3D Printing News Briefs: May 12, 2020 Nanofabrica, Voxeljet, Elementum, AMPOWER

We’re all business today in 3D Printing News Briefs – Nanofabrica has raised $4 million in funding, and voxeljet is expanding its presence in India. Elementum 3D has achieved an important industry certification. Finally, AMPOWER has released its 2020 report.

Nanofabrica Raises $4 Million in Funding

Tel Aviv startup Nanofabrica, which makes 3D printers for fabricating complex electronic and optical parts for semiconductors and medical devices, has raised $4 million in funding, and the round was led by Microsoft’s venture arm M12, which invests in enterprise software companies in Series A through C funding with a focus on infrastructure, applied AI, business applications, and security, and NextLeap Ventures, an investor group made of former Intel Corp employees. The startup says it will use the funding – it’s raised a total of $7 million so far – to expand its sales and continue its R&D work.

M12 partner Matthew Goldstein said, “Nanoscale, precision manufacturing is a growing need for R&D organizations, as well as production-scale manufacturing companies,” and that the technology allows for the “digital mass manufacturing of precision parts.”

voxeljet Grows Presence in India with Sale of VX4000

The VX4000 is voxeljet’s largest 3D printer and has a building volume of 8 cubic meters

Industrial 3D printing solutions provider voxeljet AG has expanded its Asian presence with the announcement that Indian steel casting experts Peekay Steel Castings Pvt Ltd is investing in its 4000 x 2000 x 1000 mm VX4000 3D printer – the company’s largest industrial system. Peekay Steel, which makes high-quality steel castings, will use the printer to expand into new business areas and better cater to its current clients’ increasing demands. The flexibility, size, and speed of the VX4000 will allow the company to continue supporting the foundry industry in its native India, but also give them the opportunity to build a new Knowledge Center centered around the large 3D printer that will provide open access to a training facility. The VX4000 will be set up at a new Bangalore location in the Airport City.

“We want to offer our customers an end-to-end solution and position ourselves as a supplier of high-quality, ready-to-install components in record times. With the VX4000, we are able to increase the flexibility of our production in order to be able to react quickly, even to complex projects,” said K.E. Shanavaz, Jt., Managing Director, Peekay Steel Castings (P) Ltd. “3D printing gives us a unique competitive advantage, especially when it comes to expanding our business areas. Since the beginning, we have emphasized the importance of co engineering with our customers, most of these are Fortune 500 companies, to optimize and customize the product design, to lend better functionality and a clear competitive advantage. A specialized Design Center aligned to the VX4000 will help add value for our customers.”

Elementum 3D Achieves Quality Management Certification

Colorado metal 3D printing materials company Elementum 3D announced that it has received the important ISO 9001:2015 certification. This is recognized as the worldwide standard for quality management practices and systems, and was issued to the company through the Denver-based ISO 9001 management certification firm Platinum Registration, Inc. The scope of its certification includes manufacturing prototype and production parts to customer specifications, designing and manufacturing advanced composites, metals, and superalloys, and developing new manufacturing processes.

“This is an important milestone for Elementum 3D. It’s a rigorous process to become ISO 9001 certified. Our staff worked very hard with Platinum Registration’s auditors to demonstrate we meet the requirements of the standard. Not only does that make us feel confident we’re the most efficient that we can be, it assures our customers that we have a completely transparent and robust management system; and that means we have reliable, repeatable, continuously improving business processes so that our customers receive the best value for their money,” said Dr. Jacob Nuechterlein, Elementum 3D President and Founder.

AMPOWER Releases 2020 Metal AM Report

Metal additive manufacturing consultancy AMPOWER has released its new 2020 report, containing analysis based on over 250 data sets of metal AM supplier and user surveys. If you purchased the previous AMPOWER Report, you can get the latest edition for free through the online portal, or you could subscribe to the report to start getting it; either way, the publication is chock-full of helpful information. For instance, a separate section analyzes the possible impact scenarios of the COVID-19 pandemic on the metal AM industry in both 2020 and 2021, and new contributions from the worlds of standards and startups are included from ASTM and AM Ventures, respectively. The report includes in-depth market data, and has also added new databases with over 700 entries, so readers can browse through a list of material, service, and systems suppliers; the new interactive cost calculator has been updated with the most recent productivity values.

