3D Printing News Briefs, July 25, 2020: MakerBot, ANSYS, Sintavia, Nexa3D & Henkel

We’re all business in today’s 3D Printing News Briefs! MakerBot has a new distribution partner, and ANSYS is launching a new product. Sintavia has acquired an additional Arcam 3D printer from GE Additive. Finally, Nexa3D and Henkel are introducing a new material for 3D printing medical and athletic devices.

MakerBot Welcomes New Distribution Partner

MakerBot announced that it has expanded its distributor network by entering into an agreement with the Distrinova division of the Unitum Group, which will distribute the MakerBot METHOD 3D print platform throughout Belgium, the Netherlands, and Luxembourg. This partnership will increase the availability of the entire platform, which offers industrial capabilities and engineering-grade materials, to more customers in the Benelux region who need professional, powerful 3D printing solutions. The METHOD platform consists of the METHOD and METHOD X printers, various accessories like an experimental extruder, METHOD Carbon Fiber editions, and materials like Nylon Carbon Fiber, ABS, ASA, SR-30, and PC-ABS FR, and Distrinova’s network of channel partners will distribute all of them, in addition to MakerBot’s educational 3D printing solutions.

We are very proud to introduce MakerBot and the METHOD technology into our product portfolio,” said Guy Van der Celen, CEO of Unitum Group BV. ” With the METHOD range we can provide our resellers network not only reliable, state-of-the-art 3D printers, but also the opportunity to offer their customers high value-added solutions for a broad range of new application areas. In addition, the introduction of MakerBot corresponds perfectly with Distrinovas’ strategy to develop strong partnerships with the leading innovative global manufacturers of 3D printers.”

ANSYS Event to Launch Discovery Product

Engineering simulation software company ANSYS released its Discovery Live tool for real-time 3D simulation back in 2017, and will soon be introducing a brand new ANSYS Discovery product, kicking things off with a virtual launch event on July 29th. The company states that the  product can help companies improve their product design processes, increase ROI, and provide answers to important design questions earlier, without having to wait for the results of a simulation.

“This reimagining of the Discovery line of products aims to maximize ease of use, speed and accuracy across thermal, structural, fluids and multiphysics simulation all from within a single consistent user interface (UI),” Justin Hendrickson, Senior Director, Design Product Management, wrote in a blog post about the new ANSYS Discovery.

“Traditionally, simulation has been used during later stages of design when making corrections can be costly and time consuming. However, with the new Ansys Discovery, every engineer will be able to leverage simulation early during concept evaluation as well as during design refinement and optimization. This means that they will be able to optimize products and workflows faster and on a tighter budget.”

The launch event will feature a keynote address from Mark Hindsbo, Vice President and General Manager, Design Business Unit, a product demonstration by Hendrickson, two customer success stories, and several interactive breakout sessions, including one focusing on thermal simulation and another exploring the tool’s generative design capabilities. You can register for the event here.

Sintavia Acquires Second Arcam Q20+ 3D Printer

Tier One metal additive manufacturer Sintavia announced that it has acquired a second Arcam Q20+ 3D metal printer from GE Additive, bringing its total number of electron beam printing systems to three and its overall number of industrial metal 3D printers to nineteen. This additional Arcam Q20+ will be installed next month in Sintavia’s Hollywood, Florida production facility, where the other Q20+ is located with an Arcam A2X, a Concept Laser M2, three SLM 280 systems, a Trumpf TruPrint 3000, and nine EOS 3D printers – six M400s and five M290s.

“Over the past several years, we have worked to qualify the Q20+ for aerospace manufacturing and now have several aerostructure product lines that depend on this technology. Electron beam printing is an excellent option for complex titanium aerospace components, and this business line will continue to grow for us. Even in a difficult overall manufacturing environment, the demand we have seen for EB-built components is very encouraging,” stated Sintavia CEO Brian R. Neff.

Nexa3D and Henkel Commercializing New Material Together

Nasal swabs

Together, SLA production 3D printer manufacturer Nexa3D and functional additive materials supplier Henkel are commercializing the polypropylene-like xMED412, a durable, high-impact material that can be used to print biocompatible medical and wearable devices. Henkel is the one manufacturing the medical-grade material, which is based on its own Loctite MED412 and was designed to offer high functionality and consistent part performance—perfect for printing products like athletic and diving mouth gear, respirators, orthotic guides and braces, and personalized audio projects. The lightweight yet sturdy xMED412 material, which can withstand vibration, moisture, and impact, has been tested by Henkel Adhesive Technologies on the NXE400 3D printer, and is now also cleared to print nasal swabs.

“We are thrilled to bring this product to market in collaboration with Nexa3D. We developed and tested with Nexa3D’s NXE400 3D printer a multitude of approved workflows designed to unleash the full potential of xMED412’s outstanding physical properties and biocompatibility,” said Ken Kisner, Henkel’s Head of Innovation for 3D printing. “Nexa3D and Henkel have provided a digital manufacturing solution for a growing number of medical devices, athletic wearables and personalized audio products. Especially with regard to the current Covid-19 pandemic, we are pleased that nasopharyngeal swabs manufactured with xMED412 on the NXE400, in accordance with our published procedures, have already been cleared through clinical trials and are in compliance with ISO 10993 testing and FDA Class I Exempt classification.”

