3D Printing News Briefs: October 13, 2018

We’ve got business and education news galore in today’s 3D Printing News Briefs. First, Voodoo Manufacturing has launched its new Shopify app, and BeAM Machines is partnering with Empa, while Sculpteo is working with a property developer to provide 3D printed apartment models. VSHAPER has signed an agreement with educational publisher Grupa MAC, and the United Arab Emirates is introducing 3D printing into over 200 of its primary schools. The US Navy will be testing the first 3D printed ship component, and Lufthansa Technik has established a new Additive Manufacturing Center. Finally, maker Thomas Sanladerer shared on YouTube about his recent visit to the Prusa headquarters.

Voodoo Manufacturing Launches Shopify App

This spring, high-volume 3D printing factory Voodoo Manufacturing began its full-stack manufacturing and fulfillment service for 3D printing entrepreneurs, which allows users to outsource work like quality control and assembly for their products through its easy shopfront integrations with online marketplaces like Shopify. Now, the company has launched its own Shopify app, which will allow online sellers to create and customize 3D printed products and sell them on their own Shopify stores. Once the app is installed, users can make their first product in less than 5 minutes, which is then automatically added to their store, ready for purchase.

“We wanted to make it ridiculously easy for ecommerce stores to diversify their product offering with 3D printed products. By applying 3D printing to the print-on-demand business model, we are opening up an infinite range of product categories for Shopify merchants,” said Max Friefeld, the Founder and CEO of Voodoo Manufacturing. “The Voodoo app provides a new source of high quality, customizable, on-demand products, that don’t require any 3D design experience.”

Before the official launch this week, Voodoo piloted the service with a group of beta users, including It’s The Island Life by graphic designer and Guam native Lucy Hutcheson. She is already successfully selling six different products made with the help of the new Voodoo app.

BeAM Machines Partnering with Empa

BeAM, recently acquired by AddUp, has signed a research and development agreement with Empa, the Swiss Federal Laboratories for Materials Science and Technology. Together, the two will develop novel applications for BeAM’s powder-based Directed Energy Deposition (DED) technology, which uses focused thermal energy to fuse materials by melting them while they’re deposited. This makes parts manufacturing much faster. The partnership has come on the heels of Empa’s acquisition of a BeAM DED 3D printer, which is located at its Laboratory for Advanced Materials Processing in Thun and is used to integrate and test out innovative components.

Patrik Hoffmann, who leads the laboratory, said, “We are very excited to collaborate with BeAM’s engineers to push the boundaries of this innovative additive manufacturing technology and to develop a whole new range of applications for Swiss industries and beyond.”

Sculpteo 3D Printing Apartment Models

Together with Sculpteo, French property developer Valoptim is working to improve customer experience by providing clients with miniaturized 3D printed models of their future apartments when they sign their contracts, so they can better visualize and prepare for moving into their new home. These small, exact replicas give new owners an immersive experience, which is a definite value add. In addition, production of the 3D printed models is local, and can be done fast.

“Sculpteo uses the best machines and 3D printing processes on the market today. At first, we had the ambition to test the feasibility of 3D printing in the real estate sector. This innovative process has proven to be extremely interesting: the realistic rendering, with high-end finishes, allowed our clients to discover a miniaturized version of their future apartment enabling them to realistically imagine themselves living in it,” said Edouard Pellerin, CEO of Valoptim. “This innovation contributes to our business dynamic: constantly improving the customer experience.”

VSHAPER and Grupa Mac Sign Agreement

Polish 3D printer manufacturer Verashape has signed an agreement with Grupa MAC, the country’s top educational publisher, in front of Poland’s education curators at the recent Future of Education Congress. Per the agreement, Grupa MAC will use a network of educational consultants to distribute the VSHAPER GO 3D printers to kindergartens and other schools in the country. Grupa MAC recognizes that 3D printers are a good way to quickly present the effects of students’ learning, and the VSHAPER GO is the perfect choice, as it is easy to use and comes with an intuitive interface of SOFTSHAPER software.