“We hope the AMPOWER Report 2020 continues to support our customers in making the right decisions in these challenging times,” AMPOWER’s Matthias Schmidt-Lehr, Dr. Maximilian Munsch, and Dr. Eric Wycisk wrote in an email.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

The post 3D Printing News Briefs: May 12, 2020 Nanofabrica, Voxeljet, Elementum, AMPOWER appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

80 additive manufacturing experts predict the 3D printing trends to watch in 2020

Predicting the future is impossible. But that doesn’t stop us at 3D Printing Industry from inviting CEOs, CTOs and other AM experts to give us 3D printing predictions for 2020. If you want to stay up to date with the latest 3D printing news, subscribe to our free 3D Printing Industry newsletter. You’ll be among […]

3D Printing News Briefs: June 11, 2019

Starting with a little business in today’s 3D Printing News Briefs, Materialise has signed an MoU with Sigma Labs, and Carpenter Technology Corporation launched an additive manufacturing business unit, while Ampower just released a metal 3D printing technology map. Moving on to news about 3D printers, 3D Potter has introduced a compact version of its Scara clay 3D printer, and a UK service bureau installed an HP Jet Fusion 4200 system.

Materialise and Sigma Labs Sign MoU

 

 

 

 

 

 

Back in 2014, Sigma Labs signed an agreement with Materialise to integrate its PrintRite quality inspection technology into the Belgian company’s 3D printing software. Now, five years later, the two companies have entered into a non-binding Memorandum of Understanding (MoU) in order to evaluate this integration together.

The mission behind the MoU is, according to MarketScreener, “to create an integrated product solution composed of sophisticated control technology enhanced with in-situ process monitoring for metal additive manufacturing.” Materialise and Sigma Labs have a shared vision to ultimately set up a formal licensing agreement, or a formal joint marketing collaboration, for a truly integrated product.

Carpenter Launches Additive Business Unit

Carpenter Technology Corporation has been working to build on its reputation as a metal powder supplier in order to become a leader in the 3D printing industry, and it appears to have worked. Recently, the company launched a new business unit, called Carpenter Additive, which offers a wide range of products and services, such as finished component production capabilities, metal powder lifecycle management solutions, and integrated AM and R&D facilities. The new business unit even made an appearance at the recent RAPID + TCT 2019.

“From powder production to manufacturing and finishing parts, the full spectrum of our capabilities is what differentiates Carpenter Additive from the rest of the AM industry. We are revolutionizing how customers approach this disruptive technology by offering end-to-end solutions through an array of technical expertise, powder production, parts production, and material lifecycle management,” said Carpenter’s President and CEO Tony R. Thene. “Carpenter Additive is working with our customers and driving industry-wide change.”

Ampower Releases New Technology Map

Metal 3D printing consultancy Ampower is working to prepare for its metal additive manufacturing report, which will be released at formnext in Germany this fall. While compiling the report, Ampower closely studied all of the available metal AM technologies and counted them up, arriving at a total of 18 falling into seven different categories, including powder, wire, and granulate. In addition, Ampower analyzed the supply chain and counted up nearly 90 different metal AM machine vendors. Now, the consultancy has put all of its findings together in a high-resolution metal AM technology map, which can be downloaded from Ampower’s website.

“In our Technology Map for Metal Additive Manufacturing, we subdivide the procedures based on the ASTM / ISO 52900,” Ampower wrote on its website. “However, methods are now known that elude a known classification. Systems from vendors such as Vader and Fabrisonic use completely new approaches to energy input and raw materials. However, these technologies still have a relatively young degree of maturity. In addition, it should be noted that even with the same classification, the procedures may still differ. For example, the technology of 3DEO can only be classified as binder jetting as it incorporates a milling process at the same time.”

To learn more, download the metal AM technology map today.

