US Air Force Base in Utah Creating 3D Printed Replacement Parts for F-35 Fighter Jets

The US military has not shied away from implementing modern manufacturing methods such as 3D printing, but has actually embraced the technology. In fact, the US Air Force has used 3D printing for multiple projects, including components for aircraft and fighter jets, such as the F-35. This is what’s known as a next-generation fighter, and the 388th Maintenance Group of the Hill Air Force Base in Utah recently began 3D printing specific replacement parts for the F-35. Base officials are hoping that the technology will help to lower costs and increase availability.

Many branches of the military have turned to 3D printing to make replacement parts for those very same reasons.

“We’re always driving for speed, safety and quality. But cost-effectiveness is also a priority,” said 388th MG commander Col. Michael Miles. “This new tech has great cost-avoidance potential and provides rapid repair capabilities.”

Tech Sgt. Scott Mathews, assistant manager of the 388th Maintenance Group’s Air Force Repair and Enhancement program, makes adjustments to a 3-D printer the unit is experimenting with to create pieces and parts faster and more cost-effectively. [Image: Todd Cromar]

According to Tech. Sgt. Scott Mathews, assistant manager of the 388th MG’s Air Force Repair and Enhancement Program, early returns are showing that when his shop gets in damaged parts that are able to be reproduced through 3D printing, they are then able to be introduced into the supply chain with greater speed and at lower cost.

Tech. Sgt. Mathews explained, “It’s much more cost effective for the Air Force than buying new parts.”

One of the first items the team at the 388th MG created was a small-scale replica of the F-35 fighter jet. But now they’ve moved onto 3D printing simple plastic replacement parts, such as cable splitters, fasteners, grommets, housing boxes, and wiring harnesses. Tech. Sgt. Mathews said that many areas of the shop have figured out how to make the 3D printing easier to work with by “getting away from a lot of fancy metals and getting into composites and plastics.”

F-35 [Image: Lockheed Martin]

However, the technology is still young in the shop at Hill AFB, and the unit’s airmen are using trial and error to refine things, including using computer software to make their own in-house designs. There are even signs that they could manufacture more complex parts out of stronger materials in-house one day.

“There’s one printer (where) you can print with aluminum. That opens up a whole new world of opportunities,” said Tech Sgt. Matthews. “When you look at all of the different parts we could manufacture … it just boggles the mind, the things we could (make) on base. It’s just insane.”

The first two F-35 fighter jets arrived at Hill AFB in September of 2015. But, by the end of 2019, there will be three whole fighter squadrons, made up of a total of 78 jets, on the base. The active duty 388th Fighter Wing and the reserve 419th both fly and maintain the jets, while the Ogden Air Logistics Complex on base performs maintenance on all of the F-35s. Hopefully, 3D printing can soon be used to help with all of this maintenance.

Tech Sgt. Matthews said, “There’s a sense of pride knowing you played at least a minuscule role of getting them airborne.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Source: Standard Examiner]

Metal 3D Printing Material Scalmalloy Could be the Aircraft Material of the Future

[Image: GE Aviation]

Aviation is one of the many industries around the world that’s increasing its adoption of 3D printing, which can be used to create the lightweight components and complex parts that are necessary for an airplane. The technology makes these parts with repeatable characteristics and consistently high quality, and can also decrease the amount of time, money, and materials needed to produce them, making the overall supply chain more efficient.

Speaking of these materials, we most often hear about components being made with strong thermoplastics and metals, such as titanium. But there’s another metal out there – a lightweight, corrosion-resistant aluminium alloy nearly as strong as titanium – that could be the hero we all need for the future of aircraft. I am of course referring to Scalmalloy, an aluminum-magnesium-scandium alloy developed and patented specifically for metal 3D printing by APWorks.

Scalmalloy is a highly ductile material that works on all existing powder bed SLM 3D printers. With a stable microstructure at temperatures of up to 250ºC, it’s highly weldable and can easily be machined for use in industries like aviation and automotive. Additionally, the material was developed specifically to use the lowest buy-to-fly ratio when compared to parts designed and manufactured using conventional methods.