The post 3D Printing News Briefs, July 25, 2020: MakerBot, ANSYS, Sintavia, Nexa3D & Henkel appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

AMS 2020: 3D Printing Metals II Keynote by Craig Sungail, Global Advanced Metals

The final keynote presentation at our recent Additive Manufacturing Strategies, held in Boston and co-hosted by SmarTech Analysis, was given by Craig Sungail, the Vice President of Global Research and Development for Global Advanced Metals, which just so happened to be one of the event sponsors. Sungail was part of our new 3D printing metals track, and presented a very interesting talk about tantalum, “the other gray metal.”

“We’ve used other metals for years, like cobalt chrome and stainless steel, to make implants,” Sungail said. “In 80% of the cases, for most people, it’s successful. But 20% of the time, patients aren’t happy with the results.”

He went on to say that there is a 10% revision rate each year for surgical implants 3D printed out of these other materials, for reasons such as infection, fracture, and becoming dislodged. That’s why he said that we should all “consider tantalum as an alternative.”

“This metal has a long history. We’ve been reviewing the literature for the past 25 years. The authors vary – physicians, universities, etc. But there is a broad, diverse group of people investigating this metal for medical devices.”

Sungail explained that these journals have determined that tantalum (Ta) is not toxic, which “can’t be said for some of the other metals out there today.” Additionally, the research shows that when using tantalum for implants, the osseointegration (bone ingrowth) of the implant into existing bone is pretty good, and perhaps even better than implants made with straight titanium or the Ti-64 alloy.

He pulled up a slide listing some of the other benefits of using tantalum to fabricate medical implants, including the fact that it could enhance local host defense mechanisms, and that it may even have some antibacterial properties.

Sungail offered a brief history about tantalum, which is a transition metal/element. He explained how the material got its name, bringing up a slide about Greek mythology, which I had not been expecting and was very interesting. Tantalus, the son of Zeus and a nymph, stole ambrosia and nectar from his father, and the punishment definitely fit the crime in this case – he was forced to stand in a pool of water that was tantalizingly close to a fruit tree.

“The water would fade away, and the fruit was just out of reach,” Sungail went on.

Then, in 1802, Swedish analytical chemist Anders Gustaf Ekeberg became the first person to discover tantalum when he successfully separated it from nyobium. Ekeberg was tantalized for a long time attempting to achieve what many others had not, and once he’d succeeded, he was given the honor of naming both of the new elements.

“I’m confident that every one of you has been touched by tantalum in some way,” Sungail said. “It’s highly conductive, with a high melting point, chemical and corrosion-resistant, dense, hard, ductile, and biocompatible. We have to use biocompatible carefully, but I’m using it with the FDA definition – it’s been implanted in some way into the body, and studies concluded that the implant was biocompatible.”

Sungail said that the most common application for tantalum is in the capacitor sector, such as when it’s used for cell phones. It does have a 40-year history in medical devices, and it can be mixed with materials in order to make super elements, which can be used in turbines for jet engines and energy generation.

He explained that the company is “truly global,” with locations in the US and Japan. GAM also has a controlling interest in the largest reserve of tantalum in the world, which is in Australia. I’m skipping ahead a little, but I thought this was a good question – at the end of the presentation, an attendee asked Sungail about the potential environmental impact of mining tantalum. He explained that GAM does what he referred to as a “bag and tag” when they receive ore from a conflict country.

“We ensure the money isn’t going to terrorists, we do it ethically. If it wasn’t mined ethically, we wouldn’t have sales,” he stated.

Back to where we were, Sungail said that two years ago, the company was taking a look at the various AM markets, wondering which would be the best to participate in with its tantalum. Just like the above graph shows, GAM determined that its “value proposition was best in medical, and not automotive.”

“We realized we’d have to bridge the chasm between early adopters and later innovators. We’d have to teach the industry about tantalum and that it can be printed,” he said.

So the company got to work, using 200W and 300W lasers to 3D print medical devices like spinal implants and baseplates out of its tantalum; these fully dense parts are now in testing.

Sungail listed several reasons why tantalum is a good material to use in 3D printed medical devices – it resists blood clotting, so it can be used to fabricate stents, and its high surface friction, proven through several research studies done on animals, is good for implant stabilization.

Tantalum also has no problem with corrosion, which has been reported as being an issue with other implant materials. Sungail had a slide that showed a picture of a non-tantalum 3D printed hip implant, which required revision post-surgery due to corrosion; researchers determined that it was caused due to crevice (the oxygen effect) and galvanic (dissimilar metals). He explained that debris due to friction can lead to even more issues with implants, such as inflammation in the tissue around the joint, which can cause severe pain, and that cobalt chrome and Ti-64 implants can even lead to toxic effects, like bone degradation, if absorbed into the body.

“Tantalum doesn’t corrode in a normal body,” Sungail said. “Its only attacker is hydrofloric acid, and threading should also not occur with tantalum.”

Looking at the graph above, you can see that the material’s printability comes down to several factors, of which bioinertness combines several; Sungail explained that “these are generic combinations of various features for easy reading.”

“It’s significantly more printable than some other metals we use for medical devices,” he continued. “Tensile and elongation properties unfortunately aren’t well reported, so we turned to engineering handbooks for this informnation, and modulus can be tuned with this material. There are four to five papers out now from researchers who printed tantalum and made it 70-80% porous, because this is the sweet spot for osseointegration. They noticed that the elastic modulus exactly matched bone in this range.”

Sungail said that he’s been at many conferences where people have concurred that tantalum is a great material, but don’t know how to justify using it since it’s more expensive than Ti-64.

“That’s the wrong question,” he said. “Ask the cost to the patient.”

