Researchers Compare Microstructure of As-Cast, Hot-Extruded, and 3D Printed Magnesium Alloy Samples

Fig. 1: SEM micrographs of the WE43 alloy powder

Alloys of the shiny gray chemical element magnesium (Mg) feature a high strength-to-weight ratio and a low density of about 1700 kg/m3, making them good options for technical applications in the automotive, aviation, and medical fields. But it’s been determined that their weight can be further decreased if porous structures are formed – which can be achieved with 3D printing. A team of researchers from the University of Chemistry and Technology Prague and the Brno University of Technology, both in the Czech Republic, wanted to study the microstructure of a particular magnesium alloy after it had been fabricated using three different methods: as-cast, hot-extruded, and 3D printed with SLM technology.

SLM 3D printing can achieve complex geometric shapes, but there are issues when it comes to fabricating magnesium alloys with this process, mainly high reactivity of magnesium powder, which can lead to unsafe oxide particles forming within 3D printed parts. Patrícia Krištofová, Jiří Kubásek, Dalibor Vojtěch, David Paloušek, and Jan Suchý recently published a study, titled ” Microstructure of the Mg-4Y-3RE-Zr (WE43) Magnesium Alloy Produced by 3D Printing,” about their work mapping an SLM 3D printed magnesium alloy’s microstructure.

“Magnesium alloys made in the form of 3D printing are relatively new production processes,” the researchers wrote. “The study therefore this process compared with current processes, which are now well known and mapped. It was therefore studied the microstructure produced by three different processes of production. The microstructure and chemical composition of present phases were studied using scanning electron microscopy (SEM) and energy dispersive xray spectrometry (EDS). Based on the microstructural examination, significant differences were found between the materials produced by different production processes. The microstructure of the as-cast alloy consisted of relatively coarse α-Mg dendrites surrounded by eutectics containing intermetallic phases rich-in alloying elements. During hot extrusion, the eutectics fragmented into fine particles which arranged into rows parallel to the extrusion direction. The 3D printed alloy was characterized by significantly refined microstructure due to a high cooling rate during the SLM process. It consisted of very fine dendrites of α-Mg and interdendritic network enriched-in the alloying elements. In addition, there were also oxides covering original powder particles and the material showed also some porosity that is a common feature of 3D printed alloys.”

The team used an SLM Solutions 280HL 3D printer to fabricate 15 × 5 × 60 mm rectangular samples of WE43 magnesium alloy, and used SEM and EDS to study their microstructures; then, these were compared to identical materials that had been manufactured through simple gravity casting and hot extrusion.

“The first sample was an as-cast ingot of 60×80×500 mm in size purchased from an industrial supplier. The second WE43 alloy sample was prepared by hot extrusion of the ingot. Cylinders with a diameter of 30 mm and a length of 60 mm were directly cut from the ingot and then extruded at 400°C, extrusion rate of 2 mm/s and extrusion ratio of 16. The resulting extruded rods had a diameter of 7.5 mm,” the researchers explained.

“The analysis revealed that 10% of the WE43 alloy powder particles had a size of 26.9 μm, 50% to 39.8 μm and 90% to 57.9 μm. Thus, the powder contains a sufficient amount of both larger and smaller particles. With respect to the particle size, the size of the building layer was 50 μm.”

The team conducted microscopic observations of the samples, and you can see the views of their microstructures in Figure 2.

Fig. 2: SEM micrographs of the WE43 alloy: a) as-cast, b) hot extruded, c) 3D printed by SLM, d) 3D printed by SLM – detail.

The as-cast alloy has a coarse microstructure, while the microstructure of the sample fabricated with hot extrusion was “considerably” modified. The microstructure of the 3D printed sample is completely different from the other two, featuring regions about 20-50 µm in size that are surrounded by thin boundaries.

“In addition, residual porosity is observed as dark areas between grey regions. The shape and size of grey regions indicates that these regions correspond to original powder particles, either totally or partly melted by laser beam,” the researchers explained. “A more detailed image in Fig. 2d shows very fine internal microstructure of these particles. It contains α-Mg dendrites (dark) surrounded by interdendritic regions (light) enriched in Y and RE elements. The average thiskness of dendritic branches is only approx. 3 µm, suggesting very high cooling rates during the SLM process. In literature focused on the SLM process, cooling rates of 103-106 K/s are often reported.”

The researchers also studied the distribution of elements in the material’s structure, which showed that both the hot-extruded and as-cast material samples had very low oxygen concentration. But the SLM 3D printed sample showed a different story, illustrated in Figure 5 and Table 4.

