Preview: New materials, 3D printers and releases from Formnext 2019
3D Printing News Sliced: AMUG, Desktop Metal, Stratasys, Royal DSM
Adaptive3D Announces Series A Investment Round: Investors Include DSM Venturing, Applied Ventures, Chemence
Texas-headquartered Adaptive3D has announced an investment round co-led by two companies, DSM Venturing (funding arm of Royal DSM) and Applied Ventures (the venture capital arm of Applied Materials). In a recent press release sent to 3DPrint.com, they state that they have secured Series A financing. Chemence, a materials and adhesives supplier headquartered in Georgia, will also participate in the investment round.
“Adaptive3D seeks to challenge the cost, throughput and performance in markets today dominated by traditional injection molding, blow molding and other thermoplastic processing techniques,” said Adaptive3D founder and CEO, Walter Voit. “By delivering lightweight, sustainable, micro-latticed structures with superior thermal, chemical, optical and mechanical properties, Adaptive3D seeks to drastically increase the utilization of plastics and rubbers in end applications using additive manufacturing.”
“There are only a handful of chemical companies around the world with the global supply chain, distribution channels and application expertise to drive change in how the world manufactures plastics, and we are thrilled to have Royal DSM, one of them, ranked as one of the world’s most sustainable companies, partnering with Adaptive to further develop its engineered materials,” continued Voit. “In a similar vein, there are only a handful of companies in the world with the materials expertise, equipment manufacturing capabilities at scale and creative internal culture to enable a paradigm change in additive manufacturing. Applied Materials is at the top of that list.”
Adaptive3D’s versatile materials, which they describe as having mechanical properties so far ‘unmatched,’ are meant for complex plastic and rubber parts specifically created in environments with open-air production. They have accrued multiple patents centered around materials studies, with some of their data translated from the University of Texas at Dallas, based on past funding from the following:
- Defense Advanced Research Projects Agency
- The National Science Foundation
- National Institutes of Health
The technical research company’s polymer resins are currently distributed globally, with the intention to continue optimizing materials for high-volume additive manufacturing practices. Currently they fabricate rubber-like materials, tough damping materials, and low-cure stress photopolymers to be distributed to industries including:
- Healthcare
- Consumer goods
- Transportation
- Oil and Gas
Royal DSM and Applied Materials both plan to play a part in continued and even greater success for Adaptive3D as they forge ahead in the ‘emerging AM ecosystem,’ offering solutions focused on unique materials.
“At DSM we believe that the age of additive manufacturing for industrial applications is, in fact, the age of materials,” said Hugo Da Silva, DSM VP of Additive Manufacturing. “Adaptive3D’s engineered photoresins enable new design paradigms in end applications. Working together with Applied Materials allows us to think globally about big problems at scale and offer big ecosystem solutions.”
Royal DSM is centered around scientific research, delivering goods for human and animal nutrition, personal care, green products, medical devices, and even to industries such as mobility and connectivity. Applied Materials overall seeks to take the realm of global requirements for chips and displays.
“Applied Materials is a global leader in semiconductor processing and patterning with light and e-beam technology,” said Om Nalamasu, President of Applied Ventures and CTO of Applied Materials. “Adaptive3D’s photoresins coupled with large-area processing and advanced patterning techniques could potentially deliver robust materials-based solutions at high throughput and low cost across multiple industry verticals.”
While enormous amounts of attention have been focused on the software and hardware of 3D printing over the last few years, users in many different capacities are now also drawn to delving into the science of materials more than ever imagined; after all, materials are what allow us to bring our concepts and products to fruition in terms of true functionality. Options for materials in 3D printing just continue to develop further, and Adaptive3D continues to expand these horizons, progressing just as they promised when we began following their ambitious journey into high-performance 3D printing materials with the advent of ToughRubber, an extremely flexible photopolymer. Find out more about this Dallas-based company here.
What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
Adaptive3D CEO Discusses the Chemistry of 3D Printing Materials
In April of this year, Dallas, Texas company Adaptive3D launched what it said was the highest-strain 3D printable photopolymer in the world. Dr. Walter Voit, CEO of Adaptive3D, played a big role in the development of the material, called ToughRubber, and recently discussed it in more detail. Adaptive3D claims that ToughRubber can stretch to four times, or 450 percent, its original length, absorb deformation and then recover. This is in contrast to many 3D printable materials, which tend to be brittle. These properties could make ToughRubber ideal for numerous applications, such as the aerospace, automotive, medical and footwear industries.
A lot of careful science went into the development of the material, said Dr. Voit.
“There is this critical space between chemists and materials scientists,” he said. “Chemists are dealing with how reactions happen at the atomic scale and material scientists are building parts from the top down. And they kind of meet in this realm—the nano world—and it’s really difficult for computers, still today, to model that world.”
In the lab, Dr. Voit and his team study the physics of polymers and the properties of mixing compounds and ratios. In addition to the development of ToughRubber, the team has made several fascinating discoveries through their work. For example, they worked with a sulfur-hydrogen group called thiols, which have a rapid reaction with other components. The team discovered how to change this reaction to the thiol groups using the right combination of monomers, oligomers, dyes, inhibitors, initiators, sensitizers, and fillers, resulting in materials that can produce strong and durable 3D printed products.
ToughRubber is another addition to the growing market of functional 3D printable materials, meant not just for prototyping or visual appeal but for actual use in final products. Next, Adaptive3D is looking towards using 3D printing to develop sneakers.
“So what we’re trying to do is lighten that midsole portion to more effectively translate stresses and strains from your leg, knee, foot to ground—to have a lighter-weight shoe that’s more comfortable; that gives you more energy back when you’re running,” said Dr. Voit. “It uses less material, it’s greener, it’s more sustainable, and it’s made with superior plastics and then rubbers.”
Dr. Voit is also a tenured professor at the University of Texas, Dallas, and took a sabbatical to work with Adaptive3D on the development of 3D printing materials. The research that went into ToughRubber began at the university.
“What’s been exciting is to see this whole team of great scientists, researchers, and chemists—a lot of whom are former students from UT Dallas—getting to be in the lab making these discoveries daily and weekly,” he said. “Success really is luck—you’ve got to be in the right place at the right time and get lucky. To the credit of the administration here, they’ve created that right place and right time and so now it’s up to really talented teams to get lucky. That’s happening with greater and greater frequency and I’m very excited about what we can do for Dallas, for Texas, and for the country.”
Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.
[Source/Images: UT Dallas]




