global LEO network and we are very pleased to welcome Relativity to the Telesat LEO program.”

Lincoln Electric Acquires Baker Industries

According to a report published last year by SmarTech Industries, the global additive manufacturing market grew 18% to reach $9.3 billion in size, and Lincoln Electric (LECO) wanted a piece of that pie. The company announced that it has acquired Detroit-based Baker Industries, which developed 3D printing tech for the aerospace and automotive industries, for an undisclosed sum as part of a previously announced initiative to expand into the AM industry.

Baker was founded in 1992 to manufacture custom fixtures, parts, and tooling that are Nadcap-accredited, AS9100D-certified, and adhere to the tough aerospace quality management standards. While you can learn more about its services in the video below, Baker primarily offers CNC machining, design, fabrication, prototyping, quality assurance, tooling, and 3D printing services to its customers. With its acquisition of Baker, Lincoln will be able to position itself in the ever growing AM, automation, and tooling sector.

Jabil Shares Results of Survey Report

According to the 2019 Additive Materials and 3D Printing study by Jabil, the practical applications in 3D printing have grown significantly over the last two years. The company surveyed over 300 professionals who are responsible for 3D printing at manufacturing companies, and found that the technology has found its way into almost every step of production, though prototyping still remains the most popular application.

Jabil shared how several key industries, such as medical, transportation, and aerospace, are using the technology today, and reported that 25% of respondents said that 3D printing can be as much as 20 times faster than traditional forms of manufacturing – obviously a major benefit. Jabil itself has adopted the technology at some of its sites because it takes 3D printing very seriously, and believes that the technology “has unlimited potential in the future.” Nearly all of the survey’s respondents said they expected their companies’ 3D printing use to increase over the next two to five years. You can read the full survey report here.

DfAM Conference at NAMIC Summit Coming Up

Next month in Singapore, the 2019 NAMIC Summit will take place from May 6-10, with its flagship event – the Design for Additive Manufacturing (DfAM) Conference & AM Industry Showcase – happening on May 7th at the Marina Bay Sands Expo & Convention Centre. You can register now for the event to take advantage of early bird rates.

You can spend the day meeting other like-minded professionals in networking sessions, or take in a presentation by one of over ten distinguished speakers who will be sharing their knowledge about simulation and modeling, industrial applications of digital design solutions, and generative design For example, John Barnes, the founder and managing director of The Barnes Group Advisors, will be speaking about “Design for Manufacturing: The Transformative Role of Design in Driving Innovation in the Future of Manufacturing” at 9:30 am, and the CEO and co-founder of Assembrix Ltd, Lior Polak, will present “Distributed Manufacturing in Action: Dynamic Machine Allocation and Real-Time Monitoring at 1:30 pm.

Nile Polymers Introduces New Additions to Fluorinar PVDF Family

Utah-based Nile Polymers, which offers an industrial-grade PVDF (polyvinylidene fluoride) filament based on Arkema’s Kynar PVDF material, just announced the addition of two new filaments to its Fluorinar PVDF family – Fluorinar-B and Fluorinar-ESD, also built on Arkema’s Kynar. Chemical-resistant Fluorinar filaments differ from other PVDF materials because they don’t have any additional diluents or polymer additives, and they are tough, flexible, high-strength, and offer flame suppression and UV protection qualities. Sample filaments are available for both

Black-colored Fluorinar-B combines the company’s Fluorosmooth adhesive, which increases the surface energy of a print at its interface with a glass build plate, with the dependability of Kynar PVDF, and carbon pigment increases the part’s tensile strength and permeation resistance as well. Graphene-enhanced electrostatic dissipation (ESD) filament Fluorinar-ESD is perfect for applications that have parts which can’t tolerate static build-up, and calibrates impact strength and melt viscosity carefully so the final part is durable and strong.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

Titomic Licenses Two CSIRO Patents for 3D Printing Titanium Piping, Signs Acquisition Agreement with FTT

CSIRO’s Keith McLean, Titomic’s Jeff Lang, and FTT’s Peter Mews sign agreement

Renowned for its metal Kinetic Fusion (TKF) technology, Australian 3D printing company Titomic recently signed an MoU with China’s largest manufacturer and global exporter of titanium powder in order to secure a high quality supply of low-cost, commercially pure titanium powders. It’s clear that the company is continuing to focus on titanium resources – it has licensed two new patents from the Commonwealth Scientific and Industrial Research Organisation (CSIRO) for the production of titanium pipe and continuous pipe. This Exclusive License Agreement with CSIRO gives Titomic global rights to the patents, which will significantly open the company’s revenue opportunities in several industries, like defense, marine and mining, and oil and gas.