3D Potter Launches Compact Version of Scara V3 3D Printer

Florida-based company 3D Potter, formerly known as DeltaBots, makes low-pressure, high-powered 3D ceramic printers. These delta-style printers are completely dedicated to 3D printing ceramics and pottery, and the company is now the 3D printer manufacturer for over 200 aerospace and defense entities, research facilities, and universities.  Recently, 3D Potter introduced a lightweight, compact version of its Scara V3 – the 3D Potterbot Scara Mini V1, which has no air compressor and features a single joint Selective Compliance Articulated Robot Arm (SCARA), which operates on a rotational x and y-axis. The printer’s 200 ml extruder is easy to clean, and there’s no weight limit for final 3D printed products, which achieve high accuracy and even consistency with no air bubbles. The Scara Mini V1 is fully capable of 360° multiple object printing.

“The other advantage for universities and architectural departments is that it can do architectural objects. It can actually print inside an object,” explained 3D Potter president Danny Defelici.

To see the new Scara Mini V1 in action, take a look at the video below.

Design Reality Service Bureau Installs HP Jet Fusion 4200

UK industrial design consultancy and service bureau Design Reality, headquartered in Wales, is made up of design and electronics experts who work to create products for clients in the medical, industrial, and consumer industries. Recently, the company made the decision to install an HP Jet Fusion 3D 4200 3D printer in order lower outsourcing requirements and improve upon its design and production capabilities, which will in turn provide its customers with a consistent, end-to-end solution and faster turnarounds. Since the system was installed, Design Reality has already attracted some new customers.

“Our ambition is to make lives healthier and safer with the products that we design. We want to leverage any advantage we can to improve product development quality, performance and speed of delivery,” said Graham Wilson, the Owner and Design Director at Design Reality. “The technology offered in the HP Multi jet Fusion HP 3D 4200 enables reliable prototyping and additive manufacturing, providing quality products into the hands of our clients, faster and at a lower cost. Our clients no longer have to wait for conventional tooling and manufacturing processes, and the investment that is associated with it.”

Design Reality is mainly sticking with HP’s Nylon 12 material in order to lower waste, and is using HP’s subscription pricing, which is the first pay-per-use subscription model in the industry, for its materials.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

Interview with Matthias Schmidt-Lehr of Metal 3D Printing Consultancy Ampower

Matthias Schmidt-Lehr of Ampower is a 3D printing consultant with deep experience in manufacturing for 3D printing. He’s worked for technology development institute Laser Zentrum Nord (Fraunhofer IAPT), its manufacturing spinoff Bionic Production and has been involved with a number of notable projects in industrializing manufacturing for 3D printing. Together with his colleagues, he does strategy, training, part qualification and research on 3D printing for Ampower. Ampower a Hamburg based metal 3D printing focused consultancy firm with deep experience with some of the leading companies using metal 3D printing to manufacture. Ampower has been positioning itself as the team that gives you analysis based on real metal 3D printing experience in manufacturing. We interviewed Matthias to find out his vision on what is happening in 3D printing and what is holding the market back.

Dr. Maximilian Munsch, Matthias Schmidt-Lehr and Dr. Eric Wycisk

What is Ampower?

Ampower is the leading consultancy for Metal Additive Manufacturing. We are supporting SMEs as well as large cooperations on their way of adapting industrial Additive Manufacturing in the fields of corporate strategy and operational excellence.

Why should I work with you? 

Our experts have more than 10 years of experience in industrial Additive Manufacturing applications. Our reference customers are leading market players like Trumpf, HP and Oerlikon as well as major industry OEMs such as Volkswagen or Airbus.

What kind of customers do you have?

Our customers include companies along the entire Additive Manufacturing supply chain from powder and system manufacturers to end users. Strongly represented industries are currently automotive, aviation and medical.

What are some of the major things holding back 3D printing?

Cost competitiveness is a major challenge that has to be tackled to create business opportunities. Also, industrial 3D Printing is still a niche technology and the lack of knowledge and experience leads to slow adaption rates.

If I am a company wanting to use 3D printing, what advice do you have for me?

Always start by building up knowledge and experience with first applications. Some successful AM players went through at least 2 years of learning before the first rollout of products. Secondly, team up with strong partners. Many of the obstacles on the road to success have been dealt with already and cooperation leads to a significantly accelerated adaption curve.

What about if I wanted to industrialize 3D printing for manufacturing?

Industrialization means that experimentation is over. Quality management, procurement, production and job floor planning have to be included into the team as well as personnel qualification becomes very important. Quality has to be priority No 1. Part failures due to lack of qualification efforts will lead to severe disappointment of internal and external stakeholders, especially with such a new technology.