While looking for a well-documented surgical study, GAM found an example with a 3D printed transforaminal lumbar interbody fusion (TLIF) implant, which is shown in the slide below with the cost benefit example analysis.

“We looked at the whole process, buying the raw material and printing and cleaning it and sterilizing it, packaging, surgery, to the point where the patient walks out,” Sungail explained. “Tantalum’s contribution to this implant on the slide is .02%. I think that’s nearly negligible. Tantalum will allow the patient to walk out much quicker and recover much quicker.”

3D printing isn’t even the most expensive part of the whole process – it’s the surgery itself. If annual implant surgery revisions can be prevented by even 5% from switching to tantalum, the medical industry will save $300-500 million a year.

Another example Sungail shared was a 3D printed knee implant made out of tantalum. The surgery took place in China back in 2017, and the patient was actually able to stand up two hours post-op…that’s a pretty impressive feat.

Wrapping things up, he pulled up a slide showing GAM’s “current” tantalum products for 3D printing. In its angular powder form, the material works for cold spray technology and DED printing, while spherical powder can be used with laser AM technologies. He said that the company is also working on tantalum tungsten, and is “always looking for partners,” especially since GAM doesn’t have its own 3D printing system yet and relies on its partnerships to print tantalum for them. However, Sungail said they are considering a 3D printer purchase…perhaps this is an announcement we’ll see in the near future?

Stay tuned to 3DPrint.com as we continue to bring you the news from AMS 2020.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Photos: Sarah Saunders]

The post AMS 2020: 3D Printing Metals II Keynote by Craig Sungail, Global Advanced Metals appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

AMS 2020: Keynote Presentations on 3D Printing in Metal and Medical Industries

For the second year running, and its third year total, 3DPrint.com and SmarTech Analysis have brought the Additive Manufacturing Strategies summit to Boston. With a theme of “The Business of 3D Printing,” the event continues its established coverage of 3D printing in the medical and dental industries, but adds a new metals track this year.

Lawrence Gasman, the President of SmarTech, welcomed everyone to the event, and then we jumped right into the thick of things, as Dr. Banu Gemici-Ozkan, Senior Market Intelligence Leader for GE Additive, presented her keynote, entitled “Metal Additive Strategies Enabling Next Generation of Adopters.”

Dr. Banu Gemici-Ozkan

Dr. Gemici-Ozkan explained that she’s been working with additive manufacturing for about four years, and her role is to oversee global operations, as well as support business in the metal AM space with the right applications.

“I’m in marketing, so I have to start with numbers,” she said, pulling up a slide of the “world of opportunities” for metal AM.

She explained that conventional manufacturing happens in many stages – you have to extract the metal, process it in chemical plants, assemble it into the final products, and several others that I’m definitely leaving out. Additive manufacturing can accomplish all of this in less steps, which is why it’s so attractive.

An example of an engine turbine came up, and at the bottom was a statement about how metal AM is competing with $570 billion worth of core conventional metal manufacturing processes. But, system redesign is what makes it competitive to this traditional methods – AM offers a simpler supply chain and leaner operations.

“It’s really exciting to see the potential of additive manufacturing,” Dr. Gemici-Ozkan said. “But where are we in this vision today?”

A timeline showed that the number of metal AM system installations in the first stage of the “diffusion of innovation,” in the 1990s, was less than 50…only the true innovators will put in the work of debugging these first systems and working out the kinks. The early adoption visionaries come in later, excited to invest in the technology.

“The customers are who drive the change,” she said. “So far, we’ve only seen innovators and visionaries.”

She explained that the next generation of the market will consist of the bigger players, or pragmatists, jumping on board. These adopters are cost-conscious, and will be looking for full solutions.

Then, she walked us through what she called the four “critical industries” in metal additive manufacturing. I’m sure you can guess them: medical, dental, aerospace, and automotive. When asked if they were there with the medical field, nearly half the hands in the room were raised, making Dr. Gemici-Ozkan’s point that this sector is a “great space to be in from a metal AM perspective.” The adoption drivers in this industry are cost and performance, with major applications in porous, biocompatible structures with fine features. Here, accuracy, repeatability, and traceability become really important.

Dental is the most mature industry for metal AM, a point that I heard multiple times throughout the day in different presentations. She explained that adoption drivers are lead time and customization; in this and the medical industry, the turnover time with metal 3D printed parts is roughly 24 hours, which you just can’t beat. Additionally, technology providers are focused on meeting customer needs.

In the aerospace industry, industrial production is the main focus. The materials are more versatile, and applications are in large parts and complex geometries with fine features.

“I could talk for hours about this industry,” she said.

“The potential is huge…this space offers a great potential from the industrial production perspective.”

She brought up the GE9X jet engine, which has 304 3D printed components and offers GE Aviation fuel savings of 10% when compared to its predecessor, the GE90, which only featured one 3D printed part.

The automotive industry is already automated, so its needs are focused on cost-conscious systems. Dr. Gemici-Ozkan said that AM technology providers “need to consider integrating their systems to the factory solutions.” The technology will have greater potential in this sector as material costs continue to come down, and she noted that binder jetting will be important in this space.

“Additive manufacturing is not a one-size-fits-all solution – it offers different solutions for different industries and applications,” Dr. Gemici-Ozkan said in summary. “It sounds like it’s all versatile, but these are the building blocks of mainstream technology.”

