3D Printing News Briefs: October 10, 2019

We’re talking about events and business today in 3D Printing News Briefs. In November, Cincinnati Inc. is presenting at FABTECH, and Additive Manufacturing Technologies and XJet are heading off to formnext. Moving on, Thor3D has announced a new partnership with Rhinoceros.

Cincinnati Incorporated Showing at FABTECH

Machine tool manufacturer Cincinnati Incorporated (CI) is going to FABTECH 2019 next month in Chicago, and plans on showcasing its recently announced partnership with Hendrick Motorsports, along with the #88 car driven by Alex Bowman, and its latest machines at the event. CI is now a full-season associate sponsor of the team’s four-car stable for the next ten years, in addition to its Official Metal Fabrication and Additive Equipment Provider. The racecar will be in booth #A2973 at the show, along with CI’s Hyform and AFX press brakes, Roboform cell, and new CLX laser, which was built specifically for automation-minded metal fabricators. The company’s high temperature Small Area Additive Manufacturing (SAAM HT) machine will be on display in booth #A3839, and its Medium Area Additive Manufacturing (MAAM) machine will make its official debut to the public.

“We’re ready to get to FABTECH and show the fabricating world what we’ve been up to in the past year. Walking through our facility, you can feel the energy and see the production happening. It’s exciting and it’s contagious, and we can’t wait to share it,” said Matt Garbarino, Director of Marketing Communications at Cincinnati Incorporated.

XJet Bringing Extended Carmel Product Line to formnext

FABTECH isn’t the only show in November – formnext is taking place in Frankfurt from November 19-22, and XJet announced that it will be introducing two new versions of its Carmel 1400 3D printer at the event. The Carmel 1400M for metals and the Carmel 1400C for ceramics, both of which use XJet’s NanoParticle Jetting technology, are part of the company’s continuing work to, as XJet put it, “redefine metal and ceramic AM.”

“Formnext is always a highpoint on XJet’s calendar. Each year we hit new milestones, and this is particularly evident at Formnext. From Formnext, XJet will offer two systems, the Carmel 1400C devoted to ceramics and the Carmel 1400M dedicated to metals. While both systems use the same NanoParticle Jetting technology, they are different and have been optimized to handle the different materials. Both will be demonstrated on our booth throughout the show,” said XJet’s CBO Dror Danai.

At Booth C01 in Hall 12.1 of formnext, XJet will demonstrate multiple applications and sample parts that showcase its NPJ technology for both metal and ceramic 3D printing. Representatives from the company’s distribution network will be on hand to answer question, and visitors can also enjoy an immersive, virtual reality experience into XJet’s NanoParticle Jetting at the booth.

Additive Manufacturing Technologies Presenting Modular, 3D Printed Booth at formnext

Sheffield-based Additive Manufacturing Technologies (AMT) will also be attending formnext as it officially exits stealth mode. The company will be showcasing a customizable, modular, and sustainable stand construction at the event, with over 6,000 3D printed parts that will connect 1,100 meters of aluminum tubing to create the booth, which was designed and constructed by Steel Roots Design. Materialise printed the parts out of Nylon PA 2200 material, using SLS technology by EOS, and they were then post-processed with AMT’s own PostPro3D platform. The lightweight parts have complex geometries, with moving features and internal threads that would have been impossible to create using another fabrication process.

“The whole point of exhibiting at a show like Formnext is to demonstrate your technologies and capabilities. At AMT we don’t want to just tell people how good our technologies are, we want to really show them. Our unique stand will show how functional and sustainable 3D printed parts — even at higher volumes — can be utilised when using our automated post processing technologies,” stated AMT’s CEO Joseph Crabtree.

“This level of sustainability commitment is a fundamental principle for AMT at every level of the business. Every decision we make takes sustainability into consideration.”

See AMT’s 120 kg stand structure for yourself at Booth 361, Hall 12.1, at formnext next month. Once it’s been constructed, several other company innovations will be showcased inside, such as the automated Digital Manufacturing System (DMS).

