US Army Learning About and Using 3D Printing to Improve Military Readiness

The REF Ex Lab at Bagram Airfield produced these items after Ex Lab engineers worked with Soldiers to develop solutions to problems they encountered.

The US Army has long been putting 3D printing to good use. In an article published in the latest edition of Army AL&T Magazine, senior editor Steve Stark takes a deep dive into just how this branch of the military is using 3D printing, and what barriers stand in its way.

Stark wrote that 3D printing “is a natural fit for the Army” as the military branch works to upgrade its manufacturing technologies. Dr. Philip Perconti, director of the US Army Research Laboratory (ARL), says the technology “is at a pivotal stage in development.”

At the opening of the new Advanced Manufacturing, Materials and Processes (AMMP) manufacturing innovation center in Maryland this fall, Dr. Perconti said, “The Army wants to be at the forefront of this advancement in technology.”

Dr. Perconti believes that mobile production of various replacement parts and components is on the horizon, and he’s not wrong: the Navy, the Air Force, and the Marines are already taking advantage of this application.

3D printing can be used to improve readiness, which is a fairly wide-ranging category that covers everything from buildings and repairs to logistics and sustainment. The overarching goal is to send units out with just the right amount of equipment to establish a mobile unit for on-demand 3D printing.

Mike Nikodinovski, a mechanical engineer and additive expert with the Army’s Tank Automotive Research, Development and Engineering Center (TARDEC), explained that various places around the Army, like its Research, Development and Engineering Command (RDECOM) and the Aviation and Missile Research, Development and Engineering Center (AMRDEC), are currently enhancing readiness, and speeding up the sustainment process, by experimenting with the 3D printing of plastic and metal parts.

“We’ve been repairing parts for the M1 Abrams. … We’ve done projects cross-Army and with the Marine Corps where we printed things like impeller fans. A lot of the things we’ve been doing are just basic one-for-one replacement,” Nikodinovski said. “What can you do with additive for a part that’s traditionally manufactured? A lot of that gets at sustainment, and that’s what we’re trying to stand up at Rock Island—give them the capabilities so they can print metal parts, especially if you want … long-term procurement for parts where you only need a couple, vendors are no longer in business and it doesn’t make a lot of sense to spend a lot of money to set up tooling. Can additive be used to supplement the sustainment process, where I can just, say, print three parts and save all the time it would take to find vendors or set up the tooling?”

A 3D printed 90° strain relief offset connector, which was designed and fabricated by REF engineers at Bagram Airfield, Afghanistan to prevent cables from breaking when attached to a piece of equipment.

Additive manufacturing is very different from subtractive manufacturing, which means that critical training is involved.

“That’s a huge undertaking. We need to not only train the people who are going to touch and run the machines, but train the troops and the engineers on the capabilities of and how to design for AM,” explained Edward Flinn, the Director of Advanced Manufacturing at Rock Island Arsenal.

“You’ve got to train the Soldier on the capabilities of the technology along with how to actually use the machine. Then there’s how to teach the design community themselves the benefits of additive so they can start designing for it.”

Ryan Muzii, REF support engineer, cuts metal for a project.

Megan Krieger, a mechanical engineer at the Army’s Engineer Research and Development Center (ERDC), explained that the use of makerspaces in the MWRs (morale, welfare, and recreation facilities) at libraries is a helpful way to get military personnel more familiar with 3D printing. She explained that this way, “if people are passionate about making things, they’ll learn it a lot better than if they’re just thrown into it.”

Outside of actually learning how to use the technology, the Army is also working to develop new materials and design tools for 3D printing.

Dr. William Benard, senior campaign scientist in materials development with ARL in Maryland, said, “The Army’s near-term efforts are looking at readiness, and in research, one of the simpler things is to just design new materials that are easier to print with, more reliable to print with, [the] properties are well understood—that kind of thing as a substitute, sort of a more direct approach to support of existing parts.

“One of the areas of investment that ARL is making to support this, and I know others in the RDECOM community are looking at it as well, is, really, new design tools for additive.”