Then it was time for the next keynote presentation, “Medical 3D Printing: Building the Infrastructure for Innovation,” by Lauralyn McDaniel, Industry Manager, Analysis, for the American Society of Mechanical Engineers (ASME). Part of ASME’s mission is to improve people’s lives through engineering, which is definitely what 3D printing is working towards in the medical field.

McDaniel also started with numbers, with a slide stating that over one million patients had been directly impacted by AM, and that number increases to over two million when you take into account indirect impacts.

“Understanding the history of additive manufacturing in the medical industry can give us clues as to where we go from here,” McDaniel said, before launching into a brief timeline that began with the first 3D printed model from a medical image in 1988.

She explained that some of the factors leading to growth of the technology in the medical field include improved software, more material choices, precision medicine, faster and more precise processes, and the fact that more people share their resources and experience.

“You need published studies to generate the evidence that doctors need,” McDaniel explained.

Challenges include process bottlenecks, verification and validation processes, standards and regulations, and the workforce development.

Then, she cleared up something that many don’t always understand – most materials that people say are FDA-cleared are not, they have just been used in FDA-cleared devices. For example, titanium is often used in orthopedic implants, but the material itself is not cleared by the FDA, it’s just been cleared for use in the implant.

Continuing on to the regulatory process, McDaniel explained that there’s a “big difference” between a new product, and a new way to make the same product.

“The dental industry has a whole infrastructure set up to match patients with devices and implants, 3D printing just gives them a new, more efficient way to do it,” she said. “But anatomical models is a whole new product category.”

McDaniel said that ASME is supporting a series of discussions about the FDA’s concept framework for 3D printing at the point-of-care, and has worked with the agency to create validation and verification standards, including those for 3D printed medical devices. Just over half of the medical devices that have been cleared by the FDA are metal, so never fear, polymers are still significant in this space.

On the clinical side of things, standards aren’t quite as common, but she mentioned that the RSNA Special Interest Group is working to develop guidelines to help others with their own processes.

Some of the development highlights that McDaniel touched on include 3D printing-enabled tissue fabrication, clear dental aligners, which “exploded a bit because some of the patents expired,” tissue fabrication in outer space, and the fact that nearly 150 3D printed medical devices have been cleared by the FDA overall; at least three of these were patient-specific.

Moving forward with medical 3D printing, McDaniel said we need more collaboration and sharing of our experiences and resources, along with continuing materials development, improved software and AI, increased standards development, and more regulatory clarification, especially in hospitals.

Stay tuned to 3DPrint.com as we continue to bring you the news from our third annual AMS Summit.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Photos: Sarah Saunders]

The post AMS 2020: Keynote Presentations on 3D Printing in Metal and Medical Industries appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: July 2nd, 2019

We’re talking partnerships and materials in today’s 3D Printing News Briefs. The Alfa Romeo F1 team and Additive Industries are strengthening their technology partnership, while Beam-IT and SLM Solutions are expanding their own cooperation. Metallum3D just opened a new beta testing program for its stainless steel filament, while Zortrax and CRP Technology are both introducing new materials.

Alfa Romeo F1 Team and Additive Industries Strengthen Partnership

At the recent Rapid.Tech-Fabcon industrial 3D printing conference in Germany, Additive Industries announced that its current technology partnership with the F1 team of Alfa Romeo Racing would be growing stronger. The Sauber Engineering company, on behalf of Alfa Romeo Racing, has ordered an additional: 4-laser, multi-module MetalFAB1 Productivity System, bringing the total up to four systems and making it Additive Industries’ largest customer with a high-productivity metal 3D printing capacity.

Our installed base is growing fast, not only with new customers in our core markets like aerospace and the automotive industry but also through existing customers like Sauber Engineering, who are advancing to become one of the leading companies in industrial 3D printing in Europe, ramping up production,” stated Daan Kersten, the CEO of Additive Industries. “Although most users of metal additive manufacturing are still applying prototyping systems, we see an increasing number of companies concluding they need dedicated systems for series production. Our modular MetalFAB1 family is the only proven system on the market today designed for this use. We are grateful and proud to be technology partner to Sauber Engineering and the F1 team of Alfa Romeo Racing.”

Beam-IT and SLM Solutions Sign Expanded Agreement

M.Sc.Eng. Martina Riccio, AM Process Leader of Beam-IT and technical team

Italian 3D printing service bureau Beam-IT and metal 3D printing provider SLM Solutions have signed an agreement, which will expand their current long-term cooperation. Together in a joint venture project, the two will work to develop more material parameters – focusing on certain material properties – for the nickel-based alloys IN939 and IN718; this process will help create a less lengthy timeframe in terms of parameter testing. Additionally, Beam-IT has added two new SLM 3D printers to its product portfolio: an SLM 280 and an SLM 500.

 

 

 

“We are pleased to announce our cooperation agreement with SLM Solutions and the two additional machines,” said Michele Antolotti, the General Manager of Beam-IT. “We regularly produce high-quality parts for our customers using selective laser melting because the SLM ® technology works efficiently, quickly and, above all, safely. With the expanded capacity of our new multi-laser systems we can also increase our productivity and react to the increased interest in SLM ® technology from our customers.”

Metallum3D Opens Stainless Steel Filament Beta Testing Program

Virginia-based company Metallum3D announced that it has opened a beta test program for its stainless steel 316L 3D printing filament. This new program will support the company in its development of an affordable and accessible on-demand metal 3D platform for FFF 3D printers. The Filament Beta Test Program is open until July 31st, 2019, and a limited run of 150 0.5 kg spools of Metallum3D’s stainless steel 316L filament will be offered for a discounted price on a first come, first serve basis.