Thor3D and Rhinoceros Sign Partnership Agreement for New Product

3D scanner manufacturer Thor3D and Rhinoceros software developer McNeel have signed a partnership agreement so that Rhino software can now be resold by Thor3D’s distribution partners, along with multiple plug-ins, in a bundle with the Calibry handheld 3D scanner. Rhino’s set of tools for analysis, animation, engineering, free-form 3D modeling, and engineering can now be supplemented by Calibray scans, which can be used as base models. In addition, the bundle can also be extended using Brazil and Penguin rendering software, the Flamingo nXt rendering engine, and integrated animation by Bongo.

“Rhino software is widely known and used worldwide. Many of our customers already use it and our goal is to make it even more accessible to a wider audience. Engineers and digital artists alike, will find this software, in combination with our 3D scanners, extremely helpful in their day-to-day work,” said Anna Zevelyov, the CEO and Co-Founder of Thor3D.

Recommended retail price for the new Calibry and Rhino bundle will be €5,700.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below. 

The post 3D Printing News Briefs: October 10, 2019 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Sliced: Makerbot, 3D Systems, GE Additive, EOS, ColorFabb, TU Delft, SUTD, AMT

This edition of the 3D Printing Industry’s news digest, Sliced, sees a variety of hardware and material releases from Dyze Design, 3D Systems, colorFabb, and EOS, as well as new 3D printing applications in brewing and underwater drones.   All this and more from GE Additive, The Toro Company, Delft University of Technology, Jaguar Land Rover, Additive Manufacturing Technologies, and Singapore University […]

TUM Purchases AMT’s PostPro3DMini for Post-Processing 3D Printed Medical Device Parts

UK-headquartered Additive Manufacturing Technologies (AMT) is a vertically integrated technology development and manufacturing company that creates automated digital solutions to help its customers unlock the potential of industrial 3D printing. In 2017, when the company was founded, it introduced its PostPro3D commercial offering, which automatically smooths elastomeric and nylon 3D printed parts. The patent-pending technology, which was officially released last year, provides an automated and sustainable post-processing solution for high volume, production 3D printed parts, and works on all types of filament- and powder-based 3D printing methods.

Now, AMT has announced the first sale of its new PostPro3DMini system, which was introduced to the market earlier this year. The Institute of Micro Technology and Medical Device Technology (MIMED) of the Technical University of Munich (TUM) confirmed that it has purchased one of AMT’s automated PostPro3DMini post-processing systems, which it plans on using to support its ongoing medical device research.

“We are really pleased to be working with the Mechanical Engineering department at TUM. This is a prestigious research institute that has been working on the progression of AM for many years. The fact that they have purchased the PostPro3DMini to support this research, and for such a demanding application in the medical device sector, is a real testament to the capabilities of the PostPro3D platform and how it can meet the demands for such applications that previously have not been met,” stated Joseph Crabtree, the CEO of AMT.

All of AMT’s post-processing systems are both UL- and CE-certified. The PostPro3DMini is based on the company’s proprietary, automated BLAST (Boundary Layer Automated Smoothing Technology) process, and offers all of the original PostPro3D’s advantages in a more compact unit. It’s a great size for design studios, research institutions, STEM programs, and smaller production runs, and is just as safe and sustainable for polymer 3D printed parts.

Speaking of safety and sustainability, AMT holds these as paramount to its philosophy, and so completed tests on EOS PA2200 3D printed parts processed with its PostPro3DMini. The results conform with all necessary cytotoxicity tests, in addition to skin irritation tests to normative references: ISO 10993-10 (2013), ISO 10993-1 (2018), and OECD TG 439.

The new PostPro3DMini system provides excellent smoothing and surface modification, which is able to achieve a surface quality that’s at least equal to injection molding for 3D printed polymer parts, if not even better. Rather than using water, the process uses a single, recyclable, non-toxic agent instead, and AMT’s automated post-processing hardware is well-suited for applications in medical devices.

The ISO:13485-certified MIMED at TUM has embraced 3D printing as a viable development and production method for its continued research into new medical devices. That’s why the department was on the lookout for a commercially available system for post-processing when it discovered AMT’s PostPro3DMini.