“Classes with students are a perfect environment for the use of 3D Printing. Creating a pyramid model for history lessons, the structure of a flower or a human body for biology lessons are just a few examples, and their list is limited only by the imagination of students and teachers,” said Patryk Tomczyk, a member of the Grupa MAC Management Board. “We are happy that thanks to our cooperation with VERASHAPE, 3D Printers have a chance to reach schools through our network of educational consultants.”

3D Printing to be Introduced in UAE Primary Schools

Speaking of 3D printing in education, the Ministry of Education (MoE) for the UAE has announced that in early 2019, a country-wide introduction of 3D printing into over 200 primary schools will commence. As part of this new technology roll out, Dubai education consultancy company Ibtikar is partnering with Makers Empire, an Australian education technology company, to deliver a program that implements 3D printing and design. Makers Empire will supply 3D software, curriculum, teacher resources, training, and support to Ibtikar, which will in turn train MoE teachers to deliver the program.

“Through this rollout of 3D technology, our students will learn to reframe needs as actionable statements and to create solutions to real-world problems,” said HE Eng. Abdul Rahman of the United Arab Emirates Ministry of Education. “In doing so, our students will develop an important growth mindset, the skills they need to make their world better and the essential ability to persist when encountering setbacks.”

US Navy Approves Test of First 3D Printed Shipboard Part

USS Harry S. Truman

The US military has long explored the use of 3D printing to lower costs and increase the availability of spare parts. Huntington Ingalls Industries, the largest military shipbuilder in the US, has also been piloting new technologies, like 3D printing, as part of its digital transformation. In collaboration with the US Navy, the company’s Newport News Shipbuilding division has worked to speed the adoption of 3D printed metal components for nuclear-powered warships. This has led to an exciting announcement by the Naval Sea Systems Command (NAVSEA): a metal drain strainer orifice (DSO) prototype has officially been approved as the first 3D printed metal part to be installed on a US Navy ship. The assembly is a component for the steam system, which allows for drainage and removal of water from a steam line while in use. The 3D printed DSO prototype will be installed on the USS Harry S. Truman in 2019 for evaluation and tests. After one year, the assembly will be removed for inspection and analysis.

“This install marks a significant advancement in the Navy’s ability to make parts on demand and combine NAVSEA’s strategic goal of on-time delivery of ships and submarines while maintaining a culture of affordability. By targeting CVN 75 [USS Harry S. Truman], this allows us to get test results faster, so-if successful-we can identify additional uses of additive manufacturing for the fleet,” said Rear Adm. Lorin Selby, NAVSEA Chief Engineer and Deputy Commander for Ship Design, Integration, and Naval Engineering.

Lufthansa Technik Opens New Additive Manufacturing Center

Lufthansa Technik, a leading provider of maintenance, repair and overhaul (MRO) for civil aircraft, has established a new Additive Manufacturing Center. The goal of the new AM Center is to bundle and expand the company’s experience and competence with the technology, which can be used to make individual parts more quickly and with more design freedom. As the world of aircraft is always aware of weight, making more lightweight parts is an excellent benefit of 3D printing.

“The new AM Center will serve as a collaborative hub where the experience and skills that Lufthansa Technik has gained in additive manufacturing can be bundled and further expanded,” said Dr. Aenne Koester, the head of the new AM Center. “The aim is to increase the degree of maturity of the technologies and to develop products that are suitable for production.”

Tom’s 3D Visits Prusa Headquarters 

Maker Thomas Sanladerer, who runs his own YouTube channel, recently had the chance to tour the Prusa Research headquarters in Prague. Not only did he get the opportunity to see how the company makes its popular MK3 and and MK2.5, but Sanladerer was also able to see early models of the company’s recently announced SL1 resin 3D printer, as well as the Prusament filament production line.

“I always find factory tours like this super interesting because it’s the only chance you really get of seeing behind the scenes of what might really just be a website, or you know, a marketing video or whatever,” Sanladerer said in his video.