Nelson Zambrana, the CEO of Metallum3D, said, “Our 1.75mm Stainless Steel 316L filament material has a metal content of 91.7% by weight or 61.5% by volume, while maintaining enough flexibility for a minimum bend diameter of 95 mm (3.75 in.). The combination of high metal loading and filament flexibility was a tough material development challenge that took us over a year to solve.”

Zortrax Introducing Biocompatible Resins for Inkspire 3D Printer

Last year, Polish 3D printing solutions provider Zortrax developed the Inkspire, its first resin 3D printer. The Inkspire uses UV LCD technology to create small and precise models for the architecture, jewelry, and medical industries. With this in mind, the company is now introducing its specialized biocompatible resins that have been optimized for the Inkspire to make end use models in dentistry and prosthetics.

The new class IIa biocompatible Raydent Crown & Bridge resin is used for 3D printing temporary crowns and bridges, and is available in in an A2 shade (beige), with high abrasion resistance for permanent smooth surfaces. Class I biocompatible Raydent Surgical Guide resin for precise prosthetic surgical guides  is safe for transient contact with human tissue, and offers translucency and high dimensional accuracy. With these new materials, the Zortrax Inkspire can now be used by prosthetic laboratories for prototyping and final intraoral product fabrication.

CRP Technology Welcomes New Flame Retardant Material

Functional air conditioning piping made with LS technology and Windform FR1

In April, Italy-based CRP Technology introduced its Windform P-LINE material for for high-speed, production-grade 3D printing. Now, it’s officially welcoming another new material to its polyamide composite family – Windform FR1, the first carbon-filled flame-retardant laser sintering material to be rated V-0. The material is from the Windform TOP-LINE family, and passed the FAR 25.853 12-second vertical, the 15-second horizontal flammability tests, and the 45° Bunsen burner test. The lightweight, halogen-free material combines excellent stiffness with superior mechanical properties, and is a great choice for applications in aerospace, automotive, consumer goods, and electronics.

“Only a few days from the launch of a new range of Windform® materials, the P-LINE for HSS technology, I’m very proud to launch a new revolutionary composite material from the Windform® TOP-LINE family of materials for Laser Sintering technology,” said Franco Cevolini, VP and CTO at CRP Technology. “Our aim is to constantly produce technological breakthroughs. With Windform® FR1 we can steer you toward the proper solution for your projects.

“We will not stop here, we will continue our work on renewal and technological expansion in the field of Additive Manufacturing. Stay tuned!”

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

Electro-Assisted 3D Bioprinting Method for Low-Concentration GelMA Microdroplets

While low-concentration gelatin methacryloyl (GelMA) is biocompatible with 3D bioprinted cell‐laden structures, because of its low viscosity it’s hard to stably make organoids, and even microdroplets, with the material. A team of researchers from Zhejiang University in China focused on fixing this problem in a recently published paper, titled “Electro-Assisted Bioprinting of Low-Concentration GelMA Microdroplets.”

The abstract reads, “Here, a promising electro‐assisted bioprinting method is developed, which can print low‐concentration pure GelMA microdroplets with low cost, low cell damage, and high efficiency. With the help of electrostatic attraction, uniform GelMA microdroplets measuring about 100 μm are rapidly printed. Due to the application of lower external forces to separate the droplets, cell damage during printing is negligible, which often happens in piezoelectric or thermal inkjet bioprinting. Different printing states and effects of printing parameters (voltages, gas pressure, nozzle size, etc.) on microdroplet diameter are also investigated. The fundamental properties of low‐concentration GelMA microspheres are subsequently studied. The results show that the printed microspheres with 5% w/v GelMA can provide a suitable microenvironment for laden bone marrow stem cells. Finally, it is demonstrated that the printed microdroplets can be used in building microspheroidal organoids, in drug controlled release, and in 3D bioprinting as biobricks.”

They prepared a prepolymer solution by dissolving freeze-dried GelMA “in modified eagle medium (MEM) at a concentration of 5% (w/v) containing lithium phenyl-2, 4, 6-trimethylbenzoylphosphinate (LAP) at a concentration of 0.5% (w/v),” and then filtering it for sterility, before measuring its viscosity.

Images of different printing states. A) Printing states around the nozzle. B) Continuous atomization in Taylor Jet printing state.

Compressed air was used to feed the bioink into the electro-assisted device.

“Additionally, for preventing the returning of the microdroplets resulting from the attraction of the metal ring, a metal plate connected with the high voltage was placed below the electro-assisted module,” the researchers wrote. “A petri dish with silicon oil was placed on the metal plate as a droplets receiver. The 405nm wavelength light was utilized for the crosslinking of GelMA.”

The team conducted several experiments with their bioink and electro-assisted bioprinting device, including using a high-speed camera, which was set at 1600fps, to examine the various printing states of low-concentration GelMA droplets near the nozzles under the electro-assisted procedure and evaluating the effect on GelMA microsphere size of electrospray parameters.

Confocal Fluorescent Microscopy and Scanning Electron Microscopy (SEM) were both used to complete a series of profile characterizations in order to check out the chemical and physical environment that had been set up by the microspheres. The researchers also analyzed the 5% (w/v) GelMA degradation profile, tested the GelMA bioink’s stress-strain curve, and analyzed the pore area of the 5% (w/v) GelMA material.

The testing of the GelMA’s stress-strain curve and degradation profile.