Fig. 5 Microstructure of the SLM WE43 alloy (SEM) and elements distribution maps (EDS).

“First, element maps and point analysis demonstrate an increased concentration of oxygen in the material which is located mainly in pores (point 1) and also at bondaries between melted powder particles. In the particle interior the O-concentration is very low (point 2),” the researchers wrote. “Second, element map in Fig. 5 also indicates increased content of Y at powder particle boundaries. It can be assumed, that partial oxidation of the powder occurred during the SLM process inside the building chamber. Most probably, the atmosphere contained traces of residual oxygen which reacted preferentially with yttrium due to a high chemical affinity of these elements. For this reason, imperfect connection between powder particles and porosity are observed.”

Results show that an SLM material’s microstructure is “extremely fine” because of high cooling rates, and will also feature a high oxygen concentration “due to a high affinity of the alloy to this gas.” This creates an “imperfect connection” between powder particles and porosity. The researchers plan further studies of this magnesium alloy in order to produce pore-free compact material and decrease the “harmful influence of residual oxygen.”

Discuss this research and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

The post Researchers Compare Microstructure of As-Cast, Hot-Extruded, and 3D Printed Magnesium Alloy Samples appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Alchemite Machine Learning Engine Used to Design New Alloy for Direct Laser Deposition 3D Printing

Artificial intelligence (AI) company Intellegens, which is a spin-off from the University of Cambridge, created a unique toolset that can train deep neural networks from noisy or sparse data. The machine learning algorithm, called Alchemite, was created at the university’s Cavendish Laboratory, and is now making it faster, easier, and less expensive to design new materials for 3D printing projects. The Alchemite engine is the company’s first commercial product, and was recently used by a research collaboration to design a new nickel-based alloy for direct laser deposition.

Researchers at the university’s Stone Group, along with several commercial partners, saved about $10 million and 15 years in research and development by using the Alchemite engine to analyze information about existing materials and find a new combustor alloy that could be used to 3D print jet engine components that satisfy the aerospace industry’s exacting performance targets.

“Worldwide there are millions of materials available commercially that are characterised by hundreds of different properties. Using traditional techniques to explore the information we know about these materials, to come up with new substances, substrates and systems, is a painstaking process that can take months if not years,” Gareth Conduit, the Chief Technology Officer at Intellegens, explained. “Learning the underlying correlations in existing materials data, to estimate missing properties, the Alchemite engine can quickly, efficiently and accurately propose new materials with target properties – speeding up the development process. The potential for this technology in the field of direct laser deposition and across the wider materials sector is huge – particularly in fields such as 3D printing, where new materials are needed to work with completely different production processes.”

Alchemite engine

Alchemite is based on deep learning algorithms which are able to see correlations between all available parameters in corrupt, fragmented, noisy, and unstructured datasets. The engine then unravels these data problems and creates accurate models that are able to find errors, optimize target properties, and predict missing values. Alchemite has been used in many applications, including drug discovery, patient analytics, predictive maintenance, and advanced materials.

Thin films of oxides deposited with atomic layer precision using pulsed laser deposition. [Image: Adam A. Læssøe]

“Worldwide there are millions of materials available commercially that are characterised by hundreds of different properties. Using traditional techniques to explore the information we know about these materials, to come up with new substances, substrates and systems, is a painstaking process that can take months if not years. Learning the underlying correlations in existing materials data, to estimate missing properties, the Alchemite™ engine can quickly, efficiently and accurately propose new materials with target properties – speeding up the development process,” said Gareth, who is also a Royal Society University Research Fellow at the University of Cambridge. “The potential for this technology in the field of direct laser deposition and across the wider materials sector is huge – particularly in fields such as 3D printing, where new materials are needed to work with completely different production processes.”

Direct laser deposition – a form of DED – is used in many industries to repair and manufacture bespoke and high-value parts, such as turbine blades, oil drilling tools, and aerospace engine components, like the Stone Group is working on. As with most 3D printing methods, direct laser deposition can help component manufacturers save a lot of time and money, but next generation materials that can accommodate high stress gradients and temperature are needed to help bring the process to its full potential.

When it comes to developing new materials with more traditional methods of research, a lot of expensive and time-consuming trial and error can occur, and the process becomes even more difficult when it comes to designing new alloys for direct laser deposition. As of right now, this AM method has only been applied to about ten nickel-alloy compositions, which really limits how much data is available to use for future research. But Intellegens’ Alchemite engine helped the team get around this, and complete the material selection process more quickly.