Additionally, Titomic has signed an Acquisition Agreement with Future Titanium Technologies (FTT). The company is now entitled to over eight years of exclusive 3D printing techniques and background IP relating to the production of pipes and their components.

“This is a significant expansion of Titomic’s IP and associated revenue opportunities. By adding these two new patents we are broadening our footprint in the Titanium and Titanium Alloys Additive Manufacturing space to firmly secure our future market segments,” said Titomic’s Managing Director Jeff Lang.

“Our fundamental strategy has been well timed and managed to perfectly combine the securing of cost-effective metal powder supply chain, with the expansion of our IP portfolio positioning Titomic as the global leader in viable metal Additive Manufacturing.

“To capitalise on the significant $300+ Billion global interest Titomic has received from the Oil & Gas, Mining, and Marine industries to provide more sustainable and cost-effective AM manufacturing, these new TKF technologies enable Titomic to provide viable digital manufacturing capabilities leading to significant short, mid and long-term revenue opportunities.”

Titomic’s fast 3D printing technology, which is actually the result of a CSIRO study, can now be used by industries looking to access next generation, dual-wall materials to 3D print metal pipe without having to worry about profile or size constraints.

For instance, the oil and gas industry is uses plenty of valves, but their lifecycle can be negatively impacted by abrasive matter like rock, sand, and sediments that run through pipes during extraction. Using these newly licensed patents, Titomic can use its technology to produce metal pipes with higher corrosion and wear resistant properties; additionally, the process can also fuse dissimilar metals together to make fitting components and pipes.

“Working with companies like Titomic shows that manufacturing remains a key driver in the Australian economy,” said Stefan Gulizia, Research Group Leader at CSIRO. “We are pleased that Titomic are licensing the rights to utilise and further commercialise CSIRO research in developing new products and processes that go towards supporting productivity gains, boosting sustainability and helping capture emerging opportunities in local and global markets.”

Thanks to the important performance factors like cost, quality, scale, speed, and sustainability, Titomic will now be able to commercially exploit its TKF technology. Pipe and fitting component consumers will be able to save on both time and money, as maintenance costs and down time will decrease and parts will have longer life cycles. Additionally, TKF can also be used to 3D print valves, fitting components, and pipes with new superalloys, and can even combine them with polymers, composites, ceramics, and alloys to achieve high performance properties.

McLean, Lang, and Mews holding the sprayed pipe section.

The most important transaction terms of the new Acquisition Agreement with FTT include Titomic allotting $400,000 worth of its shares to FTT shareholders for $2.00 per share, half of which will be escrowed for a year. For every two shares, Titomic will also issue one new option to FTT shareholders, at an excerisable price set at a 130% premium to the share price with a two-year life.

In terms of its Exclusive License Agreement with CSIRO, Titomic will pay the following minimum annual royalties to CSIRO:

  • $50,000 for 2018-2019
  • $75,000 for 2019-2020 and 2020-2021
  • $150,000 for 4th year of agreement, and each subsequent agreement year until the end of the license term

CSIROs Keith McLean, Titomic’s Jeff Lang, and FTT’s Peter Mews celebrate the collaboration.

Additionally, Titomic will pay CSIRO an upfront fee of $125,000 cash for licensing the technologies.

To hear the rest of the terms, visit Titomic’s website.

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Images provided by Titomic]

Top 10 3D Printing Aerospace Stories from 2018

3D printing has played an important role in many industries over the past year, such as medical, education, and aerospace. It would take a very long time to list all of the amazing news in aerospace 3D printing in 2018, which is why we’ve chosen our top 10 stories for you about 3D printing in the aerospace industry and put them all in a single article.