“The SEM images of the inner morphology were imported into ImageJ software and transformed into 8-bits gray scale images,” the researchers wrote. “Then, the pore areas of the gray scale images were analyzed. The area frequency distribution and the normal distribution data were calculated. After that, the data were plotted as the form of distribution histogram and normal distribution curve.”

The researchers also examined the potential for using their electro-assisted GelMA microspheres method in a variety of applications, such as cellular encapsulation, drug-controlled release, and 3D bioprinting. To set up a device for 3D inkjet bioprinting, the team used PLA material to fabricate a special fixture on an FDM 3D printer, which was then added to the electro-assisted printing device.

“The metal nozzle was fixed on the fixture and its tip was grounded. Below it, a metal plate was connected with the high voltage,” the researchers explained. “The GelMA bioink with fluorescent particles as above was placed in the syringe of the electro-assisted printing device.”

The confocal fluorescent microscopy images of BMSCs encapsulated in 5% (w/v) GelMA.

In order to examine the printability, the team set low gas pressure (0.5kPa) and high gas pressure (1.5kPa), and the microdroplets were extruded down onto filter paper below, which was exposed to 405 nm wavelength light for crosslinking and observed under the confocal fluorescence microscopy after printing was complete.

The team’s research showed that electro-assisted 3D bioprinting of low concentration GelMA microdroplets has a lot of potential in applications such as organoid building, drug delivery, and cell therapy.

Co-authors of the paper are Mingjun Xie, Qing Gao, Haiming Zhao, Jing Nie, Zhenliang Fu, Haoxuan Wang, Lulu Chen, Lei Shao, Jianzhong Fu, Zichen Chen, and Yong He.

Discuss this research and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

Researchers Test Two Configurations of Biowaste 3D Printed Microbial Fuel Cells

Researchers and scientists are constantly working to develop solutions that can save our future world, from solving problems like increasing pollution and climate change to producing clean energy. A group of researchers from the University of Naples Parthenope recently published a paper, titled “Development and Performance analysis of Biowaste based Microbial Fuel Cells fabricated employing Additive Manufacturing technologies,” about their efforts to test two different configurations of microbial fuel cells (MFCs): bio-electrochemical devices which can directly produce power by converting stored energy into a substrate. MFCs have this unique capability thanks to electrogenic bacteria that can produce and transfer electrons to an electrode with which they are already in contact.

The abstract reads, “In this work two different configurations of MFCs are tested, evaluating the importance of the operative conditions on power production. All the MFCs were fabricated employing 3D printing technologies and, by using biocompatible materials as for the body as for the electrodes, are analyzed the point of strength and development needed at the state of the art for this particular application. Power productions and stability in terms of energy production are deepen investigated for both the systems in order to quantify how much power can be extracted from the bacteria when a load is fixed for long time.”

Reactor Design.

The three main transfer mechanisms are electron shuttles, conductive nanowires, and redox reactions between bacteria and the electrode. Scaling up for real MFC applications would be expensive, as the needed materials, like NafionR and platinum, are costly. But 3D printing can be used to help lower costs, as well as offer more stable energy production.

“Due to that a more sustainable and less wasteful production can be applied to MFCs bioreactors. In addition, materials suitable for 3D printing are moving to bio-based solutions completely recyclable that would strength the sustainability by closing the loop also for the materials,” the researchers wrote.

For their study, the team investigated and tested two kinds of reactors: single chamber and double chamber. The biggest difference between them regards the use, or lack thereof, of a chamber for locating the cathode electrode.

Exploded and Compact view of (A) Single Chamber MFC, (B) Double Chamber MFC.

“In the reactors design the distances between cathodes and anodes in both layouts is fixed to 2 cm,” the researchers explained.

“In the single chamber configuration, activated carbon coated with PTFE and a nickel mesh as current collector are used as cathode (7 cm2 as active surface area) and a PLA based material is used for realizing the anode (9.7 cm2 active surface area).

“In the double chamber reactor, both electrodes (cathode and anode) are realized by using the PLA based material like that used for the anode of the single chamber reactor. These electrodes have also the same shape (9.7 cm2 active surface area). Moreover, a cation exchange membrane (CEM) is used as medium between the two chambers.”

Open source Free CAD was used to design the cube-shaped reactors, which included an internal circular hole for extra volume, and a Delta Wasp 20 40 3D printer fabricated the reactors out of non-toxic, conductive PLA from Proto-pasta.

The researchers noted, “This material is suitable for the application in MFC, but improvements are needed in order to obtain better power production.”

The team used bacteria from a mixture of compost taken from an Italian waste treatment facility and household vegetable waste for their experiments, and left the 3D printed reactors in a temperature-controlled environment of 20°C for 48 hours before beginning acquisitions.

“An experimental data acquisition system, is used to record the performances of the MFCs, consisting of an embedded system controlled by an Arduino board connected to sensors that recorded voltage and current at each operative condition set. The DAQ, with a sample frequency of 0.1 Hz (10 s), is able to switch automatically the resistance applied at the ends of the electrodes in order to easily obtain polarization curves. In particular, polarization procedure consists in the application of four different resistance (36000-27000-12000-8000 W) for 5 minutes each,” the researchers wrote.

“The procedure is continuous, so the total time needed is 20 minutes. Finally, the value of resistance that gives the maximum power is applied for four hours in order to test how the response of the same to an extended load.”

Conductive PLA Electrode Design.