(a) Secondary electron micrograph image for AlloyDLD. (b) Representative geometry of a sample combustor manufactured by direct laser deposition. [Image: Intelligens]

Because Alchemite can learn from data that’s only 0.05% complete, the researchers were able to confirm potential new alloy properties and predict with higher accuracy how they would function in the real world. Once they used the engine to find the best alloy, the team completed a series of experiments to confirm its physical properties, such as fatigue life, density, phase stability, creep resistance, oxidation, and resistance to thermal stresses. The results of these experiments showed that the new nickel-based alloy was much better suited for direct laser deposition 3D printing, and making jet engine components, than other commercially available alloys.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

Singapore: 3D Bioprinting with Magnesium Alloys to Create Bone Scaffolds

SEM micrographs of samples sintered at different temperatures in the regime of super solidus liquid phase sintering for 5 h, a) 535 °C, b) 550 °C, c) 565 °C, d) 580 °C, e) 595 °C, and f) 610 °C.

Strides in the medical field today via 3D printing have been staggering, and especially in bioprinting, with many different technologies and materials being created. Now, researchers in Singapore are exploring the use of alloys like magnesium in fabricating scaffolding, with their findings detailed in ‘Additive manufacturing of magnesium–zinc–zirconium (ZK) alloys via capillary-mediated binderless three-dimensional printing.’

Magnesium is an alloy that can be used in 3D printing and additive manufacturing, as a third-generation biomaterial useful in tissue engineering; however, as the researchers point out, there are myriad challenges. High affinity to oxygen and a low boiling temperature are issues, along with careful consideration that must be applied when disposing of magnesium powders due to the possibility of reactions with other chemicals.

High vapor pressure can be a major obstacle in using magnesium too, leading the researchers to explore AM processes with ambient temperature. This can allow for all the benefits of powder-bed inkjet 3D printing to be enjoyed, as it can be employed at ambient temperatures, no supports are required, and powder can be fully recycled. Here, the researchers have created a new 3D printing technique including a sintering process which transforms magnesium powder and green objects into functional parts that can be used in scaffolding, producing parts with mechanical properties as strong as human bone.

The research team customized their own ink-jet 3D printer for this study, working to overcome previous challenges with the use of magnesium. Maintaining oxygen percentages at the lowest levels possible was of ‘paramount importance’:

“Conserving oxygen in green objects in low level indicates the promise of formulated solvent for AM of Mg-based alloys,” stated the researchers.

3D printed green samples showed no change at all in composition after the sintering process, leaving the team to point out that this means it is a ‘compositionally zero-sum process.’ With temperature variations, both density and stability were affected. The researchers state that dimensional precision is another element of paramount importance and is influenced when deviations occur in printing. Swelling may cause substantial problems too, resulting in shape loss of printed objects, noted at an increased sintering temperature from to 595 °C and 610 °C. Swelling can also interfere with functionality of components.

Samples after 5 h sintering at different temperature in the range of 535 °C to 610 °C.

In continuing to examine other features, the researchers found that density increases with temperature. In studying the effects of holding time on physical and mechanical properties, they also found that strength may be low even though density has become high. Overall though, for overcoming the challenges required in creating scaffolds, mechanical integrity must be present, along with balanced stiffness and strength:

“Mechanical properties of scaffolds could significantly affect cells behavior and the osteointegration between host tissues and the scaffold; premature collapse of subchondral bonearound bone defects may happen if the scaffold provides more than enough mechanical support,” said the researchers. “Thus, stiffness and strength of scaffolds should be modulated to match with those of host tissues in order to avoid post-surgery stress shielding effects and promote tissue regeneration.”

Healthy scaffolds exhibit good pore percentage, size, and shape, offering osteointegration, nutrients transportation, tissue in-growth, and waste products removal. With all those quotients in order, bone tissue regeneration is possible.

“Mg based alloys classify as a third generation of biomaterials when it comes to clinical outcomes, and capillary-mediated binderless 3D printed Mg part after sintering can provide comparable properties with bone,” stated the researchers.

In their paper, the researchers explain more about the structure of human cortical bone, a hierarchical ‘organization’ of three sizes to include:

  1. Haversian and Volkmann vascular canals having diameter in the range of 40 to 100 μm
  2. Osteocyte lacunae with size ranging from 10 to 30 μm
  3. Canaliculi having diameters on an order of a few tens of nanometers

Issues in porosity can be dealt with as larger pores are created in 3D to compensate for a required percentage, thus refining scaffold for better tissue engineering with bone.