What are some of the most exciting developments in 3D printing right now?

Emerging technologies with higher productivity and lower cost like HP MJF technology or the next level of Binder Jetting technologies are exciting to observe. At the same time, the amount of innovations is making it difficult for users to define and follow up with the right technology strategy. Over the years to come, we will see a further and steady increase in productivity. More 3D printed end user applications will become viable and will lead to overall significant growth of the technology.

What is the Additive Manufacturing market like in Germany?

In Germany, industrial Additive Manufacturing has a comparatively high market penetration. Of course, it is still overall a niche technology. But in many industries, German companies cannot compete as cost leader on a global market. They have to differentiate their products and services. Additive Manufacturing fits this business strategy and can help to provide new applications with added value.

Do you think that desktop 3D printers will be used to manufacture?

In certain applications with high degree of individualization, low volumes and low quantities, this is already the case. A good example are industrial drone manufacturers. User-customized components are manufactured overnight using desktop 3D printers and shipped the next day. As soon as high manufacturing volumes are required, cost effectiveness due to economies of scale will make desktop 3D printing less likely. Additionally, demanding industries require a qualified production in an industrial manufacturing environment.

What are some emerging applications in 3D printing that you are the most excited about?

In terms of industrial applications, I am still fascinated by just in time individual medical products. The fact that endoprosthesis for bone replacement, dental implants and hearing aids are now tailored to customers within a very short manufacturing time, is just the starting point of a more and more customized world we will live in.

A lot of people are excited about binder jetting metals and MIM FDM but I see a lot of issues with shrinkage and deformation, you?

The sintering process remains the major challenge. Due to these issues, the mature MIM and PIM industry has restrictions in design and limits in size for sintering metal parts. Some players in binder jetting, such as Markforged and Desktop Metal, decided to develop their own debinding and sintering processes. While certainly risky, this route might lead to disruption and improvement of the sintering process. In any case, users who adapt those technologies should look into conventional sintering to gather experience.

Do you think that DMLS will continue to dominate orthopedics and aviation? Or will other technologies replace it?

Sinter technologies are now at the stage DMLS or laser powder bed fusion as we say, was 10 years ago. In short term, high investments in hardware, knowledge and established processes will prevent a fast substitution of laser powder bed fusion with other suitable new technologies. In the long run, sinter technologies will certainly cover applications in aviation and medical, if they prove to be better suited and more cost effective.

What about EB PBF?

Especially in medical and aviation, electron beam powder bed fusion is very successfully used for production of titanium alloys. However, the technology struggles with the dominant patent situation of the market leader and, consequently, lack of competition. Sole source generally hinders innovation and a broad adoption of a manufacturing technology. Once major patents expire, competitiveness in the EB-PBF market will certainly increase. In the meantime, other technologies progress fast due to the competition and make huge steps in an open environment.

What do you think of the prospects of the DED technologies?

Direct energy deposition technologies lack the enormous hype that LB-PBF and other 3D Printing technologies experienced. We notice a steady growth rate with little disappointments. DED technologies will revolutionize the casting, tooling and forging markets. However, we are still talking about a niche technology that will only be successful for demanding applications. We hope that some of the currently upcoming and very promising proprietary DED technologies will be open some day to enable disruptions in this field and prevent the same situation that EB-PBF is currently in.

How close are we to seeing 3D printing used at scale in automotive?

Still very far away! The productivity level of high-volume throughput technologies such as sheet metal forming, casting, forging or injection molding is on a completely different scale. The added value of 3D Printing to a component will not be enough to achieve cost competitiveness for large batch sizes. A game changer, however, can be the increased need for customization and even faster innovation cycles that will make conventional tool bound manufacturing more expensive than tool free production. We expect first applications in annual volumes above 100.000 in 10-15 years.

What polymer materials are you most excited about?

We see major industrial applications of polyamide materials by HP and EOS. The market entry of HP certainly had a huge impact and ends the lonely market leadership of EOS in this field. This development will bring new drive to the polymer material map. However, as long as we have no replacement for glass fiber reinforced polymers a wide adoption is still not to be expected.

Are there any emerging metals that you are excited about?

