3D Printing Metal End-use Part Applications

This article describes the ideal use-cases for each process & comparison with other solutions to help you identify opportunities using 3D Hubs in your organization for metal 3d printing service.

Definition: End-use part is any good that is either sold as a product or placed in service within a company’s internal operations.

There are 6 processes to consider:

  1. FDM / FFF (plastics)
  2. SLA / DLP (plastics)
  3. SLS / MJF (plastics)
  4. SLM / DMLS (metals)
  5. Metal FFF (metals)
  6. Binder Jetting (metals)

In part 1 we talked about plastic parts, in part 2 we discuss only metals. 

4. SLM/DMLS

Selective Laser Melting (SLM) and Direct Metal Laser Sintering (DMLS) are metal powder bed fusion 3D Hubs printing processes that are most commonly used today as they are especially suitable for high-end applications since they offer advanced material properties and superb design freedom.

While both utilize high laser power to bond together metal powder particles to form a part– layer-by-layer, SLM will achieve a full melt, while — due to the very high temperatures — DMLS will cause the metal particles to fuse together at a molecular level. 

The majority of metal alloys are compatible with the DMLS method, wherein SLM, only certain (pure) metal materials may be used.

Still, the differences between these two 3D Hubs printing technologies are so slim; they can be treated as the same for designing purposes. 

In this section, we will take a closer look at the technical characteristics, manufacturing process, and the limitations and benefits of these two, very similar techniques.

How it works: SLM/DMLS 3D Hubs printing process basic steps:

  • First, the build chamber is filled with inert gas then heated to the optimum print temperature.
  • A thin layer (typically 50 μm) of metal powder is spread over the build platform.
  • Next, the laser scans the cross-section of the part, selectively bonding the metal particles.
  • Thus, the build platform moves down a layer when the entire area is scanned, and the process repeats until the build is complete.
  • After the printing process is complete, the build must first cool down before the loose powder is extracted.

This step is only the beginning of the SLM/DMLS 3D printing manufacturing process. Once the print is complete, several compulsory and/or optional post-processing steps are also required before the parts will be ready for use. 

Compulsory post-processing steps include

  • Stress relief: Before continuing with any other operation, the internal stresses that develop during printing, due to the very high processing temperatures, need to be relieved through a thermal cycle.
  • Removal of the parts: In SLM/DMLS the parts are welded onto the build platform and EDM wire cutting or a band saw are used.
  • Removal of the support: To mitigate the distortion and warping that occurs during printing, support in SLM/DMLS is required. Support is CNC machined or removed manually.

Additional post-processing steps are often required to meet engineering specifications that may include:

  • CNC machining: When tolerances are tighter than the standard ± 0.1 mm that’s required, machining is employed as a finishing step. Only the slight material is removed this way.
  • Heat treatments: Hot Isostatic Pressing (HIP) or heat treatments can be used to improve the material properties of the part.
  • Smoothing/Polishing: Certain application requires a smoother surface than the standard RA 10 μm of as-printed SLM/DMLS. CNC machining and Vibro, chemical, or manual polishing are available solutions.

How it works: Laser source bonds metal powder particles

Strengths:

  • Geometric freedom
  • High accuracy & fine details
  • High-performance materials

Materials:

  • Stainless Steel
  • Aluminum
  • Titanium
  • Superalloys

Use case #1 – Optimized brackets

DMLS / SLM is used to create lightweight parts through advanced CAD processes, such as topology optimization. They are of particular interest in the automotive and aerospace industries.

Use case #2 – Internal geometries

A far more common use of DMLS / SLM is the creation of parts with internal channels. These find applications in the manufacturing industry (for example injection molding tooling with internal channels for cooling) or for heat exchangers.

Pro tip: Make sure that no support structures are needed to manufacture the internal channels, as they will be impossible to remove.

5. Metal FFF: What is metal extrusion?

Metal Extrusion is a low-cost metal 3D printing process alternative that is most suitable for prototyping purposes or for one-off custom parts.

It is a variation of the classic FDM method for plastics. In 2018, the first Metal Extrusion 3D printers were released also known as an Atomic Diffusion Additive Manufacturing (ADAM) and Bound Metal Deposition (BMD).

A part is built layer-by-layer, like FDM, by extruding material through a nozzle, but the material is not plastic, unlike FDM but is a metal powder held together with a polymer binder. The result of the printing step is a “green” part that needs to be sintered and de-bonded to become fully metal.