“Increasing holding time from 5 h to 20, 40, and 60 h at optimum sintering temperature of 573 °C allowed steady improvements in microstructural, physical, and mechanical properties for each additional hold time while avoiding the undesirable dimensional loss. Interconnected open-porous structures with apparent porosity of 29%, average pore size of 15 μm, compressive strength of 174 MPa, and elastic modulus of 18 GPa were achieved,” concluded the scientists. “These values are well comparable with those seen for human cortical bone types.”

There is a huge momentum between 3D printing and the medical field today, and it just keeps growing as scientists and researchers continue to work toward the holy grail of fabricating human organs. Along with that, many different types of medical implants have been created and are now improving the quality of patients lives, from facial implants to those meant to facilitate knee replacements. Tissue engineering continues to be at the forefront of 3D printing also with the range of bioinks continuing to expand.

What do you think of this news? Let us know your thoughts; join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Schematic illustrations of super-solidus liquid phase sintering process of 3D printed parts, a) total decomposition of interparticle bridges in a green sample after reaching 400 °C, b) nucleation of liquid phase along the grain boundaries and within the discrete islands throughout the grains at the temperature above the solidus, c) breaking MgO film for several particles with increasing temperature, leaking the liquid phase, forming liquid bridges among particles, and d) break down of MgO film, formation of liquid bridges between adjacent Mg particles, and growth of sinter necks diameter in the sample sintered at 573 °C for 40 h.

[Source / Images: Additive manufacturing of magnesium–zinc–zirconium (ZK) alloys via capillary-mediated binderless three-dimensional printing]

3D Printing News Briefs: August 24, 2018

We’re sharing some business news in today’s 3D Printing News Briefs, followed by some interesting research and a cool 3D printed statue. Meld was listed as a finalist in the R&D 100 Awards, and Renishaw has introduced 3D printed versions to its styli range, while there’s an ongoing Digital Construction Grant competition happening in the UK. A researcher from Seoul Tech published a paper about in situ hydrogel in the field of click chemistry, while researchers in Canada focused on the Al10SiMg alloy for their study. Finally, an Arcam technician tested the Q20plus EBM 3D printer by making a unique titanium statue of Thomas Edison.

Meld is R&D 100 Awards Finalist

The global R&D 100 Awards have gone on for 56 years, highlighting the top 100 innovations each year in categories including Process/Prototyping, IT/Electrical, Mechanical Devices/Materials, Analytical/Test, and Software/Services, in addition to Special Recognition Awards for things like Green Tech and Market Disruptor Products. This year, over 50 judges from various industries selected finalists for the awards, one of which is MELD Manufacturing, an already award-winning company with a unique, patented no-melt process for altering, coating, joining, repairing, and 3D printing metal.

“Our mission with MELD is to revolutionize manufacturing and enable the design and manufacture of products not previously possible. MELD is a whole new category of additive manufacturing,” said MELD Manufacturing Corporation CEO Nanci Hardwick. “For example, we’re able to work with unweldable materials, operate our equipment in open-atmosphere, produce much larger parts that other additive processes, and avoid the many issues associated with melt-based technologies.”

The winners will be announced during a ceremony at the Waldorf Astoria in Orlando on November 16th.

Renishaw Introduces 3D Printed Styli

This month, Renishaw introduced a 3D printed stylus version to its already wide range of available styli. The company uses its metal powder bed fusion technology to provide customers with complex, turnkey styli solutions in-house, with the ability to access part features that other styli can’t reach. 3D printing helps to decrease the lead time for custom styli, and can manufacture strong but lightweight titanium styli with complex structures and shapes. Female titanium threads (M2/M3/M4/M5) can be added to fit any additional stylus from Renishaw’s range, and adding a curved 3D printed stylus to its REVO 5-axis inspection system provides flexibility when accessing a component’s critical features. Components with larger features need a larger stylus tip, which Renishaw can now provide in a 3D printed version.

“For precision metrology, there is no substitute for touching the critical features of a component to gather precise surface data,” Renishaw wrote. “Complex parts often demand custom styli to inspect difficult-to-access features. AM styli can access features of parts that other styli cannot reach, providing a flexible, high-performance solution to complex inspection challenges.”