Recently, a collaborative group of researchers from the Nanjing University of Aeronautics and Astronautics (NUAA) and the Fraunhofer Institute for Laser Technology (ILT) published a paper about another scandium-reinforced aluminum alloy, titled “Selective laser melting of rare earth element Sc modified aluminum alloy: Thermodynamics of precipitation behavior and its influence on mechanical properties,” in the Additive Manufacturing journal.

The abstract reads, “The interest of selective laser melting (SLM) Al-based alloys for lightweight applications, especially the rare earth element Sc modified Al-Mg alloy, is increasing. In this work, high-performance Al-Mg-Sc-Zr alloy was successfully fabricated by SLM. The phase identification, densification behavior, precipitate distribution and mechnical properties of the as-fabricated parts at a wide range of processing parameters were carefully characterized. Meanwhile, the evolution of nanoprecipitation behavior under various scan speeds is revealed and TEM analysis of precipitates shows that a small amount of spherical nanoprecipitates Al3(Sc,Zr) were embedded at the bottom of the molten pool using a low scan speed. While no precipitates were found in the matrix using a relatively high scan speed due to the combined effects of the variation of Marangoni convection vector, ultrashort lifetime of liquid and the rapid cooling rate. An increased hardness and a reduced wear rate of 94 HV0.2 and 1.74 × 10-4 mm3N-1 m-1 were resultantly obtained respectively as a much lower scan speed was applied. A relationship between the processing parameters, the surface tension, the convection flow, the precipitation distribution and the resultant mechanical properties has been well established, demonstrating that the high-performance of SLM-processed Al-Mg-Sc-Zr alloy could be tailored by controlling the distribution of nanoprecipitates.”

3D printed Scalmalloy aircraft partition

The researchers fabricated Sc- and Zr-modified AI-Mg alloy using SLM 3D printing, and were then able to provide clarification on the relationships between the convection flow, precipitate distribution, mechanical properties, and scan speed. SEM and TEM characterize the various precipitation behavior between different scan speeds, and a relatively low scan speed helped to evaluate and explain how significantly the material’s hardness had improved.

Authors of the paper are Han Zhang, Dongdong Gu, Jiankai Yang, and Donghua Dai from NUAA, and Tong Zhao, Chen Hong, Andres Gasser, and Reinhart Poprawe from Fraunhofer ILT.

Discuss this materials research and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

[Images: APWorks unless otherwise noted]

GE Additive Partnering Up with Honda and Triumph Group for 3D Printing Acceleration

GE Additive, which is attending the Farnborough International Airshow this week, has been busily dropping announcements from the trade fair, the latest of which is centered around its AddWorks additive consulting service provider. GE Additive and AddWorks were chosen by the Honda R&D Co., Ltd, Aircraft Engine R&D Center in Japan to help increase the development of 3D printed aerospace applications for its future generation aircraft engines.

SmarTech Publishing stated that over $280 billion will be invested in additive manufacturing over the next decade, and GE Additive wants in. Last spring, the company announced that it would be increasing its focus on additive manufacturing, planning to sell 10,000 3D printers by 2026 and become a $1 billion business by 2020. This announcement was followed by setting up operations in Japan this winter, and announcing that more commercial offerings would be available last month. Now, it’s continuing to increase its commercial efforts in Japan by focusing on important industries like automotive and aerospace.

“We are pleased that Honda Aircraft Engine R&D Center has selected GE Additive to be its vendor in providing AddWorks consulting services to further the use of this transformative technology in its future generation aircraft engines,” said Thomas Pang, the Director of GE Additive in Japan. “We are in the best position to share our learnings from our own additive journey, having started from prototyping to successfully applying it to mass production for aviation engine parts.”

Honda R&D Headquarters

GE and Honda have been partnering together in the aviation industry for over ten years, first setting up the joint venture GE Honda Aero Engines LLC in 2004 between Honda Aero and GE Aviation, and then creating the GE Honda HF120 jet engine for use on lighter business jet aircraft like the successful HondaJet – the most delivered in its category last year.

To assist customers in adding 3D printing to their business workflows, GE Additive provides materials, 3D printers, and the engineering consultancy services of AddWorks; these consultants use their AM expertise to help clients figure out if adopting 3D printing will be beneficial in terms of performance and cost. GE Additive is hopeful that AddWorks will help Honda Aircraft Engine R&D Center, and ultimately lead to further growth of its partnership with the company and increased AM adoption in aerospace.