The researchers continuously recorded the MFCs’ Open Circuit Voltage (OCV), and the double chamber system showed a higher starting potential of 0.95 V compared to the 0.59 V of the single chamber system. They noted a “great stability” during their experimental tests, and determined that 3D printing is “a suitable technology for the fabrication of the MFC in terms of precision and costs.”

“Results of the experiment show that both configurations are affected by a high internal resistance and, as a consequence, a limited power production has been achieved. As expected, better results are registered for the double chamber, mainly due to the use of CEM and the presence of potassium permanganate at the cathode that, probably, better balanced the redox reactions that occurred,” the team concluded. “However, this difference is very low (+11%) and the reason can be found in the materials used for the electrodes. AC coated with PTFE electrode (1 W resistance), used as cathode in the first configuration, allows better performance than the conductive PLA (400 W resistance approximately).”

Co-authors of the paper are Elio Jannelli, Pasquale Di Trolio, Fabio Flagiello, and Mariagiovanna Minutillo.

Discuss this research and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

Researchers Use Aerosol Jet 3D Printing to Develop Neuronal Interface with More Anti-Inflammatory Ability

a) Schematic illustration of the mechanism for formation of nanogel-based membrane based on the self-assembly of OPC-incorporated amphiphilic polydimethylsiloxane-modified N, O-carboxylic chitosan (OPMSC), followed by hydrogel-bonding interaction of OPC. The TEM images display the network structure of b) PMSC and c) OPMSC spherical nanogels.

3D printing has been used in the past to help treat degenerative diseases, or at least make it easier to cope with them. In terms of neurodegenerative diseases, implanted prosthetic devices are often used, but adverse biological reactions in host tissues can result in signal failure. it’s important to create tissue that can mimic the mechanical and structural properties of neural implanted devices, and while flexible polymer-based implants have helped to alleviate some injuries, the mechanical stress doesn’t quite match brain tissue. That’s why a lot of research has been conducted about using conductive polymer (CP) composites or conductive hydrogels to coat the devices so the biocompatibility and electrochemical performance of neural electrodes can be improved.

Representative fluorescent images demonstrate tissue responses around the tip of the non-coated probe and the OPMSC-coated probe at days 2, 7, 14, and 28 post-implantation. (c) ED1 staining; (e) GFAP staining; (g) NeuN staining.

But, a team of researchers from China and Taiwan say that it’s more important to design biocompatible coatings for implanted devices that mimic mechanical and structural properties of brain tissues, so tissue responses after long-term utilization can be reduced.

The researchers believe that 3D nanostructural coatings should be developed for the insulated regions, and not the implant electrode sites, so implants can interface with nearby brain tissues with more stability. They explained their findings in a recently published paper, titled “Multifunctional 3D Patternable Drug-Embedded Nanocarrier-Based Interfaces to Enhance Signal Recording and Reduce Neuron Degeneration in Neural Implantation.”

“Although the nanomaterial-based substrate coatings incorporated into drug delivery systems such as poly(lactic-co-glycolic acid) (PLGA) nanoparticles, pHEMA, or PLGA nanoparticles-embedded matrix have been developed, these systems lack stable physical and chemical properties for reducing tissue responses, including an appropriate nanostructural interface, mechanical properties, and biofouling ability,” the researchers wrote. “Multifunctional drug-embedded coatings must be developed and integrated into the nanostructural neural interfaces to allow sustained release of bioactive molecules (anti-inflammatory drugs) and simultaneous construction of a brain tissue-mimic but bioinert microenvironment for reducing both acute and chronic inflammation reactions during long-term implantation.”

The researchers used aerosol jet 3D printing to develop a neuronal interface with prolonged anti-inflammatory ability, structural and mechanical properties that mimicked brain tissue, and a sustained nonfouling property in order to inhibit tissue encapsulation.

Using aerosol jet printing, the OPMSC suspensions were directly patterned on a neural probe to create an anti-inflammatory neural interface.

“With the integration of nanomanufacturing technology and multifunctional nanomaterials into the neural implants, we can extensively reduce the reactive tissue responses, provide continuous protection of surviving neurons, and ensure long-term performance reliability of implants,” the researchers explained.

They created a new 3D nanocarrier-based neural interface that could possibly be used to support long-term neural implantation, as well as achieve better therapy for chronic and degenerative diseases. The researchers used a “novel combination of antioxidative zwitterionic nanocarriers and nanomanufacturing technology” to make the interface. The team developed a new type of anti-inflammatory nanogel, based on the amphiphilic polydimethylsiloxane-modified N, O-carboxylic chitosan (PMSC) incorporated with oligo-proanthocyanidin (OPC), called OPMSC.

a) Optical microscopy image showing patterning morphology of PMSC and OPMSC arrays with a thickness of ≈30 µm obtained by aerosol jet printing. The red arrows indicate the patterned location. Comparison of PC12 cell patterning on b) PMSC and c) OPMSC arrays demonstrates that OPMSC can maintain structural stability in a biological microenvironment. d) An overview and SEM images of the flexible OPMSC-coated polyimide probe. e) SEM image showing a cross-sectional view of OPMSC-coated probe after washing with water.

“The natural OPC can be used as an anti-inflammatory drug due to its multipotent therapeutic effects on neurodegenerative diseases,” the researchers explained. “Furthermore, given the abundance of hydroxyl groups and the aromatic architecture, the semi-hydrophilic OPC can act as a structural stabilizer to help the self-adhesion of nanogels, making the structure evolve into a biostable 3D anti-inflammatory neural interface.”