Sintavia Received Approval to 3D Print Production Parts for Honeywell Aerospace

Tier One metal 3D printer manufacturer Sintavia LLC, headquartered in Florida, announced in January that it is the first company to receive internal approval to 3D print flightworthy production parts, using a powder bed fusion process, for OEM Honeywell Aerospace. Sintavia’s exciting approval covers all of Honeywell’s programs.

Boeing and Oerlikon Developing Standard Processes

Boeing, the world’s largest aerospace company, signed a five-year collaboration agreement with Swiss technology and engineering group Oerlikon to develop standard processes and materials for metal 3D printing. Together, the two companies will use the data resulting from their agreement to support the creation of standard titanium 3D printing processes, in addition to the qualification of AM suppliers that will produce metallic components through a variety of different materials and machines. Their research will focus first on industrializing titanium powder bed fusion, as well as making sure that any parts made with the process will meet the necessary flight requirements of both the FAA and the Department of Defense.

FITNIK Launched Operations in Russia

In 2017, FIT AG, a German provider of rapid prototyping and additive design and manufacturing (ADM) services, began working with Russian research and engineering company NIK Ltd. to open up the country’s market for aerospace additive manufacturing. FIT and NIK started a new joint venture company, dubbed FITNIK, which combines the best of what both companies offer. In the winter of 2018, FITNIK finally launched its operations in the strategic location of Zhukovsky, which is an important aircraft R&D center.

New Polymer 3D Printing Standards for Aerospace Industry

The National Institute for Aviation Research (NIAR) at Wichita State University (WSU), which is the country’s largest university aviation R&D institution, announced that it would be helping to create new technical standard documents for polymer 3D printing in the aerospace industry, together with the Polymer Additive Manufacturing (AMS AM-P) Subcommittee of global engineering organization SAE International. These new technical standard documents are supporting the industry’s interest in qualifying 3D printed polymer parts, as well as providing quality assurance provisions and technical requirements for the material feedstock characterization and FDM process that will be used to 3D print high-quality aerospace parts with Stratasys ULTEM 9085 and ULTEM 1010.

Premium AEROTEC Acquired APWORKS

Metal 3D printing expert and Airbus subsidiary APWORKS announced in April that it had been acquired as a subsidiary by aerostructures supplier Premium AEROTEC. Premium AEROTEC will be the sole shareholder, with APWORKS maintaining its own market presence as an independent company. Combining the two companies gave clients access to 11 production units and a wide variety of materials.

Gefertec’s Wire-Feed 3D Printing Developed for Aerospace

Gefertec, which uses wire as the feedstock for its patented 3DMP technology, worked with the Bremer Institut für Angewandte Strahltechnik GmbH (BIAS) to qualify its wire-feed 3D printing method to produce large structural aerospace components. The research took place as part of collaborative project REGIS, which includes several different partners from the aerospace industry, other research institutions, and machine manufacturers. Germany’s Federal Ministry for Economic Affairs and Energy funded the project, which investigated the influence of shielding gas content and heat input on the mechanical properties of titanium and aluminium components.

Research Into Embedded QR Codes for Aerospace 3D Printing

It’s been predicted that by 2021, 75% of new commercial and military aircraft will contain 3D printed parts, so it’s vitally important to find a way to ensure that 3D printed components are genuine, and not counterfeit. A group of researchers from the NYU Tandon School of Engineering came up with a way to protect part integrity by converting QR codes, bar codes, and other passive tags into 3D features that are hidden inside 3D printed objects. The researchers explained in a paper how they were able to embed the codes in a way that they would neither compromise the integrity of the 3D printed object or be obvious to any counterfeiters attempting to reverse engineer the part.

Lockheed Martin Received Contract for Developing Aerospace 3D Printing

Aerospace company Lockheed Martin, the world’s largest defense contractor, was granted a $5.8 million contract with the Office of Naval Research to help further develop 3D printing for the aerospace industry. Together, the two will investigate the use of artificial intelligence in training robots to independently oversee the 3D printing of complex aerospace components.