At its Japan location, GE Additive will sell Concept Laser and Arcam EBM 3D printers, along with materials, both directly and through local resellers to customers in the country that focus on heavy industry, automotive, and aerospace.

In addition to the partnership with Honda, Pennsylvania-headquartered Triumph Group, a leader in the aerospace industry, is working to further its own AM strategy by selecting two of GE Additive’s 3D printers and a variety of AddWorks design and engineering consultancy service packages. Triumph hopes that these new additions will help to support both its commercial objectives and its R&D initiatives.

“I really admire Triumph’s smart and progressive strategy in adopting a multimodality approach to their additive journey. And when you add to that the deep experience and divergent thinking of our AddWork’s team, I look forward to seeing the results of what I hope will be a long and rewarding relationship,” said Jason Oliver, the President and CEO of GE Additive.

Triumph works in all levels of the aerospace supply chain, ranging from single components and complex systems to aerospace structures, in order to offer solutions for an aircraft’s entire product life cycle. The company enjoys a competitive advantage over similar businesses thanks to its ability to integrate several capabilities and products.

The aerospace company chose an M2 Cusing Multilaser DMLM system from Concept Laser, as well as an Arcam EBM Q20plus system, both of which should be fully installed at its Seattle R&D facility within Q3 of 2018.

“Triumph Group is excited to work with GE Additive to broaden Triumph’s utilization of additive manufacturing technology. Thus far we have successfully used additive manufacturing for prototyping, and we are rapidly growing its use for design competency,” said Dan Crowley, the President and CEO of Triumph Group. “This partnership with GE Additive will strengthen our additive manufacturing capability, accelerating our ability to design and develop future on-wing solutions for our customers.”

L-R: Gary Tenison, VP Strategy & Business Development, Triumph Group; Jason Oliver, President & CEO, GE Additive; Dan Rowley, President & CEO, Triumph Group; David Joyce, Vice Chair of GE and President and CEO, GE Aviation; Tom Holzthum, EVP Integrated Systems, Triumph Group; Ryan Martin, Sales Leader Americas, GE Additive

Right from the beginning, GE Additive’s AddWorks team will work with Triumph in multiple areas, such as advising on prototyping strategies, discovery workshops, and materials selection.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below. 

[Images provided by GE Additive]

Lockheed Martin 3D Prints Large Titanium Domes for Satellite Fuel Tanks

Global security and aerospace company Lockheed Martin has made many significant contributions to its industry through the use of 3D printing, from propulsion tanks and spacecraft parts to missile components and fuel tanks. The company, which received three Edison Awards this year for ground-breaking innovations in autonomy, directed energy, and satellite technology, has been invested in the innovative technology for quite some time, and recently completed the largest 3D printed parts it’s ever created…so far.

In order to hold up under difficult launch conditions and decade-long missions in the zero gravity conditions of outer space, satellite fuel tanks need to be both lightweight and strong. Titanium is an obvious choice of material, but it can take over a year to acquire 4-foot-diameter, 4-inch-thick titanium forgings, which also increases the overall cost of the tank. Additionally, if traditional manufacturing methods are used to fabricate these forgings, over 80% of the material is wasted.

This infographic shows the scale of the 3D printed domes, their placement on the tank, and overall location within an LM 2100 satellite.

That’s why Lockheed Martin chose to employ 3D printing to create a record-setting, 46-inch-diameter titanium dome for its satellite fuel tanks.

“Our largest 3-D printed parts to date show we’re committed to a future where we produce satellites twice as fast and at half the cost. And we’re pushing forward for even better results,” Rick Ambrose, the Executive Vice President of Lockheed Martin Space, explained. “For example, we shaved off 87 percent of the schedule to build the domes, reducing the total delivery timeline from two years to three months.”

The new fuel tank for Lockheed Martin’s largest satellites have 3D printed domes integrated into the body to cap them off.

The tank is made up of a traditionally manufactured, variable-length titanium cylinder, which is capped by two 3D printed domes; these three pieces are then welded together to make up the final product. Technicians at Lockheed Martin’s Denver facility fabricate the domes using Electron Beam Additive Manufacturing (EBAM) technology on a large 3D printer.

By 3D printing the domes, there is no longer any material waste, and the titanium is available to use with no wait time, which lowers the delivery time of the satellite tank from two years to just three months. This in turn helps the company cut its satellite schedule and costs by 50%.