The team directly fabricated OPMSC nanogels onto a membrane using aerosol jet printing technology, because it is a low-temperature technology. When developing neural implants, mechanical properties are the main concern, which is why the researchers conducted a tensile test, among other experiments, on their new 3D nanocarrier-based neural interface, which was also implanted into rodents.

“After short-term and long-term in vivo implantation, the OPMSC-coated neural probe displayed a relatively lower impedance value and much higher signal stability compared to noncoated probe,” the researchers concluded. “The ADC obtained by magnetic resonance imaging (MRI) demonstrated that the OPMCS-coated probe alleviated edema at the acute phase, and further reduced tissue trauma in the chronic phase. Immunostaining of anti-NeuN, anti-ED1, and anti-GFAP around the implanted site further demonstrated that the OPMSC-coated probe significantly reduced the population of activated microglia and astrocytes for all durations, resulting in increased survival 28 d after implantation. Such multifunctional nanostructured OPMSC-coated neural probes can provide a long-lasting functional neural interface for long-term neural implantation.”

Co-authors of the paper are Wei-Chen Huang, Hsin-Yi Lai, Li-Wei Kuo, Chia-Hsin Liao, Po-Hsieh Chang,Ta-Chung Liu, San-Yuan Chen, and You-Yin Chen.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

Acoustic Nozzles Improve the Performance of 3D Printed Parts

Usually when we’re talking about 3D printing in terms of acoustics, it has to do with making a good set of speakers. But, recent research has determined that acoustic signal processing could be used to monitor the build quality of a 3D printed part while in progress. There are 3D printable sound-shaping super-materials, and 3D printed objects have even been implanted with sound data for tagging purposes. New research out of Nanyang Technological University (NTU) in Singapore looks at using acoustics to manipulate microparticles inside the actual 3D printing ink itself to improve the final object’s performance and functionality.

Properly orienting and aligning the fibers in a polymer matrix could help transfer loads from critical areas for better performance, and creating 3D scaffolds with a controlled hierarchical structure at the nano- and micro-scale levels could increase their mechanical strength, which is good for cell and tissue regeneration and load-bearing bone defect repair. In addition, using surface acoustic waves to focus microparticles inside the microchannel could delay accumulation on the wall, which can improve extrusion-based 3D printing.

Schematic diagram of experimental setup.

Researchers from NTU recently published a paper on their 3D printing work with acoustics, titled “Cells alignment and accumulation using acoustic nozzle for 3D printing.”

The abstract reads, “Arrangement or patterning of microparticles/cells would enhance the efficiency, performance, and function of the printed construct. This could be utilized in various applications such as fibers reinforced polymer matrix, hydrogel scaffold, and 3D printed biological samples. Magnetic manipulation and dielectrophoresis have some drawbacks, such as time-consuming and only valid for samples with specific physical properties. Here, acoustic manipulation of microparticles in the cylindrical glass nozzle is proposed to produce a structural vibration at the specific resonant frequency. With the acoustic excitation, microparticles were accumulated at the center of the nozzle and consequently printed construct at the fundamental frequency of 871 kHz. The distribution of microparticles fits well with a Gaussian distribution. In addition, C2C12 cells were also patterned by the acoustic waves inside the cylindrical glass tube and in the printed hydrogel construct. Overall, the proposed acoustic approach is able to accumulate the microparticles and biological cells in the printed construct at a low cost, easy configuration, low power, and high biocompatibility.”

Morphology and distribution of the cells in 5% GelMA without the acoustic excitation on (a) day 1, (b) day 4, (c) day 7, and with the acoustic excitation on (d) day 1,(e) day 4, (f) day 7.

The team numerically and experimentally studied the structural vibration of a cylindrical tube, as well as the patterning of the microparticles and cells inside of it.

“Firstly, the resonant frequency was numerically predicted and validated with experiment,” the researchers wrote. “Subsequently, the distribution of microparticles and biological cells inside the cylindrical tube and printed construct was investigated. Lastly, the growth of biological cells undergone the acoustic excitation was monitored for up to 7 days.”

During an acoustic excitation, a mixture of C2C12 cells embedded in 2 ml of 5% GelMA was printed on a 4″ petri dish, with the nozzle perpendicular to the print bed. The researchers discovered that during the excitation, most of the microparticles that were initially suspended in fluid ended up accumulating at the center of the glass tube. There seemed to be a good overall agreement between the experimental results and numerical simulation of the excitation frequency, along with the location of pressure nodes in the glass tube.

The researchers further evaluated their acoustic nozzle’s performance using C2C12 muscle cells, and determined that without the excitation during printing, the distribution of the cells in the tube was very random.

Microparticle distribution in the cylindrical tube (a) without and (b) with the acoustic excitation at 877 kHz.

“Results of simulation and experiment are agreeable with a slight difference in the resonant frequency (< 2%). In the experiment, microparticles were accumulated at the center of the nozzle and consequently printed construct. The distribution of microparticles fits well in a Gaussian curve with a standard deviation of (V = 0.16 mm). Furthermore, the acoustic excitation could also be used for patterning biological cells in the 3D printed construct of GelMA,” the researchers concluded. “Subsequently, the distribution of cells was quite dense at the center of the printed structure, and accumulated C2C12 cells had greater growth and differentiation in comparison to the suspended ones in the control group.”

Co-authors of the paper are Yannapol Sriphutkiat, Surasak Kasetsirikul, Dettachai Ketpun, and Yufeng Zhou.

Discuss this research and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.