BeAM And PFW Aerospace Qualified 3D Printed Aerospace Component

BeAM, well-known for its Directed Energy Deposition (DED) technology, announced a new partnership with German company PFW Aerospace, which supplies systems and components for all civilian Airbus models and the Boeing 737 Dreamliner. Together, the two worked to qualify a 3D printed aerospace component, made out of the Ti6Al4V alloy, for a large civil passenger aircraft, in addition to industrializing BeAM’s DED process to manufacture series components and testing the applicability of the method to machined titanium components and complex welding designs.

Researchers Qualified 3D Printed Aerospace Brackets

Speaking of parts qualification, a team of researchers completed a feasibility study of the Thermoelastic Stress Analysis (TSA) on a titanium alloy space bracket made with Electron Beam Melting (EBM) 3D printing, in order to ensure that its mechanical behavior and other qualities were acceptable. The researchers developed a methodology, which was implemented on a titanium based-alloy satellite bracket.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

10 Ways 3D Printing Played a Part in Education in 2018

3D printing is often used in education these days, whether it’s being taught as a subject or used to enhance another one. As we’re moving ever closer to the start of a new year, we decided to save you some time and gather the ten best education stories from 2018 in one article.

Siemens STEM DAY

The Siemens Foundation focuses on philanthropic efforts in order to continue the advancement of STEM-related education and workforce development, and has invested millions of dollars for this cause in the US. In early 2018, the Siemens Foundation worked with Discovery Education to re-brand its annual Siemens Science Day into a program for more modern educational opportunities: Siemens STEM Day, which is an opportunity for US schools to promote STEM activities for both students and teachers. The program, which doesn’t actually happen on one specific day but is a promotion of STEM lessons and hands-on activities, is meant to be used by students in grades K-12, and offers multiple tools and resources to help reboot STEM curriculum.

New 3D Printing Educational Initiatives

[Image: 3D PARS]

In February, we provided a round-up of some of the many educational initiatives that were looking to provide adults with a deeper understanding of 3D printing. Included in this round-up was a new online course for professionals by MIT, new 3D printing courses from the Sharebot Academy program, and a joint two-day training course in additive manufacturing from German consulting firm Ampower and full service prototyping and 3D printing provider H & H. Additional educational initiatives shared in the round-up were 3DPrint.com’s own Additive Manufacturing with Metals Course.

learnbylayers Partnered with Kodak

In 2017, educator Philip Cotton launched an online 3D printing resource for teachers called learnbylayers that offers lesson plans, project ideas, assessments and more that were designed by teachers for teachers. The site grew quickly, and in February Cotton announced that it had reached a distribution agreement with Kodak. The learnbylayers educational curriculum was added to the Kodak 3D Printing Ecosystem, as the company began offering the internationally-taught curriculum along with its Portrait 3D printer’s launch.

Renishaw Deepened Its Commitment to 3D Printing Education

This spring, Renishaw announced that it would be deepening its commitment to 3D printing education. The company established a new Fabrication Development Centre (FDC) at its Miskin facility in South Wales, with the goal of inspiring young people to pursue STEM careers. The FDC has two classrooms, staffed by qualified teachers and Renishaw’s STEM ambassadors, that can be used for free by schools or groups of young people for lessons or workshops. The FDC was actually in use by Radyr Comprehensive School students long before it was officially launched by Andy Green, a driver for Bloodhound SSC, a 3D printing user and Renishaw partner which also devotes many resources to education about the technology.

Ultimaker Launched New 3D Printing Core Lessons for STEAM Education

Lesson 1: Coin Traps

In April, Ultimaker launched its new Ultimaker Core Lessons: STEAM Set for educators. Eight free lessons, published under a Creative Commons Attribution-ShareAlike 4.0 International License, are included in the set, which can help teachers in informal, K12, or Higher Ed classrooms incorporate 3D printing into their educational practices and STEAM curriculum. Some of the beginner lessons include 3D printing a coin trap, flashlight, and penny whistle, and can teach young students important skills like how to align objects, using symbols to communicate ideas, and how to effectively work together on creative projects.

PrintLab Teamed Up with CREATE Education Team

UK-based global 3D printing distributor and curriculum provider PrintLab partnered with UK 3D printing company CREATE Education, a collaborative platform that provides educators with free resources and support, in order to support schools all across the UK with 3D printing. Each company’s educational 3D printing offerings will be combined in this partnership so that UK schools can enjoy unlimited access to full 3D printing solutions for the classroom, which will be locally supported for life by CREATE. Multiple initiatives came out of this partnership to support teachers, like  3D printer loan schemes, funding advice and resources, special training and curriculum workshops, and new educational 3D printing bundles.