MIMED is currently developing individualized instruments for different medical applications using EOS PA2200 material; obviously, as this material is what was tested on the PostPro3DMini, the institute sees a lot of potential for the system. The PostPro3DMini will be integrated into MIMED’s 3D printing process for creating medical devices, in order for the institute to increase its range of SLS medical device parts.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

[Images: Additive Manufacturing Technologies]

The post TUM Purchases AMT’s PostPro3DMini for Post-Processing 3D Printed Medical Device Parts appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Why Automated Post Processing Makes Manufacturing With 3D Printers Possible

In Material Extrusion (FDM), we can now use inexpensive machines to make dimensionally accurate & tough parts in various materials at low cost. These parts can fulfill many industrial and manufacturing applications bar one glaring defect. Material Extrusion (FDM) parts are often ugly, and layers can be seen on the rough parts. FDM parts and materials are improving all the time; parts are getting smoother and better looking out of the machine. Clusters of FDM machines bring throughput and versatility and have begun to be used to manufacture parts at scale.

With Selective Laser Sintering (powder bed fusion), one can make thousands of individual parts in many different geometries. Highly detailed polyamide SLS parts have been used for tens of thousands of surgical guides and have found many industrial applications. All parts have to be depowered and cleaned of excess powder, however. Additional steps, such as mechanical finishing are often needed to close the open surface texture of SLS parts.

With Dye Mansion depowdering is combined with surface improvement and coloring to make parts more world proof.

With SLA (stereolithography, vat polymerization) tens of millions of molds have been made for jewels with millions more being used in the dental industry. Additionally, millions of intermediates have been made for aligners. Direct SLA parts in hearing aids have revolutionized the In The Ear hearing aid industry, winning the market in customized fit ITE hearing aids. And yet, every SLA part has to be cut off of supports manually, and most have to be filed down afterward. Parts have to be conveyed to a washing station and a UV flash machine.

Meanwhile, in the SLS world, the future of manufacturing consists of a man with a brush brushing off powder from a part. It won’t surprise you that a third of part costs are perhaps due to finishing and post finishing parts. We boast of machines that can, in a day, make a new part, only to casually leave out that this part may spend another day in a tumbler. We jump on the gleeful subsidy bandwagon that is Industry 4.0 while a lot of the cost of 3D printed parts is in conveyancing.

Additive Manufacturing Technologies‘ automated surface finishing colors and finishes in one step.

Significant part costs comprise of people carrying parts around a factory. A woman leans over, looks at a piece of paper, matches the part, carries it to her station and then later puts it on a tray where a colleague takes it to a new station. This is Industry Bore.0, not 4.0. And metal printing? Like all things, it makes the polymer part of our industry look easy. Parts have to be sawed off by hand, and a number of post-processing stations always pay a part: from HIP to EDM to shot peening to destressing to spending a week in a tumbler it often needs to happen to your metal part.

We can not ask industrial manufacturing firms to learn new ways of thinking, master design for additive, change parts in their inventory and take on new unknown risks in return for a future where parts are marched around a “factory.” I say factory partially in jest because currently manufacturing with 3D printing is much closer to a collective of be-dreaded sandal-wearing artisanal vegan soap makers than actual manufacturing.

Rosler’s AM Post Processing Line of machines remove powder, support and structures.

Imagine us, some hippie collective with handcrafted bamboo bowls trying to sell our way to the Six Sigma people? Just change everything; it will be great. Hope is the new one error per ten million. Do you want a Craft aircraft? Do artisanal aero engines sound like a good idea to you? Would you like to take a trip to Mars on a handcrafted rocket? Would you like your next hip to be made with love? Or would you prefer it to have things like quality control? We’re currently selling a dream to manufacturers that for many applications, we can not turn into a reality.

Post Process showing you parts before and after their process.