The Army also needs to determine the specific economics of adopting 3D printing. While cost is less of a factor when you’re up against a tight deadline, this reverses when manufacturing reproducibility and cost are more important in a project. Additional factors include how critical the need for the part is, how quickly developments are being made, what else depends on the particular project, and where exactly the Army is spending money.

Tim Phillis, expeditionary additive manufacturing project officer for RDECOM’s Armament Research, Development Engineering Center’s Rapid Fabrication via Additive Manufacturing on the Battlefield (R-FAB), explained, “We as scientists and engineers can talk about material properties and print bed temperatures and print heads and all this kind of stuff, but the senior leadership is looking at, ‘So what? How does this technology improve readiness? How can I keep systems and Soldiers ready to go?’ And that’s what we’re learning.”

Soldiers used R-FAB during a Pacific Pathways exercise in 2017 to print a camera lens cover for a Stryker vehicle in four hours. [US Army photo]

Stark wrote that the Army is mostly “focusing its efforts on its modernization priorities,” and leaving further development up to academia and industry. If our military wants to use 3D printing for real-world applications, this development needs to speed up – these parts must stand up under plenty of stress.

Dr. Aura Gimm, who was managing the Army’s MIT-affiliated research center program at the Institute for Soldier Nanotechnologies at the time of her interview, said, “It’s one thing to create decorative parts, but it’s something else if you’re trying to create a loadbearing or actuating parts that could fail.

“The standardization and making sure that we have metrology or the metrics to test and evaluate these parts is going to be quite critical, for [items made with additive] to be actually deployable in the field. Because one thing that we don’t want is to have these parts … not work as expected.”

Dr. Perconti concurred:

“Ultimately, the goal for us is to enable qualified components that are indistinguishable from those they replace. Remember, when you take a part out of a weapon system and replace it with an additive manufactured part, you’re putting lives on the line if that part is not fully capable. So we have to be very sure that whatever we do, we understand the science, we understand the manufacturing, and we understand that we are delivering qualified parts for our warfighters.”

UH-60A/L Black Hawk Helicopter [Image: Military.com]

For example, AMRDEC has been working with General Electric Co. to 3D print parts for the T700 motor, which powers both the Apache and Black Hawk helicopters. However, these motor parts are not in use, as they have not yet been tested and and qualified at the Army’s standards. Kathy Olson, additive manufacturing lead in the Manufacturing Science and Technology Division of the Army’s Manufacturing Technology program at Redstone Arsenal, Alabama, said this project is “more of a knowledge transition” to show that it’s possible to 3D print the parts with laser powder bed fusion.

In order to qualify 3D printed parts for Army use, the materials must first be qualified.

“Then you have to qualify your machine and make sure it’s producing repeatable parts, and then qualify the process for the part that you’re building, because you’ll have likely different parameter sets for your different geometries for the different parts [that] you’re going to build,” Olson explained.

“It’s not like you can just press a button and go. There’s a lot of engineering involved on both sides of it. Even the design of your build-layout is going to involve some iteration of getting your layout just such that the part prints correctly.”

One solid application for Army 3D printing is tooling, as changes in this process don’t need any engineering changes.

Dr. Patrick Fowler, right, former lead engineer of the Ex Lab in Afghanistan, works with a Soldier on an idea for a materiel solution.

“You can get quick turnaround on tooling,” Flinn explained. “The design process takes place, but the manufacturing can take place in days instead of weeks…For prototyping or for mainstream manufacturing, I can have a tool made [additively] and up and running in 24 hours.”

If applied correctly, 3D printing will allow soldiers deployed all over the world to make almost anything they need in the field.

“What missions can we solve? We’re finding all kinds of things,” said Phillis. “Humvees are being dead-lined because they don’t have gas caps. Or the gas cap breaks. When they order it, they’ve got to sit there for 30 days or 45 days or however long it takes to get that through the supply system.

“If we can produce it in a couple of hours, now we’ve got a truck that’s ready for use while we’re waiting for the supply system to catch up.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Images: US Army photos by Jon Micheal Connor, Army Public Affairs, unless otherwise noted]

US Army Research Lab Scientists Creating Atomic-Level 3D Reconstructions of Specimens

The US Army Research Laboratory (ARL) is responsible for plenty of innovative 3D printing research over the years, such as 3D printing drones and working with recycled 3D printing material. Now, material scientists from the ARL have their sights set on something much smaller that could have a very large impact – analyzing atomic-level metal and ceramic specimens.