Sanladerer took the tour of the Prusa factory right after Maker Faire Prague, which the company itself organized and sponsored. To see behind the scenes of Prusa for yourself, check out the rest of the video below:

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

Shapeways Teams Up With Stratasys to Offer Full-Color, Multi-Material 3D Printing to Customers

People and organizations all around the globe use Shapeways, the largest 3D printing service and marketplace in the world, to build up business by creating 3D printed products. The company, which has 3D printed more than 10 million products, offers over 40 materials and finishes. Its latest customer is Biologic Models, a company that turns x-ray crystallography data into detailed, 3D printed protein models millions of times larger than the actual protein.

Today at the 2018 TCT Show in Birmingham, Shapeways announced a new agreement with global 3D printing leader Stratasys – the two are partnering up to make full-color, multi-material 3D printing more accessible to creators, designers, and companies like Biologic Models, which will be one of the first Shapeways customers to enjoy unprecedented access to the Stratasys J750 3D printer. One of the only full-color, multi-material 3D printers in the world, the Stratasys J750 is what the new manufacturing services are based around.

“Since its introduction, the Stratasys J750 has driven transformation across a number of industries. With Shapeways, the unmatched capabilities of the J750 will now be made available to an entirely new community of designers and creators,” said Pat Carey, Senior Vice President of Sales North America for Stratasys.

Shapeways and Stratasys are working together to bring the potential that the J750 3D printer offers to a much wider market. Now, customers that wouldn’t ordinarily have access to the full-color, multi-material capabilities of the J750 due to economics, lack of expertise, or barriers-to-access will be able to take advantage of the system, and use it make realistic prototypes with more streamlined design-to-prototype workflows.

Not only will using the PolyJet-driven Stratasys J750 allow customers to lower their time to revenue, but it will also help decrease time-to-market as well. The 3D printer provides over 500,000 color combinations, with transparent to opaque color gradients, accurate color-matching, and advanced, textured clear material that can create extremely fine and delicate details.


“The vivid colors of the Stratasys J750 3D Printer will enable the Shapeways community of designers, businesses, students, and artists to realize their brightest ideas and boldest ambitions in true physical form with full-color, texture mapping and color gradients,” said Shapeways CEO Greg Kess. “It’s exactly what our customers have been asking for.”

The Stratasys J750 can consistently and reliably fabricate parts that feel, look, and operate just like fully finished products, and gets rid of any lengthy assembly, painting, or post-processing requirements, which helps decrease production cycles. It’s perfect for Shapeways and its workflow – the platform can help design 3D printable objects that take full advantage of the 3D printer’s capabilities, along with running the systems at scale and providing ready-to-sell products.

This is perfect for Biologic Models, which uses its multi-colored protein data models to explain the subtle interactions of proteins and molecules. The company, founded by award-winning medical animator and 3D designer Casey Steffen in 2008, visualizes the unique properties of the molecules with 3D printed models that are millions of times larger than their actual size, which are then used by educators and scientists as helpful visual aids to explain the various properties of specific proteins, and their subtle interactions with molecules.

The 3D printed, multi-colored models, which the company pairs with augmented reality apps and 3D medical animations, also help in explaining the nature of disease and health that occurs on the molecular landscape.

“J750 is the best of both manufacturing worlds, full-color 3D printing combined with high-quality transparent plastics,” said Steffen, who is also the Director of Operations at Biologic Models. “This is exactly what my customers want. Transparency and color coding are necessary features to create the highest quality and most durable models. The J750 tackles these design and manufacturing challenges head on.”

Beta customers for the new agreement between Stratasys and Shapeways will be able to access this service before the year is out. A full launch should occur sometime in 2019. To learn more, visit Shapeways & Stratasys at the TCT Show this week in Hall 3, Stand H36.