What can make 3D printing for manufacturing real? Automated Post Processing. By automating the entire post-processing chain, we can dramatically lower the part costs of 3D printed parts. We can make many more business cases worthwhile by making 3D printed parts significantly cheaper. By automating conveyancing throughout the plant, we can dramatically reduce the overall cost at high throughput. By offering post finishing to improve the surface quality of parts, we can make better looking and better-performing parts. Consumer-friendly and industry-friendly parts can ensure that the adoption of 3D printing is more rapid. The combination of automated post-processing with 3D printing will let parts be produced close to the consumer in wealthy countries at a reasonable cost. Improved post finishing processes will improve surface quality and let 3D printed parts be deployable for many more applications. If we integrate automated QC and QA processes into post-processing setups, we can genuinely offer manufactured 3D printed parts to many industries. Many firms are looking into automating the entire post-processing chain. From Post Process to Rosler, Additive Manufacturing Technologies and Dye Mansion, it is these companies that will unlock manufacturing for us all.

The post Why Automated Post Processing Makes Manufacturing With 3D Printers Possible appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Additive Manufacturing Technologies’ four pillars of sustainability

UK-based post-processing specialist Additive Manufacturing Technologies (AMT) is promoting safety and sustainability in 3D printing through four pillars; no waste, better chemistries, less energy, less labor, and consumables.   According to Joseph Crabtree, CEO of AMT, “It is important when looking at the use of AM as a production technology to analyze all steps involved from […]

3D Printing News Briefs: May 16, 2019

We’ve got plenty of business news for you in today’s 3D Printing News Briefs, starting with Additive Manufacturing Technologies’ impressive growth as of late. ExOne has announced a collaboration with Oak Ridge National Laboratory, and DigiFabster has announced several updates to its platform. Moving on to new product launches, Shining3D has a new industrial metrology system, and peel 3d introduced a new affordable 3D scanner.

Additive Manufacturing Technologies Showing Rapid Growth

L-R: Gavin Minton and David Manley

UK-based Additive Manufacturing Technologies (AMT) was founded in 2017 and is now emerging from semi-stealth mode and into full commercial production with its automated post-processing and finishing solutions for 3D printed parts. The company is showing rapid growth forecasts, and has been opening new US facilities, announcing partnerships, and hiring important personnel to help with its mission of providing the industry with industrial AM post-processing. AMT has made two important strategic additions to its Global Innovation Centre in Sheffield, appointing David Manley as Non-Executive Chairman and hiring Gavin Minton as the Aftersales and Customer Experience Manager.

“These are indeed exciting times at AMT as we aggressively market and sell our PostPro3D post-processing systems for AM parts having moved from the semi-stealth mode we have been operating in for a couple of years. We have been growing rapidly, but now we are moving to the next level — with our technology capabilities, our facilities and our brilliant team. We are really excited to welcome David and Gavin to AMT — they will be fundamental to our continued growth strategy,” said Joseph Crabtree, CEO at AMT.

“The post-processing step has long been the Achilles heel for AM as it moves to being a true mass manufacturing technology, and we are proud to offer our fully automated solution, which is already revolutionising the ways in which manufacturers integrate AM as a mass production tool. AMT is working in partnership with numerous OEMs, vendors and material suppliers to take the pain out of post-processing with an intelligent and collaborative approach, and we are scaling up production globally in order to share the progress we have made with our post-processing solutions. David and Gavin will join our team to provide key support in this mission.”

ExOne Announces Collaboration with Oak Ridge National Laboratory

The ExOne Company, which manufactures 3D printers and provides 3D printing services to industrial customers, is collaborating with Oak Ridge National Laboratory (ORNL) to continue advancements in binder jet 3D printing technology. Binder jetting is important because it offers lower operating costs, and maintains higher levels of productivity, than many other AM technologies, and ExOne is an industry leader in non-polymer binder jet 3D printing. Its collaboration with ORNL is targeted initially on developing technology for new binder jet systems, leveraging ORNL’s instrumentation and advanced data analysis methodologies, as well as the Department of Energy’s Manufacturing Demonstration Facility (MDF) at ORNL, in order to optimize chemistry and process parameters for its sand and metal systems.

“By collaborating with a world-class lab like Oak Ridge National Laboratory, we accelerate ExOne’s binder jetting technology capabilities,” said Rick Lucas, ExOne’s Chief Technology Officer. “We believe these collaborative efforts will effectively and efficiently result in the establishment of new materials, binders and process developments, retaining our significant edge over competitors and other technologies in the industrial manufacturing space.”