3Doodler Introduced New Educational Kits

3Doodler has long supported education, and often releases new STEM-centered educational packages, including its latest classroom product line: the 3Doodler Create+ EDU Learning Pack and 3Doodler Start EDU Learning Pack. Each pack, designed for and with teachers, was designed specially for classrooms from kindergarten to 12th grade and includes 6 or 12 3Doodler pens (Create or Start, depending on the package) and 600 or 1,200 strands of plastic, as well as other tech accessories, lesson plans, and classroom materials. Additionally, the company released its 3Doodler Create+ EDU Teacher Experience Kit and 3Doodler EDU Start Teacher Experience Kit, which are designed to be trial packs for teachers who are thinking about introducing the 3Doodler into their classrooms.

Robo Acquired MyStemKits

3D printer manufacturer Robo announced this summer that it had acquired Atlanta company MyStemKits, which provides the largest online library of STEM curriculum in the world. Thanks to this acquisition, Robo is now offering educational bundles that include its classroom-friendly 3D printers, a supply of filament, one-year subscriptions to MyStemKits, and additional professional development and online learning.

GE Additive’s Education Program Provided Five Universities with Metal 3D Printers

GE’s Additive Education Program (AEP) – a five-year, $10 million, two-part initiative to provide 3D printers to as many schools as possible – chose five universities this summer to receive an Mlab 200R from the program. 500 proposals were submitted for this round of the program, and GE Additive chose German’s Coburg University of Applied Sciences and Arts, Ireland’s University of Limerick, the Calhoun Community College in Alabama, the University of Illinois at Urbana-Champaign, and West Virginia University as the lucky winners.

3D Printing In Fashion Education

In a recently published paper, titled “Integration of 3 Dimensional Modeling and Printing into Fashion Design Curriculum: Opportunities and Challenges,” Nicole Eckerson and Li Zhao from the University of Missouri discussed whether 3D printing should be integrated into fashion design curriculum. The researchers noted that while 3D printing has been recognized as a major influence in the work of designers and engineers, educators in the fashion industry are facing a lack of time, resources, and knowledge to teach the technology to students. The two conducted semi-structured interviews with eight 3D printing industry  experts and academic professionals for their research, and came up with three distinct themes from their data about why 3D printing should be adopted, and taught, in fashion.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

Optomec Acquires Huffman to Increase Its 3D Printing Reach in the Gas Turbine Market

Production-grade metal 3D printing leader Optomec has announced its acquisition of Huffman, a South Carolina-based company that has years of experience in supplying metal 3D printing systems for the additive repair of gas turbine components in the energy and aviation markets. This acquisition will increase its reach within Huffman’s home in the gas turbine market, which is good news for Optomec, as the global commercial aviation and power industry spend quite a lot of money each year on repairs.

Huffman and Optomec both offer a metal 3D printing process known as Directed Energy Deposition (DED), or LENS, which has several advantages over more well-known methods like selective laser melting or powder bed fusion. For example, LENS can 3D print parts in far less time, and for far less money, than SLM (LPBF, DMLS) methods can, and the process is also unique in its ability to add metal to existing parts for applications in coating and repair that can actually increase a component’s useful shelf life.

LENS systems use a high power laser (400W to 3kW) to fuse powdered metals into fully dense three-dimensional structures. LENS 3D printers use the geometric information contained in a solid CAD model to automatically drive the process as it builds up a component layer by layer. Additional software and closed-loop process controls ensure the finished part’s geometric and mechanical integrity.

“The opportunity for additive manufacturing in repair applications is often overlooked, but when you consider that corrosion and wear cost the US economy $300 billion per year, and that the global commercial aviation industry spends almost $100 billion annually on repair, you can get a better sense of the magnitude of these markets. With the Huffman acquisition, we aim to expand the use of DED/LENS repair for the existing installed base of more than 100,000 gas turbines and engines, while also leveraging that expertise to drive greater adoption of cost-effective repairs for mainstream industrial applications,” said David Ramahi, the President and CEO of Optomec.