Discuss this new agreement and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

3D Printing News Briefs: September 14, 2018

We’re bringing you the latest 3D printing business news in today’s 3D Printing News Briefs, plus a little 3D printed art to round things out. FATHOM is partnering with SOLIDWORKS software reseller GoEngineer, while L’Oréal is working with INITIAL, a Prodways Group company. Kickstarter and Autodesk are releasing a new open source 3D printing test, and 3D LifePrints has renewed its collaboration with the Alder Hey Children’s Hospital. Fargo 3D Printing has formed a new spin-off business, a metal 3D printed parts bureau has purchased an EBAM system from Sciaky, and 3D Systems’ SLA technology is being used to deliver customized dental solutions. Finally, we take a look at some fun and creative 3D printed artwork.

FATHOM and GoEngineer Announce Strategic Partnership

SOLIDWORKS 3D CAD software and Stratasys 3D printer reseller GoEngineer has announced a new strategic agreement with 3D printing company FATHOM. GoEngineer has purchased FATHOM’s 3D printing equipment reseller business, so that FATHOM can focus solely on its digital manufacturing services. Thanks to the agreement, the two partners will be able to scale their respective businesses in different, but significant ways, leveraging their strengths in order to create a large product development ecosystem of hardware, software, engineering, design, manufacturing, and training solutions that customers can use to drive innovation.

Michelle Mihevc, the Co-founder and Principal at FATHOM, said, “It’s exciting for our industry because both FATHOM and GoEngineer are uniquely positioned to meet the ever-increasing demand for advanced tools and services that enhance and accelerate a company’s product development and production processes.”

L’Oréal and INITIAL Increasing Development of 3D Printed Thermoplastic Parts

The cosmetics industry has a constant challenge in quickly marketing new products to meet the many specific demands of customers. That’s why L’Oréal is teaming up with INITIAL, a Prodways Group subsidiary – the two are ramping up development of 3D printed thermoplastic parts. More specifically, INITIAL’s new solution, 3D Molding, uses 3D printing to make plastic injection molds for “final material” parts at less cost and in record time. Recently, L’Oréal needed 14 resin test molds, along with 20 injection molding test runs and several hundred molded parts. By using Prodways’ patented MOVINGLight 3D printing technology and PLASTCure Rigid 10500 resin, the company was able to achieve accurate 3D prints in just two weeks.

“We produce the 3D Printing mould and the final material parts are then directly injection-moulded,” said Yvon Gallet, INITIAL’s Chairman. “With our 3D printing and injection expertise, we were best placed to develop this unique solution. It is aimed at designers in the development phase and complements our traditional machining and injection solutions. It is an innovative alternative that meets the needs of manufacturers, like L’Oréal, that could benefit from this technological advance to reduce their time to market.”

Kickstarter and Autodesk Releasing Open Source 3D Printing Calibration Test

Prints of the test file from Cubibot and Robo printers.

The evidence speaks for itself – Kickstarter is a great place for 3D printing. The popular crowdfunding site requires that 3D printer creators demonstrate the functionality of their systems through various means, but it can be hard to compare the performance of different machines, because not everyone shows off the same test prints, like the 3D Benchy. So Kickstarter is working at Autodesk to address this lack of a common standard for assessing FDM 3D printer performance, and will soon be releasing a new open source 3D printer test for Kickstarter creators, developed by Autodesk research scientist Andreas Bastian.

“We believe this test procedure will support greater transparency in our community,” Zach Dunham wrote in a Kickstarter blog post. “We started with FDM printers because they’re the most common model on Kickstarter. Our goal over time is to expand this calibration test to other printing technologies like stereolithography. Though this test is optional for creators to share on their project pages, electing to do so opens a frank conversation about quality. And backers of any 3D printer project can share images of their own tests by posting them with the hashtag #FDMtest.”

Creators can download the single, consolidated STL file and instructions to test their 3D printers’ alignment, dimensional accuracy, and resolution on Github.