DigiFabster Announces Platform Updates

3D printing software and services provider DigiFabster, which uses its software-as-a-service (SaaS) platform to help companies easily automate and streamline certain business processes, announced that it had made several important enhancements to its platform this spring that will benefit many different types of users, including 3D printing service bureaus. The company has many customers who use HP’s Multi Jet Fusion technology, which accepts the 3MF file format, and DigiFabster’s platform now supports 3MF direct uploads through its web-based widget.

DigiFabster also enabled a new feature so that customers can accept purchase orders as a form of payment, and modified the code for its Floating button installation so that it can adapt to different screen widths. Another new capability makes it possible for CNC users, like machine shops, to easily change their pricing based on how complex the machine work is, and the DigiFabster system was also updated to automatically check for wall thickness, so that the files customers receive are ready.

SHINING 3D Launched New Metrology Products

Chinese 3D printing and digitizing company SHINING 3D recently attended the international Control trade fair for quality assurance, and released its latest industrial metrology solution at the event. Three products make up the portable system – the FreeTrak optical scanner, Freescan Trak 3D scanner, and FreeTrak Probe – which work separately and together to offer a comprehensive industrial scale measurement solution.

The versatile FreeTrak system of the wireless solution can capture the scanner structure’s spatial position in real time, and also allows the user to move the part, or tracker, during measurement without the results being compromised, which makes it perfect for use in unstable environments. The FreeTrak Probe, a portable CMM probing system created for use in industrial environments, is not “susceptible to environmental influences” like position changes and vibration, and can be used to generate highly accurate data even in challenging places. The FreeTrak system is now being integrated into SHINING 3D’s metrology and industrial solution ecosystem.

peel 3d Introduces Affordable 3D Scanner

Canadian 3D scanner developer peel 3d is on a mission to provide universal access to affordable, professional-grade 3D scanning technology. Located in Québec, the peel 3d team just launched the peel 2, a brand new variant of its peel 1 scanner that has three cameras instead of just one, for maximum accuracy, resolution, and realism. Powered by Creaform technology like its predecessor, the easy to use peel 2’s integrated color-capture functionality allows users to archive objects in high definition, as well as in their original colors, and monitor the accuracy and progress of the surface coloring. The new peel 2 also features new and improved peel 2.0 software with more functionalities, in addition to a system that uses a scanned object’s texture to improve its ability of positioning itself accurately in space.

“peel 2 pushes back all technical boundaries and redefines the concept of affordable 3D scanners,” stated François Leclerc, the head of the peel 3d initiative. “It will appeal as much to artists wishing to switch over to digital as it will to medical professionals wanting to scan the human body or mechanics working with existing components. It is by far the most comprehensive entry-level scanner on the market.”

The peel 2 is available for purchase online from peel 3d and select retailers for $7,490.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

Additive Manufacturing Technologies to debut two new systems at RAPID + TCT 2019

Additive Manufacturing Technologies (AMT), an award-winning UK-based post-processing systems manufacturer, will unveil two new machines at RAPID + TCT 2019 in Detroit, Michigan, next month. On May 20-23rd, the PostPro3DColor and PostPro3DMini will be showcased with the company’s PostPro3D system which was launched late last year. This machine is designed to smooth thermoplastic 3D printed […]

CIPRES Introducing New Industrial Dyeing Machine for 3D Printed Parts at formnext

In 2004, coloring process service provider CIPRES Technology Systems was founded by Carlos Prestien; two short years later, the German company branched out and began offering serial production of SLS 3D printed components. Over the years, it’s continued developing color techniques, color units, and solutions for surface finishing. This summer, CIPRES GmbH was formed to take over the original company’s service sector, and also provides coloring and finishing machines for 3D printed components.

At formnext 2018, which opens tomorrow in Frankfurt, CIPRES will be presenting a new industrial dyeing machine: the eCOLOR Type 1/350/1 for 3D printed serial parts and components made out of polymer materials. The company partnered with Thies GmbH & Co. to produce the industrial machine, which was made specifically to treat 3D printed serial components, functional prototypes, and spare parts. The highly productive system offers excellent dyeing results and high reproducibility, in addition to a lower environmental impact and cost.