Here, we examine the characteristics and key limitations and benefits of this additive process to help you understand how you can use it more effectively.

How does metal extrusion work?

Metal Extrusion consists of a three-stage process involving a printing stage, a de-binding stage, and a sintering stage. 

The Printing Stage…

  • Raw material in a rod or filament form, which basically consists of metal particles that are bound together by wax and/or polymer.
  • This filament or rod is extruded through a heated nozzle and then deposited– layer-by-layer to build a designed part based on the CAD model.
  • While, if necessary, support structures are built. The interface between the part and the support is printed with ceramic support material that can easily be removed later manually.

When printing is complete, the “green” resulting part must be post-processed using similar steps like Binder Jetting, in order to become metal. The “green” part is washed first for several hours in a solution to remove almost all of the binders. Then it is sintered inside a furnace so that the metal particles are bonded together to form the fully-metal part.

During the sintering process, the dimensions of the parts are reduced by about 20 percent. to compensate for this, the parts are printed larger. Like the Binder Jetting process, the shrinkage isn’t homogenous, meaning that trial and error will be required to get accurate results for particular designs.

How it works: Metal/binder is extruded through a nozzle to print the part, which is then thermally sintered.

Strengths:

  • Does not require industrial facilities
  • Based on MIM
  • Complex metal parts

Materials:

  • Stainless steel
  • Tool steel

Main use: For internal operations

An alternative to CNC, Sand casting

Quantity: 1-50 parts

Use case #1 – CNC part replacements

Metal Extrusion is excellent for functional CNC prototyping and small productions of metal parts that would otherwise require a 5-axis CNC machining to produce.

6. Metal Binder Jetting

Metal Binder Jetting is increasing in popularity rapidly. What makes it especially suitable for small to medium production runs, is its unique characteristics.

In this section, we will dive deeper within the steps used in the Binder Jetting to learn the basic characteristics of metal parts production.

What is Metal Binder Jetting?

Metal Binder Jetting is a process of building parts by placing a binding agent on a slightly thin layer of powder in through inkjet nozzles. Originally, it was used to develop full-color models and prototypes from sandstone. A variation of the technique is becoming more popular lately, because of its batch production capabilities.

In metal Binder Jetting printing, the printing step is done at room temperature, which means the thermal effects, such as, internal stresses and warping aren’t a problem, like in SLM/ DMLS, and therefore, supports are not needed. To create a fully metal part, an additional post-processing step is required.

How does Metal Binder Jetting work?

Metal Binder Jetting involves two-stages; a printing stage and a post-processing stage.

The printing process works like this…

  • A thin layer (typically 50 μm) of metal powder is spread out over the build platform.
  • A carriage that has inkjet nozzles will pass over the bed while selectively depositing binding agent droplets of wax and polymer to bond together the metal powder particles.
  • When done, the build platform will move down, then the process will repeat until the entire build is complete.

The result of this printing process is a part of the “green” state. To create fully metal parts and remove the binding agent, a post-processing step is necessary.

This post-processing stage requires two variations: Infiltration and Sintering.

How it works: Binder is jetted onto metal powder particles to create the part, which is then thermally sintered

Strengths:

  • Great design freedom
  • Based on MIM
  • Batch production

Materials:

  • Stainless steel 
  • Tool steel

Main use: Low-run metal production

An alternative to Metal Injection Molding, Die casting

Use case – Low-run production

Binder Jetting is the only metal 3D printing technology today that can be used cost-effectively for low-to-medium batch production of metal parts that are smaller than a tennis ball.

Why engineers use 3D Hubs for 3D printing

Instant quoting & DFM feedback

Build and edit your quote online. Review your parts for manufacturability and assess the cost of different materials, processes and lead times for your project in real-time. Explore our 3d printing service for every type of additive manufacturing project. 

Readily available capacity

Benefit from our network of 250 manufacturing partners to access instantly available capacity. Our manufacturing partners are both local and overseas.

Quality & reliability

Dedicated 3D Hubs team to ensure your parts consistently meet your quality expectations. We also offer phone, email and chat support for any concerns or questions you may have.