3D LifePrints and Alder Hey Children’s Hospital Renew Collaboration

The Alder Hey Children’s Hospital has signed a long-term collaboration agreement with 3D LifePrints, a UK-based medical 3D printing company and a founding member of the hospital’s Innovation Hub. The company has had an embedded 3D printing facility at the 1,000 square meter underground co-creation space since 2015, and was supported by the hospital for its first two years there, showcasing the impact of its work and establishing its unique 3D printed offerings. Under the agreement, the company will continue supplying the hospital with its specialized 3D printing services.

“I am really proud of this milestone in our ongoing partnership. Incubating a start-up company in a hospital, to the point where they have series A funding, a multi-year contract with the NHS and diffusion to other medical centres around the country is an enormous vindication of what the Innovation hub was set up for,” said Iain Hennessey, Clinical Director and a paediatric surgeon at Alder Hey. “I couldn’t be more pleased to see 3DLP help integrate this emerging technology into clinical practice.”

Fargo 3D Printing Forms 3D Printer Repair Business

North Dakota-based Fargo 3D Printing has formed a new business out of its 3D printer repair segment, called Fargo 3D Printer Repair. While its parent company continues to focus on multiple aspects of the industry, the five-person repair team at the new Fargo 3D Printer Repair can devote 100% of its time to providing 3D printer repair and service to individuals, schools, OEMs, and businesses. The new spin-off company currently provides production-scale warranty servicing, maintenance, and repair services for multiple OEM 3D printing companies across North America; service and repair requests can be made through an intuitive form on its website.

“We don’t sell any 3D printers ourselves, so we are able to remain brand impartial when recommending and performing 3D printer repairs,” said John Olhoft, the CEO of Fargo 3D Printer Repair, who started working in the original shop as a repair technician. “Original Equipment Manufacturers like that they can trust us to provide high quality repairs with a quick turnaround, and not push a competing brand on their customers.”

Sciaky Providing EBAM System to Metal 3D Printing Bureau

Metal 3D printing solutions provider Sciaky will provide one of its Electron Beam Additive Manufacturing (EBAM) systems to Michigan-based FAMAero (Future Additive Manufacturing in Aerospace), a privately-owned metal 3D printed parts bureau. According to Sciaky, this custom EBAM system will be the largest production metal 3D printer in the world, with a 146″ x 62″ 62″ nominal part envelope that will be able to produce metal parts over 12 feet in length. FAMAero will use the massive new EBAM system to provide metal 3D printing services to customers in the aerospace, defense, oil & gas, and sea exploration industries.

Don Doyle, President of FAMAero, said, “FAMAero is entering the market as the first private, dedicated parts bureau in North America for large-scale 3D printed metal parts. Our Factory as a Service concept, combined with Sciaky’s industry-leading EBAM® technology, will provide manufacturers a new avenue to significantly slash time and cost on the production of critical parts, while offering the largest build platform and selection of exotic metals to choose from in the 3D parts service market.”

Creating Customized Dental Solutions with 3D Systems’ SLA 3D Printing

In order to make over 320,000 invisible dental aligners in a single day, Align Technology uses SLA 3D printing from 3D Systems. The company’s technology allows Align to create the unique aligner forms so that they are customized to each individual patient’s dental data. So far, Align has treated nearly 6 million patients, but using 3D printing technology is helping the growth of its business accelerate.

“What makes Align’s mass customization so unique is not only are we producing millions of parts every month, but each one of these parts that we produce is unique,” said Srini Kaza, the Vice President of Advanced Technology for Align Technology. “And this is really, as far as I know, the only true example of mass production using 3D printing.”

Ben Fearnley Uses SLA 3D Printing to Bring Artwork to Life

Sculptmojis

SLA 3D printing isn’t just good for use in dental applications, however. Ben Fearnley, a designer, illustrator, and 3D artist based out of New York City, uses the technology to, as he told 3DPrint.com, “bring my work to life from the 3D world to the real world.”