Lately, we have seen promising developments of copper processes with satisfyingly high process stability. The copper market is very interesting since it covers a great number of complex and high value applications which are suitable for Additive Manufacturing.

How do I start making qualified 3D printed parts?

A certain background knowledge is helpful, of course. First of all, you should start to think additive. This means you design the part with material only where it is needed. Topology optimization can help here. This way, you will reduce costs and generate a business case. Secondly, you have to understand your Additive Manufacturing process. It is the same as with any other manufacturing technology. The more you know about the specific process, the better the design will be. Finally, you need to produce the part on a qualified system and validate all manufacturing processes. But that’s where we start to get into detail.

How does your cost calculation tool work?

The cost calculation tool we put on our homepage is rather simple but gives good estimates of manufacturing cost for some LB and EB-PBF alloys. Since part complexity is almost for free in Additive Manufacturing, the tool is mostly driven by the total manufacturing volume. After entering volume, parts per batch and alloy, the tool calculates part cost range for low and high build jobs. For a more sophisticated tool, it is of course important to understand all cost factors that we describe in our make or buy study.

Why is it that when you ask a client to select a part for 3D printing that they always pick the wrong one?

First and foremost, lack of experience. And secondly, we tend to choose parts that we want to simply “replace” by 3D printed parts. This will usually not work. The best business cases evolve when designing a new assembly and having 3D Printing in mind – thinking additive.

Ampower Releases Paper Discussing Sinter-Based 3D Printing Technologies

Ampower is an aptly named company, as its goal is to empower companies to benefit from additive manufacturing. The German company offers its expertise on all things 3D printing-related in order to help clients make the most out of the technology, and its advice often comes in the form of in-depth studies on additive manufacturing. Its most recent study, “Metal Additive Manufacturing with sinter-based technologies,” can be downloaded for free from the company’s website. The study offers a close look at sinter-based additive manufacturing technologies and compares them with laser beam powder bed fusion (LB-PBF) and metal injection molding (MIM).

The paper offers an overview of metal additive manufacturing technologies, comparing sinter-based technologies to LB-PBF. Test specimens from nine different suppliers were obtained and examined, including density cubes and tensile bars as well as a full automotive component.

The paper goes on to closely look at the full process of sinter-based technologies, including the necessary debindering step. These include several options, including thermal debindering, thermal catalytic debindering, and solvent debindering. The authors compare the costs of theses different debindering options, as well as the costs of metal FDM vs. binder jetting and LP-PBF.

“Compared to traditional high-volume manufacturing technologies, LB-PBF is generally associated with high machine and material cost at low production speed,” the authors state. “Thus, not every part that is technologically feasible is reasonable from a business perspective. Sinter-based metal AM technologies promise to change this and lower the cost for metal parts for higher production volumes.”

The authors then examine the materials that are available for the various production technologies, noting that LB-PPF currently has a wider range of metal materials available.

“For this study stainless steel alloys 316L and 17-4PH were examined to determine the material characteristics,” they continue. These alloys are commonly available for the processes LB-PBF, MIM, metal FDM and BJT and therefore enable the best comparability. The obtained results are based on over 50 specimens from nine different system suppliers.”

The testing included porosity analysis, in which cross sections of the pieces produced by each technology were analyzed by light microscopy. For the sinter-based technologies, the debindering and not the 3D printing itself was responsible for more of the porosity in the final parts. Higher pore distribution and larger defects were found in the parts produced by binder jetting and metal FDM than those produced by LB-PBF. Material properties were also tested.

Design potentials and limitations for each of the technologies are also discussed, and design guidelines are given. The authors point out that manufacturers currently have more of a variety of technologies to choose from than ever before, but that variety also requires that they become knowledgeable about more technologies than ever.

“Due to the debindering and sintering process challenges of large parts, binder jetting technology and metal FDM will most likely be used to manufacture small to medium-small components,” the authors conclude. “Metal FDM will cover low production volumes due to its flexibility. Binder jetting technology, on the other hand, will close the gap to very high-volume production technologies such as MIM and will become a cost efficient alternative.”

The full paper is definitely worth a read if you’re interested in the intricacies and varieties of the different methods of metal additive manufacturing, particularly sinter-based technologies. You can download the paper here. You can also visit Ampower at formnext at Booth E30 for a free hard copy.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Image: Ampower]