Huffman’s software and metal additive repair equipment are used by nearly all of the world’s major aircraft engine and industrial gas turbine manufacturers. The company’s metal deposition capabilities are used to help restore damaged or worn components, which costs a lot less money than just going out and purchasing new spare parts.

“Optomec and Huffman joining forces is exciting news in the additive manufacturing space. Having used products from both companies, I know the complementary strengths of their portfolios and the value they provide to aerospace, defense, and power generation customers,” said Christopher E. Thompson, the General Manager of Product Service, GE Power. “Optomec’s innovative and affordable solutions in this space, combined with the robust, production-friendly equipment and intuitive user interfaces provided by Huffman are sure to enable new leaps in free-form additive manufacturing for repairs, new part build and hybrid manufacturing.”

Optomec’s acquisition of Huffman will, on a strategic level, help combine its horizontal market reach with Huffman’s reach in the gas turbine market over many different industries and hundreds of customs. Both businesses should see accelerated growth as the two combine their technical expertise and complementary product portfolios.

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

AddUp Adds to Portfolio with Acquisition of Majority Stake in Poly-Shape

AddUp has been on an acquiring spree lately; just a few months ago, the joint venture between Michelin and Fives acquired metal additive manufacturing company BeAM, and now the company has announced that it will be acquiring a majority stake in French company Poly-Shape. Poly-Shape, founded in 2007, offers metal 3D printing design and production services and impacts a variety of industries including tooling, aeronautics, medicine, energy, and motor sports, having worked with numerous Formula One teams. Poly-Shape has facilities in four locations:  Salon‐de‐Provence, Saint‐Pierre‐du‐Perray and Le Coudray‐Montceaux in France as well as in Carpi, Italy.

The acquisition will allow AddUp to expand its portfolio of applications, and specifically to strengthen its presence in the automotive market.

“The proven know‐how in the production of parts, in particular in the motor sports field will help us improve our support to OEMs (Original  Equipment Manufacturers), and demonstrate the benefits and capacities of 3D printing, especially for  top‐of‐the‐range vehicles,” said AddUp CEO Vincent Ferreiro.

AddUp will also be able to strengthen its support services, which include AddUpStart and AddUpThink, by including new production capabilities such as Proof of Concept (PoC) parts, complete with post-treatment and additional finishing. AddUp’s customers, thanks to the Poly-Shape acquisition, will be able to take advantage of a multi-supplier, multi-technology, multi-material and multi-application test platform to help them determine the best technology for the production of parts.

PolyShape will leverage its 11 years of experience in metal 3D printing to help AddUp accelerate its own machine and service offerings, and will benefit from feedback itself as it uses AddUp’s machines.

“AddUp and Poly‐Shape share the same vision regarding the evolution of the world of 3D printing and the same passion for innovation,” said Stéphane Abed, Chairman of Poly-Shape. “Poly‐Shape will benefit from AddUp’s proven expertise in the industrialization and management of machines as well as a reinforced access to the world of motor sports thanks to Michelin’s worldwide reputation. AddUp will bring additional resources to Poly‐Shape so that it can continue its development both in France and abroad. AddUp’s entry into Poly‐Shape’s capital is a recognition of the expertise and work carried out by the teams during these last few years.”

AddUp was formed with the goal of creating a new company to impact the metal additive manufacturing industry. Currently, the company utilizes Powder Bed Fusion (PBF) and, since the acquisition of BeAM, Directed Energy Depostion (DED) 3D printing technology. Add-Up is based in France and has subsidiaries in France and Singapore, employing more than 220 people. The company offers services, training and consulting to assist customers in the adoption of 3D printing technology.

“I have been happy to accompany Poly‐Shape’s wonderful teams since 2007 and to have participated in the evolution of a company with a recognized know‐how,” said Philippe Veran, Chairman of Upperside Capital Partners and a founding shareholder of Poly-Shape. “AddUp’s investment into the capital represents a true opportunity for Poly‐Shape and its employees to continue its development and growth.”

The exact terms and conditions of the acquisition have not been disclosed.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.