“We self-funded this design and qualification effort as an investment in helping our customers move faster and save costs. These tanks are part of a total transformation in the way we design and deliver space technology,” said Ambrose. “We’re making great strides in automation, virtual reality design and commonality across our satellite product line. Our customers want greater speed and value without sacrificing capability in orbit, and we’re answering the call.”

These 3D printed tank domes are far bigger in size for the company’s qualified 3D printing materials – previously, its largest part was an electronics enclosure for the Advanced Extremely High Frequency satellite program that was only the size of a toaster. That makes these domes, which are large enough to hold nearly 75 gallons of liquid, a pretty big leap.

A Lockheed Martin engineer inspects one of the 3D printed dome prototypes at the company’s space facility in Denver.

The final rounds of quality testing for the satellite fuel tank and its 3D printed domes were completed earlier this month, which finally ends a multi-year development program with the goal of successfully creating giant, high-pressure tanks to carry fuel on satellites. Lockheed Martin technicians and engineers spared nothing on their quest to ensure that the tanks would meet, and even exceed, the reliability and performance required by NASA, as even the tiniest of flaws or leaks could spell disaster for a satellite’s operations.

The structure of the vessel was “rigorously evaluated,” according to a release, and the company’s techs ran it through an entire suite of tests in order to demonstrate its repeatability and high tolerances. Lockheed Martin is now offering the large satellite fuel tank, complete with its two 3D printed domes, as one of the standard product options for its 2100 satellite buses.

Discuss metal 3D printing, aerospace applications, and other 3D printing topics at 3DPrintBoard.com, or share your thoughts in the Facebook comments below.

[Images: Lockheed Martin]

 

 

Update On Made In Space’s 3D Printed Asteroid Spacecraft Research

California 3D printing and space technology firm Made In Space is responsible for such out of this world innovations as the first commercial 3D printer on the International Space Station, the multi-armed 3D printing space robot Archinaut, and the manufacture of the first extended 3D printed objects in a space-like environment. The company works closely with NASA, and two years ago received funding from the agency for its ambitious plan to turn asteroids into autonomous spaceships, which could help NASA finalize its long-term goal of constructing human colonies in space.

Right now, NASA can only bring back small pieces of space rock. But Project RAMA (Reconstituting Asteroids into Mechanical Automata) hopes to establish the concept feasibility of using analog computers and mechanisms – along with 3D printing – to convert asteroids into huge mechanical spacecraft, which could carry large amounts of raw asteroid material. This could be the impetus for the off-Earth mining that will be necessary if humanity wants to survive and thrive among the stars.

Artist’s illustration of an asteroid that has been turned into a giant mechanical spacecraft, which could fly itself to a mining outpost. [Image: Made In Space]

Asteroids are pretty cool – many of them contain valuable resources, such as water and platinum-group metals, and roughly 100 tons of asteroid and comet material hit the Earth’s atmosphere each day. As part of the plan to turn these massive rock formations into functioning spacecraft, Made In Space plans to send an advanced, robotic seed craft out to space, in order to to meet with several near-Earth asteroids.

This craft would then harvest space rock material and turn it into feedstock, which can be 3D printed to build energy storage, navigation, propulsion, and other important systems on-site. Once the converted asteroid is ready, it can be programmed to autonomously fly to a mining station; according to Made In Space representatives, this approach is far more efficient than having to launch new capture probes out to space rocks.

While we don’t currently have the ability or the technology to 3D print something like a digital guidance computer with materials found on an asteroid, Made In Space realized that one doesn’t have to rely on digital electronics if a huge amount of raw material, with no constraints on mass or volume, is available instead.

“At the end of the day, the thing that we want the asteroid to be is technology that has existed for a long time,” said Made In Space Co-Founder and CTO Jason Dunn. “The question is, ‘Can we convert an asteroid into that technology at some point in the future?’ We think the answer is yes.”

Two years ago, NASA’s Innovative Advanced Concepts (NIAC) program, which encourages development of space-exploration technologies, awarded Made In Space a $100,000 Phase 1 grant for nine months of initial feasibility studies. During this phase, the company focused on how the seed craft would have to work, defining its requirements, and building a technological roadmap. If the company chooses, it can also apply for a two-year, $500,000 Phase 2 award for continuing concept development. In the meantime, Made In Space is counting on NASA to push forward in-situ resource utilization (ISRU) – the art of living off the land, which is necessary for astronauts who could someday live on planetary outposts.