The post 3D Printing Metal End-use Part Applications appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Rapid 2019: Interview with GE’s Jake Brunsberg on Binder Jetting for Manufacturing

A while ago GE announced its’ surprising entry into the binder jetting market. GE was already active in two metal 3D printing technologies Laser Powder Bed Fusion and Electron Powder Bed Fusion. Both these technologies use an energy source to selectively heat grains of powder in a sealed chamber. PBF based technologies produce dense, accurate parts that are being used in aerospace, implants, dental and other demanding applications. PBF technologies are far from perfect. The initial investment is high (around $1.5m if you want to do manufacturing) and requires an industrial gas installation and sophisticated resources, employees and knowledge. It may take a company a year to coherently manufacture parts with Powder Bed Fusion for metals. But, once they do they can reliably make tens of thousands of parts in a predictable way with these technologies. Arcam’s EPBF is being used at GE Additive to make turbine blades and orthopedic implants while the Concept Laser/In house derived LPBF is being used for all manner of aerospace and industrial parts.

A much lower cost, much lower barrier to adoption technology was dominating the headlines however: Binder Jetting for metals. HP, Desktop Metal, Markforged, and others were steaming ahead with this technology.  The headlines were in favor of binder jetting which was being touted as the technology that would bring inexpensive manufacturing in metal 3D printing to thousands of firms. With much lower investments and quicker adoption, this easier cheaper technology would produce parts for mere cents that could go into cars and relatively inexpensive goods.

I’m personally very skeptical about binder jetting metals. I know if enough people and more importantly enough VC money believe that you will make it then you may make it. But, 3D printing is not a filter for your selfies. In binder jetting a layer of fine (less costly than PBF) powder is jetted together via a binder, the part is then sintered. Essentially a lot of the process is very similar to the MIM (metal injection molding) business. And there they have traditionally had many problems with the sintering step. In sintering, results can vary enormously depending on wall thickness, part size and geometry. Studying initial binder jet metal parts made me only more skeptical. At the same time, existing firms such as ExOne and Voxeljet had been doing the same thing for years making millions of binder jetted metal parts albeit without the marketing pizazz.

When I heard that GE had made its own binder jetting 3D printer in a number of months I found it a surprising but very logical move. Now with the firm getting some traction I’m curious to see where they’re headed with this.  I sat down with Jake Brunsberg who is leading GE’s binder jetting initiative to find out more about the technology.

What is the status of binder jetting at GE? 

We have a beta machine at the moment. We hope to release it widely in 2021. At the moment we’re working with key partners to understand the needs of the manufacturing industry. We’re working with partners inside GE to learn what their requirements are to manufacture metal parts with binder jetting. With both Cummins and Wabtech we’re looking at what our partners need to manufacture at an industrial scale in automotive and transport.

How does binder jetting fit in with your other technologies? 

Our binder jetting solution is suited for high volume low-cost parts. With binder jetting you may not be able to do everything that you can with Electron Beam Melting or Direct Metal Laser Melting but you do have high throughput and much lower costs.

How do you hope to position the technology? 

For binder jetting, we’re really looking at other types of components such as power train components. For some of these parts, we believe that our binder jetting solution can produce cost competitive parts. Ontop of that we hope to see further gains as we help our customers design for additive. If we can then help them design for Additive, part consolidation, conformal cooling and weight saving will improve them further still. We’re really looking to help the customer add value to the parts. We are aiming for positive ROI as opposed to traditional manufacturing technologies with which we’d like to compete at volume.

We’re also aiming to make larger components. Basketball size parts. We’ve worked for a long time on the technology side of the material space. This lets us make large parts suitable for serious manufacturing. 

We’re looking at industrial firms, automotive firms and the MIM industry as customers. We also have made binder jet parts capable of aerospace applications. For volume we’re of course looking at cars and industrial but throughout our own businesses we have a lot of business units that are really interested such as our aero and power businesses.

We see binder jetting as being a very synergistic technology. Orthopedic implants for example could be made with Arcam EBM, and you’d never use binder jetting for that application. However, you could 3D Print the surgical tools that are used in that operation with binder jetting.

What is different about your approach? 

We are looking at the full process. Outcomes are really dependent on all of the steps in the process. By looking at all of the steps and using our experience in industrializing manufacturing for many technologies we’re developing one solution.  This is a  whole factory solution. We aim to let our customers make meaningful parts. Meaningful parts with repeatability. 

In order to do this we’re looking at predictive analytics, we’re looking at distortion, we’re looking at the sinter cycle.  Our approach is very integral. Through software, we’re able to predict the final shape. Without this ability, it would never get out of the lab. And we want to be out of the lab, on the factory floor. 