One interesting piece of 3D printed art Fearnley creates is Good Vibes Only Typography – script style typography lettering sculptures modeled in Cinema 4D and 3D printed on his Form 2. But my personal favorite are his Sculptmojis, which look pretty much exactly how they sound. These pieces, which are a combination of traditional sculpture art forms and modern emojis, originally began as a digital art project, and have now been brought to amusing, quirky life through 3D printing. You can purchase Fearnley’s unique 3D printed artwork here.

Discuss this research and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

Aconity3D to Set Up North American Base of Operations for 3D Printing at UTEP

Bottom, L-R: Diana Natalicio, UTEP President; Yves Hagedorn, Aconity3D, managing director; Florian Sondermann, AconityUS, managing director. Top, L-R: Ryan Wicker, PhD, Keck Center director; Zia Uddin, student researcher; Alfonso Fernandez, powder bed manager; Francisco Medina, director of technology and engagement; Mireya Flores, Keck Center manager; Philip Morton, applications manager. [Image: UTEP Communications]

The University of Texas at El Paso (UTEP) has long been a 3D printing advocate, and a lot of this important work takes place at the university’s W.M. Keck Center for 3D Innovation, which is also the first satellite center for America Makes. Now, UTEP has made an agreement with Germany-based Aconity3D GmbH, which develops laser powder bed fusion 3D printers, to be its base of operations in North America.

“We are pleased to establish a relationship with UTEP. This is an excellent example of how research universities can partner with private industry to advance the educational opportunities afforded to students and also attract economic development to the region,” said Yves Hagedorn, PhD, the Managing Director of Aconity3D. “We are confident that the combined expertise of the Keck Center and Aconity3D will yield innovative approaches to 3D printing and offer world-class research opportunities for students.”

Aconity3D was founded in 2014 as a small startup, though it now boasts over 50 employees, and makes 3D printers capable of manufacturing complex metal parts for medical implants, airplanes, and cars, among others. It was eager to set up camp at UTEP due to the Keck Center’s expertise and prominence in the industry, as well as its commitment to increase economic development.

“This exciting collaboration is very well aligned with UTEP’s access and excellence mission. UTEP is committed to providing our students with exceptional educational opportunities, many of which are advanced through the ground-breaking research underway on our campus,” said UTEP President Diana Natalicio. “This agreement with Aconity3D will enhance UTEP’s research environment, broaden the range of experiences available to our students in the Keck Center for 3D Innovation, and attract new business development that will enable UTEP graduates to remain in this region to pursue their career goals.”

This agreement will not only give Aconity3D a home in the US, but it will also attract high-end jobs for the community’s engineering students, increase UTEP’s production and service operations, and advance 3D printing through important research investigations with government agencies and industry.

“The Keck Center is a natural fit for Aconity3D as it is a recognized leader in additive manufacturing. This collaboration will enhance our technical knowledge base and expand our expertise,” said Theresa A. Maldonado, PhD, the dean of UTEP’s College of Engineering. “We can also work collaboratively toward our model to incubate startups and provide them a pool of highly qualified graduates.”

The company’s 3D printers have an open architecture system, which is different from most commercial approaches in that users can modify the parameters themselves in order to find the optimal way to 3D print a customer’s specified material. The equipment is great for research, as one needs plenty of knowledge about the technology in order to operate the 3D printers. This helps feed Aconity3D’s corporate philosophy of locating near high-tech research organizations – for instance, its German headquarters are near the Fraunhofer Institute for Laser Technology (Fraunhofer ILT). Aconity3D’s model of supporting the institute’s interns and students will continue at UTEP.

Aconity3D will begin its North American operations with only a CEO, but plans to hire up to three employees within a year. The hiring process will focus first on Keck Center graduates who have experience working with the company’s technology, as one of Aconity3D’s laser powder bed machines is already housed there.