The new eCOLOR system, which can precisely adapt chemicals and dyes, can run at operating temperatures of up to 140 °C and at maximum 5bar operating pressure. With its user-friendly software and high-tech controller for monitoring each and every step of the process, the system offers what the company calls “perfect process reliability.” The software also helps users define and optimize jobs, according to their application-oriented or technical needs.

The eCOLOR Type 1/350/1 is designed to cover standard production capacities up to 37 liters, and has a packing diameter of 310 mm and packing height of 500 mm. It also has a flexible loading system for small (8 L), medium (19 L) or large (31 L) batch sizes, and all Thies machines comply with safety regulations and pressure vessel codes of various operating sites, such as ASME. In addition, the system’s frequency inverter driven pump allows for an accurate and economic adjustment of the liquor flow and the flow direction, which helps optimize each stage of the dyeing process.

In order to ensure it’s making the strongest products, CIPRES needs the strongest partners, like Thies, which originated in the traditional textiles area of Münsterland, Westphalia over 120 years ago. Together, the two companies are working to complete the product chain in terms of refining 3D printed nylon parts.

“The combination of our complementary expertise in colors, coloring and finishing solutions will open a new chapter in our common history,” CIPRES wrote in a press release. “We will entrance the excellences of this partnership to improve and expand your portfolio.”

In addition to Thies, CIPRES has several other strong partners, such as Additive Manufacturing Technologies (AMT). which offers automated post processing solutions with its complementary PostPro3D technology. CIPRES is also partnering with Swiss specialty chemicals company Archroma, which brings 130 years of color expertise with its soon-to-launch 3D Cosmic range for coloring 3D printed goods, and surface preparation and finishing leader Rösler Oberflächentecknik GmbH. We’re seeing a lot happening in post processing which should bode well for people wanting less expensive better looking 3D printed parts. If we as an industry want to produce high-quality consumer-friendly parts at volume then automation and automated post processing is what will get us there.

Visit CIPRES at formnext this week at booth G38 in Hall 3.1.

What do you think about this news? Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

[Images provided by CIPRES]

3D Printing News Briefs: November 9, 2018

Buckle your seat belts, because we’ve got a of news to share with you in today’s 3D Printing News Briefs, starting with more event announcements and moving on to several new partnerships, a workshop, and a 3D printing project. Nanogrande introduced its new 3D printer for nanometer metallic particles at Fabtech this week, while Sartomer and Nanoe are launching new 3D printing innovations at formnext. Creatz3D is working to accelerate ceramics 3D printing in Singapore, while partnerships were announced between Valuechain and Clad Korea, PostProcess and Rösler, and Additive Manufacturing Technologies and Mitsubishi Electric. Finally, two Fraunhofer Institutes are hosting an AM materials workshop, and a maker from YouTube channel Potent Printables is sharing a new project.

Nanogrande Introduced First 3D Printer for Nanometer Metallic Particles

At FABTECH 2018 in Atlanta this week, Nanogrande officially introduced its new 3D printer. The MPL-1, enabled with the company’s Power Layering Technology, is actually the first nanoscale 3D printer for metallic particles in the world, and could successfully open up new 3D printing horizons. Nanogrande has spent years working to develop the new 3D printer.

“Power Layering, while maximizing particle compaction, allows MPL-1 to use particles of all shapes, sizes and types. With this approach, we can easily print with particles as small as a nanometer, but also particles of 5 microns, what the industrial sector is currently seeking. At this size, the particles stick to each other, virtually eliminating the need for support structures typical to 3D printing. In this way, there is a considerable reduction in post- printing costs,” said Juan Schneider, the President and Founder of Nanogrande.

“Today we are witnessing the culmination of a long process of research and development that has given us the chance to set up a team that generates many innovative ideas. Alone, it is possible to have excellent ideas; but, as a team, we can bring these ideas to life. I am very pleased to highlight the success of the efforts of the people who work for Nanogrande.”