Dr. Chad Hornbuckle, a materials scientist with the ARL’s Weapons and Materials Research Directorate, specializes in microstructural characterization using electron microscopes and atom probe tomography (APT), and is working on the atomic-level research. He said that the unique atom probe being used in this research not only sets the standard for accuracy in chemistry, but is also necessary to understanding the interior structure of materials themselves.

“The atom probe gives us a 3-D reconstruction at the atomic level. When you see the reconstruction that’s made up of millions of dots, the dots are actually individual atoms,” Dr. Hornbuckle explained.

“It’s basically the only machine in the world that can do this at the atomic level. There are machines, like transmission electron microscopes, or TEMs, that do chemical analysis, but it is not as accurate as this.”

Dr. Chad Hornbuckle, a materials scientist with the ARL, specializes in atom probe tomography, which analyzes ceramics or metal 1,000 times smaller than a human hair.

Because experiments require consistency, it’s extremely important to maintain a high level of accuracy during research like this.

Dr. Hornbuckle said, “You might have one effect one time, but if the chemistry changes, you get a completely different effect the next time. If you can’t control the chemistry, you can’t control the properties.”

If you thought working at the nanoscale level was small, consider this: the atomic-level specimens being analyzed in this research are roughly 1,000 times smaller than the end of a strand of human hair. Researchers have to create very sharp tips to get the samples ready for analysis, which are used to mill, or sandblast, the materials away using gallium and either a focused ion beam microscope or a dual beam scanning electron microscope. Then they are inserted into the atom probe.

The interior of the probe is a super cold vacuum. Atom samples are ionized with a laser, or a voltage pulse, within the probe’s tip, which causes them to field evaporate from the surface. Then, the evaporated ions are analyzed and identified, which results in a 3D model with a near-atomic spatial resolution.

Atom probe

Dr. Hornbuckle himself developed the probe during his time as a graduate student at the University of Alabama. Army scientists and other researchers now ask him for his help in characterizing samples, and use APT technology to determine which atoms are located where in a material.

Dr. Denise Yin, a postdoctoral fellow at ARL, said, “I can give you one specific example of how it’s helped our research. We were electrodepositing copper in a magnetic field and we found a chemical phase using the atom probe that didn’t otherwise show up in conventional electrodeposition.

“Electrodeposition is a process that creates a thin metal coating.

We were having problems identifying this phase using other methods, but the atom probe told us exactly what it was and how it was distributed.”

Dr. Yin said that the atom probe has “impressive” capabilities:

“You can see the atoms show up in real time. Again, it’s at the nanometer scale, so it’s much finer than all the other characterization techniques. The atom probe told us quite easily that the unknown phase was two different types of a copper hydride phase, and that’s not something that we could have detected using those other methods.”

[Image: ARL]

Only a limited number of these atom probes exist, and the one used by the ARL is one of just several in the US. So you can imagine that many universities hope to use it to analyze their own samples. As part of its Open Campus business model, the lab looks for formal agreements.

ARL Director Dr. Philip Perconti explained, “Open Campus means sharing world-class ARL facilities and research opportunities for our partners. A thriving Open Campus program increases opportunities for technology advancement and the transfer of research knowledge.”

Dr. Hornbuckle said that a partnership with Lehigh University yielded some “important results.”

Army scientists explore materials at the nano-level with the goal of finding stronger or more heat-resistant properties to support the Army of the future.

“One university that we collaborate with is Lehigh University. At first, this collaboration was more of a mutual exchange of expertise, where I analyzed some of their samples in the atom probe and they used their aberration-corrected transmission electron microscope to analyze some of our copper-tantalum sample,” said Dr. Hornbuckle. “We now have a cooperative agreement with them to continue this collaboration.

“I actually ran a nickel-tungsten alloy that was electrodeposited for them and identified and quantified the presence of low atomic number elements such as oxygen and sodium. This resulted in one research journal article with several more in preparation.”

The ARL is also collaborating with Texas A&M University on atomic-level analysis.