Do you feel that you’re looking at binder jetting differently than others?

A full process solution is our real focus. Production parts with the right design considerations taken into account. Things like predistortion compensation will let us roll out this technology at an industrial scale. We are geared towards industrializing technologies. We look at the total cost per part and take into account full business ROI including things such as inventory management and aftermarket support. We look at true TCO because this matters to us.

What materials are you looking at? 

We’re experimenting with a broad range of materials. We’re mostly looking at heavy steels such as 17-4 and 316. Any kind of sinterable steel is of interest to us. We’re also looking at nickel superalloys for aviation applications. We’re testing parts such as high temperature brackets for example instead of using casting.

Steel is one of the most popular materials worldwide and this is where our focus is now with the second generation binder jetting machine.

You hope to launch in 2021? 

Yes, we hope to launch then but first, we want a full factory line in place so we can validate the technology. We want to be a production solution and we want customers to be able to see that.

 

 

3DPrint.com Interviews Experienced 3D Printing Executive and Metal 3D Printing Pioneer David Burns

Back in the 3D printing dark ages, 2005, David Burns joined ExOne to make manufacturing using 3D Printing a reality. In the ensuing thirteen years a lot of things have changed. We’ve seen a lot of 3D printing companies come and go. In 2005 “3D printing for manufacturing” was cute and only a few solitary voices were crying out that this was going to happen, David’s was among them. He and ExOne were tackling quality control, reliability, and repeatability back then; and trying to make 3D printing an industrial process. They were starting to manufacture tens of thousands of low-cost metal parts for customers. They along with Voxeljet were the only metal inkjet companies as well, whereas now there are over a dozen people in various stages of commercializing metal inkjet 3D printing technologies. Entire choruses, unburdened by knowledge or experience, are now crying out that 3D printing for manufacturing is the future. David meanwhile, was doing the heavy lifting (and an IPO) while many of you had probably never heard of 3D printing. Now that he’s an independent board member, advisor and consultant its time for him to reflect on his time in the 3D printing trenches with some insightful answers to 3DPrint.com’s questions.

You came to 3D Printing in 2005 from a background in manufacturing. What was the 3D printing landscape like back then?

In the life of products, 2005 seems like a century ago. We used to laugh, as we evangelized for this “ground breaking” technology, that people used to pat us on the heads and say ”oh, that sounds nice.” There is no doubt that in 2005, the general sentiment was that 3D printing was a curiosity and not a serious technological thrust. This impeded progress in many ways, not the least of which was that critical R&D dollars were slow to flow to 3D printing.”

And now?

“Oh, how the landscape has changed. The sentiment among end-users is no longer about “if we will succeed”, but rather a clear sense that “we will succeed”. On a global basis, we can see a determination (and almost desperation) to fund emerging ideas and to see them through to either success or failure. Of course, that applies as well to all of the supporting and enabling technologies that surround 3D printing, like software, materials, inspection, sensor technology, data transmission and storage, etc. Clearly, we need success in all aspects of this technology circle to develop simultaneously.”

What are the most significant improvements over the time frame?

“The last few years have seen the emergence of some pretty surprising innovations in 3D Printing itself. This includes a really impressive array of machine-based approaches, often combined with robotics and AI to fully integrate functionality within lines. And, there has been an interesting but quiet trend to “hybridize” traditional manufacturing technology approaches with additive approaches.”

There is still a lot holding back 3D printing in manufacturing today. What are some of the main issues?

“Well, one of the most important elements of an effective and robust manufacturing environment is a commitment to continuous improvement. So, in that context, I see two short term areas of focus that would really help.

The first would be investment in process stability. It has become a source of pride in many manufacturing environments that the basic deviation patterns of outcomes is well understood and controlled. Most 3D Printing lacks the basic process stability that is so necessary for volume production.

The second would be the need to extensively (and rapidly) expand the suite of material that can be effectively printed. The good news on the material side is that 3D Printing allows for new, customized materials to emerge.

I want to be sure that I make one point, though. I see these issues as eminently solvable. With a robust R&D funding environment, these basic challenges will be overcome. It is simply a function of the quantity and speed of investment that will determine how fast that we overcome them.”

QA seems very poorly developed in 3D printing?