Digital Construction Grant Competition

Recently, a competition opened up in the UK for organizations in need of funding to help increase productivity, performance, and quality in the construction sector. As part of UK Research and Innovation, the organization Innovate UK – a fan of 3D printing – will invest up to £12.5 million on innovative projects meant to help improve and transform construction in the UK. Projects must be led by a for-profit business in the UK, begin this December and end up December of 2020, and address the objectives of the Industrial Strategy Challenge Fund on Transforming Construction. The competition is looking specifically for projects that can improve the construction lifecycle’s three main stages:

  • Designing and managing buildings through digitally-enabled performance management
  • Constructing quality buildings using a manufacturing approach
  • Powering buildings with active energy components and improving build quality

Projects that demonstrate scalable solutions and cross-sector collaboration will be prioritized, and results should lead to a more streamlined process that decreases delays, saves on costs, and improves outputs, productivity, and collaborations. The competition closes at noon on Wednesday, September 19. You can find more information here.

Click Bioprinting Research

Researcher Janarthanan Gopinathan with the Seoul University of Science Technology (Seoul Tech) published a study about click chemistry, which can be used to create multifunctional hydrogel biomaterials for bioprinting ink and tissue engineering applications. These materials can form 3D printable hydrogels that are able to retain live cells, even under a swollen state, without losing their mechanical integrity. In the paper, titled “Click Chemistry-Based Injectable Hydrogels and Bioprinting Inks for Tissue Engineering Applications,” Gopinathan says that regenerative medicine and tissue engineering applications need biomaterials that can be quickly and easily reproduced, are able to generate complex 3D structures that mimic native tissue, and be biodegradable and biocompatible.

“In this review, we present the recent developments of in situ hydrogel in the field of click chemistry reported for the tissue engineering and 3D bioinks applications, by mainly covering the diverse types of click chemistry methods such as Diels–Alder reaction, strain-promoted azide-alkyne cycloaddition reactions, thiol-ene reactions, oxime reactions and other interrelated reactions, excluding enzyme-based reactions,” the paper states.

“Interestingly, the emergence of click chemistry reactions in bioink synthesis for 3D bioprinting have shown the massive potential of these reaction methods in creating 3D tissue constructs. However, the limitations and challenges involved in the click chemistry reactions should be analyzed and bettered to be applied to tissue engineering and 3D bioinks. The future scope of these materials is promising, including their applications in in situ 3D bioprinting for tissue or organ regeneration.”

Analysis of Solidification Patterns and Microstructural Developments for Al10SiMg Alloy

a) Secondary SEM surface shot of Al10SiMg powder starting stock, (b) optical micrograph and (c) high-magnification secondary SEM image of the cross-sectional view of the internal microstructure with the corresponding inset shown in (ci); (d) the printed sample and schematic representation of scanning strategy; The bi-directional scan vectors in Layer n+1 are rotated by 67° counter clockwise with respect to those at Layer n.

A group of researchers from Queen’s University and McGill University, both in Canada, explain the complex solidification pattern that occurs during laser powder bed fusion 3D printing of the Al10SiMg alloy in a new paper, titled “Solidification pattern, microstructure and texture development in Laser Powder Bed Fusion (LPBF) of Al10SiMg alloy.”

The paper also characterizes the evolution of the α-Al cellular network, grain structure and texture development, and brought to light many interesting facts, including that the grains’ orientation will align with that of the α-Al cells.

The abstract reads, “A comprehensive analysis of solidification patterns and microstructural development is presented for an Al10SiMg sample produced by Laser Powder Bed Fusion (LPBF). Utilizing a novel scanning strategy that involves counter-clockwise rotation of the scan vector by 67° upon completion of each layer, a relatively randomized cusp-like pattern of protruding/overlapping scan tracks has been produced along the build direction. We show that such a distribution of scan tracks, as well as enhancing densification during LPBF, reduces the overall crystallographic texture in the sample, as opposed to those normally achieved by commonly-used bidirectional or island-based scanning regimes with 90° rotation. It is shown that, under directional solidification conditions present in LPBF, the grain structure is strictly columnar throughout the sample and that the grains’ orientation aligns well with that of the α-Al cells. The size evolution of cells and grains within the melt pools, however, is shown to follow opposite patterns. The cells’/grains’ size distribution and texture in the sample are explained via use of analytical models of cellular solidification as well as the overall heat flow direction and local solidification conditions in relation to the LPBF processing conditions. Such a knowledge of the mechanisms upon which microstructural features evolve throughout a complex solidification process is critical for process optimization and control of mechanical properties in LPBF.”

Co-authors include Hong Qin, Vahid Fallah, Qingshan Dong, Mathieu Brochu, Mark R. Daymond, and Mark Gallerneault.