“This collaboration initiated due to the Open Campus initiative. I have analyzed a few nickel-titanium alloys that had been 3-D printed. They noticed some nanoscale precipitates within the 3-D printed materials, but were unable to identify them with their TEM,” Dr. Hornbuckle said. “I am trying to determine the chemistry of the phase using the atom probe, which should help to identify it.”

The University of Alabama is another of the ARL’s partners, and this collaboration led to several published research journal articles.

“They have a different version of the atom probe. They have run some our alloys in their version and ours to compare the differences noted in the same material. This material is actually being scaled up through a number of processes that are relevant to the Arm,” Dr. Hornbuckle explained.

In addition to creating important and meaningful connections, these various partnerships also provide the Army with access to equipment not found at the ARL. Then, the knowledge that Army researchers learn through this joint research can be applied to current problems the Army is facing, as well as to developing future relevant materials.

Dr. Hornbuckle said, “When you see things no other human has ever seen before, it’s very cool to think that I’m helping to push the envelope of new modern materials science, which then obviously is used for the Army. Every time we run a new material we think about how we can help the Soldier with this new discovery.”

Discuss this research and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Images: US Army photos by David McNally]

Military Researchers Present Work on Recycled 3D Printing Material

[Image: Nicole Zander, Army Research Laboratory]

The US military has made no secret of its enthusiasm for 3D printing, and lately has taken a creative, eco-friendly approach to the technology, looking into the recycling of water bottles for 3D printing material. Using water bottles, cardboard and other materials found on base for 3D printing could help reduce dependence on outside supply chains, improve operational readiness and offer greater safety. Normally, soldiers at remote bases or on the battlefield have to wait weeks for replacement parts, but by 3D printing them instead from materials that are readily at hand, they could eliminate that waiting time and become more self-sufficient.

The military researchers presented their work this week at the 256th National Meeting & Exposition of the American Chemical Society.

“Ideally, soldiers wouldn’t have to wait for the next supply truck to receive vital equipment,” said Nicole Zander, PhD. “Instead, they could basically go into the cafeteria, gather discarded water bottles, milk jugs, cardboard boxes and other recyclable items, then use those materials as feedstocks for 3D printers to make tools, parts and other gadgets.”

According to the US Government Accountability Office, the Department of Defense has an inventory of 5 million items distributed through eight supply chains in order to keep military personnel supplied with food, fuel, ammunition and spare parts. Few of these items are stockpiled at front-line locations, however, meaning that shortages can occur at critical times. Many of these front-line locations do have 3D printers, but they often have to wait an extended period of time for feedstock to be replenished.

Nicole Zander, ARL, demonstrates equipment for Capt. Anthony Molnar, U.S. Marine Corps. [Image: Jhi Scott/US Army]

Zander, along with Marine Corps Captain Anthony Molnar and colleagues at the US Army Research Laboratory, has been investigating recycling PET plastic, which is commonly found in water and soda bottles. They determined that filament produced from recycled PET was just as strong as commercially available 3D printer filament. The team used the recycled PET filament to 3D print a vehicle radio bracket, which normally has a long lead time. The process required about 10 water bottles and took about two hours to 3D print.

Originally, the researchers found that other types of plastic, like polypropylene (PP), which is found in yogurt and cottage cheese containers, and polystyrene (PS), used in plastic utensils, were not practical for 3D printing, but some tinkering made them more useful. They strengthened the PP by mixing it with cardboard, wood fibers and other cellulose waste materials, and they also blended PS with PP to make a strong and flexible filament.

The team used a process called solid-state shear pulverization to create composite PP/cellulose materials. Shredded plastic and paper, cardboard or wood flour was pulverized in a twin-screw extruder to generate a fine powder, which was then melted and processed into filament. The researchers tested the new composites and discovered that they had improved mechanical properties that could be used to 3D print strong objects.

Zander and her team are building a mobile recycling center that will allow trained soldiers to make 3D printing filaments out of plastic waste. They are also looking into ways to 3D print from plastic pellets instead of filament, which could allow for the printing of larger objects.

“We still have a lot to learn about how to best process these materials and what kinds of additives will improve their properties,” Zander said. “We’re just scratching the surface of what we can ultimately do with these discarded plastics.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.