“We have long worked on leveraging our expertise in 3D printing to build a new economy in El Paso around additive manufacturing. Our partnership with Aconity3D is a major milestone in that direction and is validation of all of our combined efforts,” said Ryan Wicker, PhD, the founder of the Keck Center. “The only way a company like Aconity3D would decide to come here is because of our technical strength in additive manufacturing, access to our graduating talent to meet their workforce needs, and the tremendous opportunities available for commercial success through collaborations with UTEP. We can apply this economic development model to build other businesses around their technologies, recruit other 3D printing businesses to our region and create new businesses from our own 3D printing technologies coming out of UTEP. As a research university, UTEP must be – and is excited to be – fully engaged in stimulating economic development for the benefit of our region.”

The long-term goal of this agreement is to set up a technical center and research space in the Keck Center, which will work with Aconity3D’s German headquarters to sell and service its 3D printers in North America. Its US base of operations will be located at UTEP’s University Towers Building.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

Titomic and Fincantieri Australia Sign Material Science Testing Agreement for Kinetic Fusion 3D Printing

3D printing company Titomic, headquartered in Melbourne, Australia and well-known for its innovative Kinetic Fusion technology, has recently been announcing multiple new collaborations, including agreements with a golf company and a mining and oil & gas engineering services company. Last month, the company announced a Memorandum of Understanding (MOU) with the Australian division of Italy-based Fincantieri, one of the largest shipbuilding groups in the world; now, the two are expanding their partnership with the signing of a Material Science Testing (MST) agreement.

“The activities between Fincantieri and Titomic evaluate the benefits of applying the proprietary Titomic Kinetic Fusion technology to manufacture mechanical components for Naval and Merchant Ships,” said Dario Deste, the Chairman of Fincantieri Australia. “With over 100 ships on order around the world, Fincantieri has the size and strength to bring new technology to market.”

This MST agreement is the first step in the plan to evaluate Titomic’s proprietary Kinetic Fusion process, and see if it has the potential to augment the manufacturing activities currently being used in Fincantieri’s shipbuilding projects.

This is Titomic’s first MST agreement with Fincantieri, which has 20 shipyards across four continents, and it calls for the comprehensive testing of an alloy, specified by the shipbuilder, in accordance with the International Standards of ASTM, in order to attain the desired chemical and mechanical properties. The test capabilities will include chemistry analysis, hardness, porosity, and strength.

“We are pleased to kick off this first project with Fincantieri as part of our MoU,” said Jeff Lang, Titomic’s CTO. “We will be producing test samples at our new state of the art facility in Melbourne in order to conduct the stringent tests required. This is the first step towards manufacturing large marine parts on our metal 3D printers of limitless scale.”

The outcome of these tests will provide important technical information on the durability, cost efficiencies, material properties, performance, and strength of Titomic’s Kinetic Fusion process, which can 3D print complex metal parts without any size or shape constraints. The technology can also join dissimilar metals and composites in a structure for engineered properties, as well as create stronger structures without any bending, folding, or welding, and will hopefully help bring important shipbuilding jobs back to the country.

“Titomic’s technology combined with Fincantieri’s technology transfer program to Australia creates the potential to return Australia’s capability in mechanical componentry,” said Sean Costello, the Director at Fincantieri Australia. “Our aim is to return high-value jobs to Australia, reduce costs and become sovereign as a shipbuilding nation.”

Fincantieri, one of the shortlisted bidders for Australia’s Future Frigates SEA 5000 program, has built over 7,000 vessels in its more than 230 years of existence, and also maintains and refurbishes cruise ships, which is an international industry growing in leaps and bounds.

The analysis of the Kinetic Fusion tests that will be carried out as part of the MST agreement between Titomic and Fincantieri will also take into account the Australian capabilities for manufacturing processes, in addition to redesigning components so Titomic’s process can be used to help enhance material characteristics.

Riva Trigoso Shipyard [Image: Fincantieri]

As an additional part of the MOU the two companies signed in May, members of Titomic’s technology and operational team recently visited Fincantieri’s Riva Trigoso Shipyard in Italy, in order to gain a more complete understanding of the company’s mechanical components. This marks the first phase of a marine technology transfer to Australia.

Discuss this story and other 3D printing applications at 3DPrintBoard.com or share your thoughts in the comments below.