Required capabilities of the RAMA craft, arranged in approximate order of mass requirements, showing the source of the materials used to provide each capability as assumed for the rest of this study.

These asteroid ships will probably not look much like traditional spaceships, with their electronic circuitry and rocket engines, but instead would use analog computers and a catapult type of propulsion system that will launch asteroid material in a controlled way. By using mass drivers to shoot chunks of itself in one direction, an asteroid could potentially accelerate itself in the opposite direction. While this method is only about 10% as efficient as a chemical rocket engine, the propellant is free.

3D printing could be used to make some of the asteroid spacecraft parts, like flywheel gyros for guidance and stabilization, tanks for storing volatile materials, and solar concentrators to generate mechanical power through the release of pressure to open the tanks.

While Project RAMA is still moving forward, Dunn acknowledges that its completion is still way in the future…and that eventually, it could even have applications on Earth.

Dunn explained, “The anticipation is that the RAMA architecture is a long time line, and when it becomes capable is about the same time that people really need the resources.

“You could build infrastructure in remote locations somewhat autonomously, and convert resources into useful devices and mechanical machines. This actually could solve some pretty big problems on Earth, from housing to construction of things that make people’s lives better.”

Diagram of an asteroid that has been converted into a mechanical spacecraft by a robotic “Seed Craft.” [Image: Zoe Brinkley]

The other goal of Project RAMA is to be able to make asteroids into self-assembled spacecraft.

“One of the big questions is, how do you take today’s most intricate machines and make them replicate themselves? That seems really hard: how do you replicate electronics and processing units and so on,” Dunn said. “And that’s when we had this concept that there are types of machines that could potentially be easy to self-replicate, and those would be very basic, analog type devices. The problem is if you have a small mechanical machine, it’s not very useful. But what if the machine itself was the size of an asteroid? What could you do with a mechanical machine that large?”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

 

3D Printing Replacement Parts for a Nuclear Warhead

The W80 nuclear warhead is a small American thermonuclear warhead designed for deployment on cruise missiles. A program has been implemented to extend the life of the warhead, called the W80-4 LEP, or life extension program. Recently the National Nuclear Security Administration (NNSA) gave passing grades to the plans to refurbish certain components as well as to the proposed approach to developing component cost estimates.

The warhead, once refurbished, will be paired with a new cruise missile that is being developed by the US Air Force. Lawrence Livermore National Laboratory (LLNL) is the lead nuclear design agency and is working with Sandia National Laboratories, the lead non-nuclear design agency. The work being done on the warhead is to satisfy military requirements to pair the warhead with the new delivery system and improve the weapon’s safety, security and operational logistics, as well as to maintain effectiveness without the need for additional explosive tests. The first production of the W80-4 is scheduled for 2025.

The national laboratories are now focused on making sure that the W80-4 meets requirements. The next step is a detailed weapon development cost report.

Firing Tank Operator Drew Carlson (foreground) safeguards the mouth of the 10kg spherical firing tank at LLNL’s High Explosives Applications Facility as Electronic Technician Raya Yy (background, left) and Ramrod Shawn Strickland wire a high explosive charge for an experiment. The experiment will provide data important to certifying that a refurbished nuclear warhead will work without conducting a full-scale explosive nuclear test.

“Costs are a pretty big deal for us,” said Alicia Williams, LLNL engineering design lead for the LEP. “We go through these detailed reviews of the costs associated with our scope to help management make informed decisions about whether course correction is needed. The net result with this milestone was confirmation that we’re on the right track.”

There are certain challenges associated with refurbishing the warhead. Some aged components and materials cannot be replaced in the same way that they were initially manufactured. The main explosive charge needs replacement, for example, but the original high-explosive constituents are not available and must be reconstituted. Several of the replacement parts are being 3D printed to improve quality and reduce cost – not the first time 3D printing has been used to construct warheads. Researchers at the labs are engineering specific material properties into these replacement parts by controlling the microstructure of the 3D printed material.