“I want to change the language of that question a bit. Continuous improvement methodologies exist which can be directly applied to 3DP and to move it forward, in the QA sense. You can see mounting evidence that it works….but I do want to provide a caution here. We need entrepreneurs to understand that there are well-proven processes within manufacturing that cannot be ignored. I do worry, a bit, that some companies are trying to approach the industrial marketplace with little experience, or little sense of the long manufacturing journey toward optimization.

I do understand why it may feel as if QA is lagging in 3DP, since there are consistent deviations in even part-to-part characteristics. But, with the application of continuous improvement processes, and the injection of research dollars at the right time, these knotty problems are resolvable.”

In metals, a lot seems to be going on right now, with investment pouring in and much excitement. What are the companies that you are closely watching?

“Part of my work involves being a general advisor to AMT – The Association for Manufacturing Technology. But part of my time is allocated to providing advisement services directly to manufacturing companies, some of which are 3DP companies. So, it is probably not fair for me to specifically name companies that I find exciting. That said, manufacturing is a broad-based, global activity. I do tend to get excited by metal printing companies that are clearly focused on end-user needs, and not simply enamored by their own technologies. I also do not see the need for emerging companies to feel the need to print the toughest materials, in the toughest applications. There are a myriad of opportunities for companies that want to compete on the well-established measures for manufacturing – cost, quality, and on-time delivery.”

I’m a little more skeptical than most about binder jetting metals. Won’t shrinkage continue to be problematic? Or will they solve these issues?

“Well, questions about binder jetting hint at some of the things that we just discussed. Some binder jet companies are, in fact, looking to the MIM world for ideas about controlling the sintering process. And there are surely helpful answers there. Others have invested significant dollars and have found ways to increase density and lessen distortion. I think that offline sintering can pose a significant challenge – but that sufficient research can find innovative solutions. I am not entirely sure that the challenges posed by off-line sintering imply significantly more part-to-part variation than some of the other powder bed based processes. And I do see cost advantages in binder jetting. I think that there will be a healthy number of applications for which binder jet will be appropriate.”

We’re seeing new companies try to tackle low-cost metal parts. Which kinds of parts will be industrialized first?

“Well, the low-cost marketplace poses some challenges. Material and energy-related costs present initial hurdles that need to be overcome. That said, there are lots of parts which run in relatively low volumes and that require significant fixturing and changeover on traditional machines. These are good targets. As well, many of those sorts of parts have been sourced from remote locations, for reasons that we all understand. If we do a realistic analysis of true supply-chain costs, including communications, working capital, quality resolution, etc., then I see abundant opportunities for 3D Printing.”

Do you think that in the near term there will be direct competition between the new binder jetting companies and the DMLS (Powder Bed Fusion, Selective Laser Melting) companies?

“Perhaps not in the very near term. The strengths of each process are currently a bit different. That said, as more materials become available, and as the part-to-part consistency improves, competition will (and should) develop. Remember, the annual market for traditional manufacturing technology products (on a global basis) is between $90 – 100B. Inside of that is a massive market for machines. While some of those machines are for specialty purposes, the vast majority are “part agnostic”. That is, they can be used for a wide range of parts. I think that this is the inevitable evolutionary path for machines used for metal 3DP.”

How do you think the metal printing market will develop?

“I think that the answer to that may vary by region of the world. In the US, which imports massive numbers of metal parts from other places, I think that the acceleration will be rapid. I can easily see where service bureaus that have broad-based capabilities (including traditional processes, inspection, and certification) will grow very rapidly, as the supply chain adjusts to the power of integrated digital manufacturing technologies. I think that OEM’s may invest more slowly than service bureaus, but it does not matter. What matters is that the supply transitions to embrace these new, integrated manufacturing technologies. In other countries, the transitional challenge may be different. In countries that are heavily invested in manufacturing infrastructure, the decision to disinvest in their well proven, highly capitalized processes could be harder. Clearly, the emergence of product offerings that are full lines (many recently) are reactions to the challenge of displacing well-developed, effective manufacturing processes.”

Whats the thing that surprised you most in 3D printing?

“That is a hard question. I became interested in, then immersed in, 3DP quite a long time ago. I perhaps saw the immense potential, from a high-level perspective. But, with a background in traditional manufacturing (which is quite effective and which I greatly respect), it was not clear how 3DP would ever become robust enough to displace that traditional structure. Especially when I thought about the immense quantity of investment that would be required. I think that a key transitional element has become the willingness of OEM’s to take a leadership role in the development of advanced manufacturing technologies. In the past, these same companies were relatively content to allow the supply chain to evolve manufacturing technologies. Nowadays, you have end users directly involved in funding and guiding that development. The final surprise, for me, is actually how powerful this combination of software, hardware and materials can be in changing our world. The applications that have emerged and are stunning and make the world a better place. I cannot wait to see what happens next.”