Sartomer Europe Introducing New UV-Curable Resins

At formnext in Frankfurt next week, the European division of specialty chemical supplier Sartomer, a business unit of Arkema, will be launching new products in its N3xtDimension line of UV-curable engineered resins as part of its new commercial 3D printing-dedicated platform. The new materials will help companies fulfill performance and regulatory requirements for multiple industrial applications, thanks to their excellent tunability and mechanical properties. At its booth H58 in Hall 3.1 at formnext, Sartomer will introduce N3D I-2105, with impact resistance for manufacturing functional parts; N3D-F2115, which can achieve varying levels of flexibility depending on post treatment; and N3D P-2125, which is perfect for prototyping with its homogeneous network and limited evolution of mechanical properties after post-curing is complete.

“We are addressing the needs of demanding and innovative 3D printing markets by partnering with global leaders to deliver custom material solutions for end-use applications. Through our range of products and services dedicated to additive manufacturing, we are supporting the 3D printing sector as it grows and continues to develop new applications,” said Sumeet Jain, the Global Director for 3D Printing Business at Sartomer.

Nanoe Launches Ceramic and Metal 3D Printer

In other formnext news, French company Nanoe, which is a leader in high-tech raw materials and also specializes in ceramics 3D printing, will be introducing its new Zetaprint system for desktop 3D printing of ceramic and metal materials. The team will perform a live demonstration of the 3D printer at the event, and explain the full 3D printing, debinding, and sintering process.

Additionally, the company will be launching its new stainless steel 16L Zetamix filament. These filaments, made up of a ceramic or metal powder and a polymer matrix, can be used to make high density parts in any FDM 3D printer.  Nanoe, which is also developing materials in Inconel and titanium, will also soon be launching a complete line of adapted FDM 3D printers. Visit the company at booth A74 in Hall 3.0 next week at formnext to see a live Zetaprint demonstration and 3D printed parts in various Zetamix materials.

Creatz3D Accelerating Ceramics 3D Printing in Singapore

Speaking of ceramics, Creatz3D Ceramics Service Bureau is dedicated to 3D printing ceramics parts. Founded last year, its parent company is Singapore-based 3D printer and AM software solutions seller Creatz3D, which partnered with 3DCeram Sinto in Limoges to create the service. This partnership, signed in 2016, facilitated the first installation in Singapore of 3DCeram Sinto’s Ceramaker 900 Ceramic 3D printer, at the Advanced Remanufacturing Technology Centre. The Creatz3D Ceramics Service Bureau, which offers diverse material options and a hassle-free experience, is the first, and only, ceramics-focused 3D printing service in the country, and is helping to increase awareness and adoption of ceramics for 3D printing.

“The addition of ceramics to Creatz3D’s portfolio ensures that they stay ahead of the pack in the competitive 3D printing landscape, and their expertise can demonstrate the game-changing capabilities that the technology has to offer to help advance design, engineering, and manufacturing,” said Sean Looi, the General Manager of Creatz3D.

Valuechain Signs Strategic Partnership with Clad Korea

British technology company Valuechain reports that it has signed a strategic partnership with manufacturing company Clad Korea, in order to digitalize 3D printing in East Asia. Both companies will be able to grow their association together in the initial agreement, in addition to bringing Valuechain’s solutions, including its flagship DNA am production control software, to the East Asian AM marketplace. This software addresses 3D printing production process niche requirements, like powder traceability and managing AM build plans.

“Valuechain’s DNA am technology is a unique offering to the market, with great potential to enable rapid and mass production of additive manufactured parts. As we look to enter the additive manufacturing market ourselves, we believe this product will give us a competitive advantage in the industry, and we’re excited to be able to contribute to the growth of this technology in Asia by helping to deliver this solution throughout South Korea,” said Brandon Lee, the CEO of Clad Korea Co. Ltd.