To verify that the 3D printed parts will perform as expected, the researchers have already performed a pair of hydrodynamic (full-scale non-nuclear) experiments, back in 2016. The data returned from those tests is being used to ensure that supercomputer simulations accurately represent reality. Thorough material-aging and compatibility experiments are also being undertaken to ensure that the 3D printed material will meet performance requirements for the lifetime of the system.

Those supercomputer simulations and other non-nuclear experiments are crucial to the success of the program. In addition to refurbishing the warhead, the researchers must make sure that it is safe and won’t go off by itself, secure in that it can’t be set off without formal permissions, and effective – all without conducting a full-scale explosive nuclear test. A supercomputer called Sierra is located at LLNL and will play a major role in certifying the replacement warhead. Code advances have also enabled a shift from 2D to 3D modeling, with a special focus on uncertainty quantification, alleviating the reliance on approximations as was required during the nuclear testing era.  Hundreds of tests and experiments are currently underway at LLNL and its experimental test site, Site 300.

“This LEP is driving significant innovation at LLNL,” said Des Pilkington, Weapon Physics and Design Program Director. “I’m seeing some really creative work in the options, focused on meeting established performance requirements and to minimize costs, always with an eye to what we can ultimately certify will work. That’s where the experimental and code innovations we’ve made under the Stockpile Stewardship Program come into play. They will be critical to the success of our certification plan.”

Electronic Technician Raya Yy (left) inspects the work of Ramrod Shawn Strickland as he wires a high explosive charge for an experiment.

Five of the 25 major milestones in the LEP are complete so far. Requirements are being refined by the DoD and NNSA, design concepts have been developed, business systems are being put in place to track schedule and budget, and NNSA has invested in the infrastructure at LLNL that will be needed to certify the warhead. In addition, LLNL is leading the effort to reconstitute the capability to manufacture the required insensitive high explosives. Manufacturing of production-scale quantities of the new explosives is proceeding on schedule.

The W80-4 program is scheduled to go into the development engineering phase in 2019. In this phase, researchers will test individual components to ensure that they will meet military requirements. The next phases are production engineering, first production, and full-scale production. To meet the needs of the program, LLNL has taken on significant hiring efforts; more than 100 scientists, engineers and technicians have been hired in 2018 already.

“Even with our Lab hiring at an accelerated rate, and even with the infrastructure improvements NNSA has made here, we could never complete this LEP alone,” said Tom Horrillo, W80-4 LEP Manager. “Our sister lab across the street (Sandia National Laboratories) is playing a central role in this, as are the production plants that are producing components across the country. The Air Force has been a great partner in defining requirements, and NNSA has been indispensable in helping us to roll out the infrastructure and processes we need to get the job done. I’m not overstating things when I say that there would be no LEP without the contributions of everyone on the team.”

The LEP is a collaboration between the DoD and NNSA, with LLNL working with all of the NNSA laboratories and production sites, as well as the Air Force and its missile vendors. Collaborators include Sandia, Kansas City National Security Campus, Y-12 National Security Complex, Pantex Plant, Savannah River Site, Los Alamos National Laboratory, NNSA Livermore Field Office, Albuquerque NNSA W80-4 Program Office, the missile program office at Eglin Air Force Base and Nuclear Weapons Center Kirtland Air Force Base.

“It is so important that we succeed with the W80-4 LEP,” Williams said. “These weapons need to be tremendously safe, secure and effective. We have to meet those expectations just as much as we need to meet the cost and schedule expectations. All told, I can’t help but feel that this is a very exciting time to work at the Lab.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Source/Images: LLNL]

 

Lockheed Martin’s Contributions to 3D Printing

The aerospace industry was one of the first major advocates of 3D printing, as the industry has been a driving force in the evolution of this technology. The industry covers a wide range of commercial, industrial and military applications that demand state-of-the art technology for mission critical needs. At the forefront of 3D printing is Lockheed Martin, which serves as a clear leader through their ability to rapidly implement innovation and use of 3D printing across prototyping, tooling and production of components. Lockheed is able to create significant varying parts and designs that are cost effective, reliable and durable more so than traditional machining methods, due to the improvements of 3D printing technology.