3D Printed Titanium Thomas Edison Statue

Thomas Edison statue, stacked and time lapse build

Oskar Zielinski, a research and development technician at Arcam EBM, a GE Additive company, is responsible for maintaining, repairing, and modifying the company’s electron beam melting (EBM) 3D printers. Zielinski decided that he wanted to test out the Arcam EBM Q20plus 3D printer, but not with just any old benchmark test. Instead, he decided to create and 3D print a titanium (Ti64) statue of Thomas Edison, the founder of GE. He created 25 pieces and different free-floating net structures inside each of the layers, in order to test out the 3D printer’s capabilities. All 4,300 of the statue’s 90-micron layers were 3D printed in one build over a total of 90 hours, with just minimal support between the slices’ outer skins.

The statue stands 387 mm tall, and its interior net structures show off the kind of complicated filigree work that EBM 3D printing is capable of producing. In addition, Zielinski also captured a time lapse, using an Arcam LayerQam, from inside the 3D printer of the statue being printed.

“I am really happy with the result; this final piece is huge,” Zielinski said. “I keep wondering though what Thomas Edison would have thought if someone would have told him during the 19th century about the technology that exists today.”

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

Titomic and Fincantieri Australia Sign Material Science Testing Agreement for Kinetic Fusion 3D Printing

3D printing company Titomic, headquartered in Melbourne, Australia and well-known for its innovative Kinetic Fusion technology, has recently been announcing multiple new collaborations, including agreements with a golf company and a mining and oil & gas engineering services company. Last month, the company announced a Memorandum of Understanding (MOU) with the Australian division of Italy-based Fincantieri, one of the largest shipbuilding groups in the world; now, the two are expanding their partnership with the signing of a Material Science Testing (MST) agreement.

“The activities between Fincantieri and Titomic evaluate the benefits of applying the proprietary Titomic Kinetic Fusion technology to manufacture mechanical components for Naval and Merchant Ships,” said Dario Deste, the Chairman of Fincantieri Australia. “With over 100 ships on order around the world, Fincantieri has the size and strength to bring new technology to market.”

This MST agreement is the first step in the plan to evaluate Titomic’s proprietary Kinetic Fusion process, and see if it has the potential to augment the manufacturing activities currently being used in Fincantieri’s shipbuilding projects.

This is Titomic’s first MST agreement with Fincantieri, which has 20 shipyards across four continents, and it calls for the comprehensive testing of an alloy, specified by the shipbuilder, in accordance with the International Standards of ASTM, in order to attain the desired chemical and mechanical properties. The test capabilities will include chemistry analysis, hardness, porosity, and strength.

“We are pleased to kick off this first project with Fincantieri as part of our MoU,” said Jeff Lang, Titomic’s CTO. “We will be producing test samples at our new state of the art facility in Melbourne in order to conduct the stringent tests required. This is the first step towards manufacturing large marine parts on our metal 3D printers of limitless scale.”

The outcome of these tests will provide important technical information on the durability, cost efficiencies, material properties, performance, and strength of Titomic’s Kinetic Fusion process, which can 3D print complex metal parts without any size or shape constraints. The technology can also join dissimilar metals and composites in a structure for engineered properties, as well as create stronger structures without any bending, folding, or welding, and will hopefully help bring important shipbuilding jobs back to the country.

“Titomic’s technology combined with Fincantieri’s technology transfer program to Australia creates the potential to return Australia’s capability in mechanical componentry,” said Sean Costello, the Director at Fincantieri Australia. “Our aim is to return high-value jobs to Australia, reduce costs and become sovereign as a shipbuilding nation.”

Fincantieri, one of the shortlisted bidders for Australia’s Future Frigates SEA 5000 program, has built over 7,000 vessels in its more than 230 years of existence, and also maintains and refurbishes cruise ships, which is an international industry growing in leaps and bounds.

The analysis of the Kinetic Fusion tests that will be carried out as part of the MST agreement between Titomic and Fincantieri will also take into account the Australian capabilities for manufacturing processes, in addition to redesigning components so Titomic’s process can be used to help enhance material characteristics.

Riva Trigoso Shipyard [Image: Fincantieri]

As an additional part of the MOU the two companies signed in May, members of Titomic’s technology and operational team recently visited Fincantieri’s Riva Trigoso Shipyard in Italy, in order to gain a more complete understanding of the company’s mechanical components. This marks the first phase of a marine technology transfer to Australia.

Discuss this story and other 3D printing applications at 3DPrintBoard.com or share your thoughts in the comments below.