PostProcess Technologies Partnering with Rösler

Moving on with strategic partnerships in the 3D printing world, PostProcess Technologies Inc., a pioneer of software-drive 3D post-processing solutions, is working with Rösler Oberflächentechnik GmbH, which sells finishing systems for traditional manufacturing, to bring automated, intelligent post-print solutions to Europe. Rösler will provide PostProcess’ data-driven support removal and surface finishing solutions for 3D printing to the European market, making it the only surface finishing supplier that will be providing solutions tailored to the needs of both traditional and additive manufacturing. The two companies will debut their partnership next week at formnext, with PostProcess’ technology on display in its booth H68, as well as Rösler’s booth E20, both of which are in Hall 3.0.

“The additive space is rapidly growing, especially in Europe, and as such, the demand for an automated post-printing solution is accelerating. Rösler is a unique partner for PostProcess, bringing expertise in finishing systems with a broad European footprint, thousands of existing customers, and a strong presence across a range of industries that will greatly benefit from PostProcess’ proprietary and integrated software, hardware, and chemistry solution,” said Bruno Bourguet, the Managing Director for PostProcess Technologies.

Additive Manufacturing Technologies Announces Partnership with Mitsubishi Electric

Sheffield-based Additive Manufacturing Technologies Ltd (AMT) has entered into a partnership with Mitsubishi Electric in order to further develop its PostPro3D system with an integrated automation solution, which could provide a major productivity boost for 3D print post-processing. This new solution is based on Mitsubishi Electric’s MELSEC iQ-F Series compact PLC, HMIs, SCADA and MELFA articulated arm robots. While PostPro3D is already pretty impressive, with its ability to automatically smooth an object’s surface to 1μm precision, AMT wanted to further develop the system with certified automation products so it would be suitable for Industry 4.0. Now, PostPro3D is equipped with a Mitsubishi Electric power supply and low voltage switchgear, servo drives and motors, FR-D700 frequency inverters and the optional six-axis robot arm.

“To realise our concept, we needed an automation partner that could provide the whole range of machine control systems, as well as the actual robotics. This is fundamental to truly integrate our machine into the production line of the future as well as to benefit from a lean, single vendor distribution model,” explained Joseph Crabtree, CEO at AMT.

“Mitsubishi Electric was the clear choice because it offers a one stop shop for state-of-the-art automation solutions. In this way, we can be sure that the different components are compatible and can share data. Overall, the company can offer us products that adhere to UL, CE as well as Industry 4.0 requirements.”

Fraunhofer AM Materials Workshop 

On November 29 and 30 in Dresden, Germany, Fraunhofer IKTS and Fraunhofer IWS are holding a workshop called “Hybrid materials and additive manufacturing processes.” The two institutes are working together to organize the workshop, which will be held in English and discuss innovative technologies for 3D printing metallic and ceramic components, in addition to application-specific manufacturing of material hybrids. Participants in the workshop’s practical insight sessions will be able to see diverse AM devices for multimaterial approaches live and in action.

“Why is that interesting? Additive manufacturing technologies for material hybrids open up new possibilities in production for diverse industrial branches,” Annika Ballin, Press and Public Relations for Fraunhofer IKTS, told 3DPrint.com. “It is not only possible to realize complex geometries, but also to functionalize components (sensors, heaters), to individualize production (labeling, inscriptions) and to combine different materials properties in one component (conductive/insulating, dense/porous etc.).”

The workshop, which costs €750, will be held at Fraunhofer Institute Center Dresden, and registration will continue until November 22.

DIY 3D Printed Linear Servo Actuators by Potent Printables

A maker named Ali, who runs the Potent Printables YouTube channel, recently completed a neat design project – 3D printed linear actuators. Ali, who was partly inspired by a Hackaday post, said that the project has received a great response on both Twitter and Instagram. He designed the parts in SOLIDWORKS, and controls them with an Arduino Uno. The simple rack-and-pinion design, perfect for light loads, comes in two sizes for different space constraints and force outputs.

“Each design has a pinion that has to be glued to a servo horn, and a selection of rack lengths to suit your needs,” Dan Maloney wrote in a new Hackaday post about Ali’s project. “The printed parts are nothing fancy, but seem to have material in the right places to bear the loads these actuators will encounter.”

Check out the video below to see the 3D printed linear actuators for yourself:

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.