The Research & Development Tax Credit

Enacted in 1981, the now permanent Federal Research and Development (R&D) Tax Credit allows a credit that typically ranges from 4%-7% of eligible spending for new and improved products and processes. Qualified research must meet the following four criteria:

  • Must be technological in nature
  • Must be a component of the taxpayer’s business
  • Must represent R&D in the experimental sense and generally includes all such costs related to the development or improvement of a product or process
  • Must eliminate uncertainty through a process of experimentation that considers one or more alternatives

Eligible costs include US employee wages, cost of supplies consumed in the R&D process, cost of pre-production testing, US contract research expenses, and certain costs associated with developing a patent.

On December 18, 2015, President Obama signed the PATH Act, making the R&D Tax Credit permanent. Beginning in 2016, the R&D credit can be used to offset Alternative Minimum Tax, for companies with revenue below $50MM and for the first time, pre-profitable and pre-revenue startup businesses can obtain up to $250,000 per year in payroll taxes and cash rebates.

Remote Interface Unit

Lockheed Martin is planning, for the first time, to use additive manufacturing to develop a part that will be on a military satellite. The complex unit is an aluminum electronic enclosure designed to hold avionic circuits, and is a part that would require multiple components and processes to manufacture under regular machining. But with 3D printing, the parts total is reduced to just one, which in turn reduces manufacturing time from six months down to 1.5 months, as well as reducing assembly time from 12 hours to just 3 hours. Lockheed hopes this successful part can open more 3D printing opportunities for their several other extensive aerospace programs.

Orion Spacecraft

NASA’s Orion spacecraft is a program designed to send astronauts to the moon and beyond in a series of exploration missions. The craft is going to be made of more than 100 3D printed parts, the majority of them made by Lockheed Martin and using state-of-the art materials, like the new Antero thermoplastic material, which is designed to meet NASA’s requirements for heat and chemical resistance. The use of 3D parts was crucial for this program as nearly every piece that was 3D printed was more efficient than traditional parts and reduced costs to the spacecraft overall.

Fuel Tanks

Lockheed Martin, in partnership with Stratasys’ RedEye 3D printer, were able to develop large fuel tanks that store propellant for satellites. The largest fuel tank was as large as 15 feet long, the largest piece ever manufactured by a RedEye printer and one of the largest aerospace parts ever made by a 3D printer. The fuel tanks themselves are the first ever successful ones to be produced through additive manufacturing, and were done in a highly condensed time frame for nearly half the cost of machining the parts. Due to the sheer size of these parts, Lockheed built several smaller parts to fuse together and finalize the product in time to market a competitive contract bid process. They would not have been able to do this had they machined the parts.

Trident II D5 Fleet Ballistic Missile

Lockheed Martin has been the primary ballistic missile contractor for the US Navy since 1955 and nothing has changed as they remain the primary supplier. Lockheed was called upon to develop another ballistic missile that would be known as the Trident II D5 Fleet Ballistic Missile. This is a three-stage missile that can travel an average range of 4,000 nautical miles while carrying multiple independently targeted missiles. Within the missile is a 3D printed component that is similar to the one used on Lockheed Martin’s satellites. The one-inch wide aluminum alloy piece is a connector backshell component that protects vital cable connectors in the missile. The component was designed and fabricated using only 3D design and printing methods that allowed engineers at Lockheed to produce this part in half the time it would take with machining methods.

Our articles published in Lockheed’s major business areas are presented below:

Aerospace Aerospace Mega Trends Driving 3D Printer Usage
Satellites The R&D Tax Credit Aspects of 3D Printed Telecommunications
Helicopters The R&D Tax Credit Aspects of 3D Printing Helicopter Parts
Drones 3D Printed Drones and the UAS Integration Pilot Program
Avionics The R&D Tax Credit Aspects of Avionics

Conclusion

Lockheed Martin is undeniably a leading manufacturer of all things relating to the aerospace industry. Not only do they produce high quality and critical products, but they consistently find ways to innovate and stay steps ahead of the field with the use of additive manufacturing to bolster their already highly advanced product lines. Lockheed expanded this vast production through the acquisition of Sikorsky Aircraft, the leading helicopter manufacturer, which will gain a boost in their existing additive manufacturing capabilities after joining the Lockheed portfolio. The continued integration of 3D printing and large acquisitions is allowing Lockheed to develop parts that are giving aircraft extended service lives, reduced fuel costs, weight reduction and increased strength.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.


Charles Goulding & Ryan Donley of R&D Tax Savers discuss Lockheed Martin.