2018 TCT Hall of Fame Inductees and 3D Printing Award Winners Announced

This year’s TCT Show, held in Birmingham as usual, ended earlier this week, and yielded many announcements about new 3D printing materials, software, and of course, 3D printers and their associated hardware. Additionally, the annual TCT Awards was held for the second time during a gala dinner at the Hilton Birmingham Metropole on Wednesday. British actor and presenter Robert Llewellyn hosted the nearly 300 guests at the awards, which celebrates, according to TCT Group owner Rapid News Publications Ltd, “the people, technology and collaborations behind the best in design-to-manufacturing innovation.”

There were 14 competitive award categories, and the TCT Awards recognized the partners in many collaborative projects, in addition to the designers, technology providers, and engineers. Three more 3D printing industry leaders were also inducted into the TCT Hall of Fame in honor of “their contribution to the industry and to the growth in technology adoption.”

“Once again it was a privilege to share an evening with so many truly exceptional people,” said Duncan Wood, Chief Executive of Rapid News. “All of the winners are to be congratulated for their successes, and of course in particular the Hall of Fame inductees need a special mention, their innovation, entrepreneurship and commitment has played a huge part in the development and success of the industry.

“I must also thank our sponsors 3ecruit, as well as our supporting partner, Innovate UK for their endorsement of the event and of course our judges. The TCT Awards night is fast becoming THE night of the year for the industry and we are looking forward to the 2019 edition already!”

The first of the new TCT Hall of Fame inductees is Dr. Carl Deckard, who invented and developed Selective Laser Sintering (SLS) 3D printing technology while based at the University of Texas. Together with his former professor Joe Beaman, Dr. Deckard co-founded DTM Corporation, which was later purchased by 3D Systems, to commercialize SLS 3D printing.

The second 2018 inductee into the TCT Hall of Fame is application specialist and process pioneer Greg Morris. In 1994 he founded Morris Technologies, a specialist AM services provider, which was purchased by GE Aviation in 2012, along with sister company Rapid Quality Manufacturing. His work in developing metal 3D printing applications and processes has increased their adoption in the aerospace and medical sectors, and he distributes his knowledge through his involvement in the speaking circuit.

Professor Emanuel ‘Ely’ Sachs, who invented binder jet printing at MIT in 1989, is this year’s final TCT Hall of Fame Inductee. Professor Sachs, who is on the leadership team of Desktop Metal and still teaches at MIT, actually coined the phrase ‘3D printing’ at that time, and binder jetting technology is a building block for much of the market’s current technology.



As for the rest of the TCT Awards, Project MELT, with its tech lead listed as BEEVERYCREATIVE, won this year’s Aerospace Application Award, while the winner of the Automotive Application Award was the BMW i8 roadster SLM bracket by tech lead SLM Solutions.

Vitamix nozzle at RAPID 2018 [Image: Sarah Saunders for 3DPrint.com]

The Vitamix nozzle by Carbon won the Consumer Product Application Award, while the winner of the Creative Application Award was the Embrace jewelry collection by Cooksongold for Boltenstern. SPEE3D won the Hardware Award – Non Polymers for LightSPEE3D, and the Hardware Award – Polymers went to E3D for its Tool-Changer.

Axial3D won the Healthcare Application Award for the use of its pre-op planning model aids in a world-first surgery at Belfast City Hospital, and Trinckle 3D won the Industrial Product Application Award for its mass customization of copper inductors. The Materials Award – Non Polymer went to SABIC for its EXL AMHI240F 3D printing filament, and NanoSteel took the Materials Award – Polymers for its BLDRmetal L-40 steel 3D printing material.

3D Systems was the winner of the Metrology Award for its Aircraft Damage Assessment for Easyjet, and Steros GPA Innovate S.L. won the Post-Processing Award for its DLyte: Metal DryLyte Electropolishing. Materialise won the Software Award for its e-Stage Metal, and this year’s Rising Star Award was given to HiETA Technologies Ltd.

To learn more about the winning projects and companies, and see the Highly Commended projects, visit the TCT Awards website.

Discuss the TCT Awards and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below.