Interview With Honeywell’s Dave Dietrich on Implementing Additive Manufacturing for Businesses

Dave Dietrich is an Engineering Fellow at Honeywell Aerospace. There he was involved with the systems and defense firm’s 3D printing effort. His job is to guide, help and train his fellow engineers in adopting 3D printing for aerospace in the firm. He advocates for a DfAM approach whereby one identifies and designs for the advantages of Additive Manufacturing from the start of a design and development project and indeed this is also the approach that we favor. In previous roles he was an adjunct professor Engineering Management and worked at Boeing as a materials process and physics engineer and later as an Oak Ridge National Laboratory fellow on 3D printing metals. He was also the metal 3D printing technical lead at Boeing and initiated Boeing’s internal metal 3D printing training program.

Dave has now written a book, Additive Manufacturing Change Management: Best Practices. He told us that, “The target audience of this book would be managers/project managers/executives who may not know how or why their company should implement AM.” He also believes that “barriers holding AM back from becoming a widely adopted manufacturing technology within industry has just as much, if not more, to do with business and organizational challenges than technical challenges.” This is a very timely book that could help a lot of firms evaluate and adopt 3D printing in their organization. We asked Dave a number of questions to learn more.

Often there is a lot of institutional resistance to adopting AM in industry. How does one overcome this problem? 

As change agents for AM within industry, my co-authors and I have each had common experiences with respect to institutional resistance. From our experience, it seems that there are deeper underlying currents that have more to do with resistance to changing the company culture than AM technology itself. AM is disruptive. It challenges every notion of typical manufacturing practices, design practices, quality inspection practices, and generally accepted notions of supply chain behavior. As such, overcoming this resistance it has more to do with understanding change management philosophy than breaking through specific AM technical hurdles. Luckily, there’s lot of written documentation in the field of industrial change management, namely, Lean Manufacturing and Six Sigma quality systems. Our book adapts lessons learned from Lean and Six Sigma fields and uses some of those tools when installing AM cultural changes.

For some reason, if customers select a test part for 3D printing its always the wrong one, why is this? 

Often, it is a lack of understanding of the technology. Perhaps they didn’t select the correct process, material, or post-processing requirements for the part, or perhaps the engineer involved with the part didn’t think about the ramifications of poor surface finish. Alternatively, perhaps that specific test part was design for a conventional technology and not adapted to AM capabilities at all. There could be many reasons. About 5 years ago, someone once told me that AM is the wild west of manufacturing. I’d like to hope it is becoming a little more civilized (perhaps more Sheriffs now?), but there is still an enormous education gap regarding the technology capability. I also blame marketing pieces from competing companies designed to highlight the enormous benefits of AM. Of course, these media publications don’t highlight the many pitfalls the company went through to gain a good part. Based on this media blitz, competing companies will often head off to build their own AM test parts in an effort to stay competitive without management understanding the true pitfalls of the technology. Our book directly addresses these challenges.

Metal printing is touted as the future of manufacturing. Meanwhile, it consists of a guy with a brush and a vacuum cleaner cleaning off powder while another takes a circular saw to saw off parts. How do you reconcile that? 

Again, I think it gets down to the overmarketing of the technology. AM itself is not a product. AM itself is not an end to a solution. AM is a tool in the engineering toolbox to solve manufacturing problems. Albeit, an incredibly disruptive one. It also just so happens to be the “most shiny” tool right now. But beware, when the engineer reaches for that tool, they better know how to use it properly! There will always be heat treatments, cutters, hot isostatic pressing, and yes, even folks with brushes and vacuums. Pieces of this will evolve to automation over time, but often over marketing can lead to misperceptions of the technology, which leads to the confounding conclusions you point out in your question.

QA is still a huge problem in 3D Printing, what are some best practices for this?

Yes, there is an inherent conflict between highly optimized AM structures that are beautifully designed and practical inspection and machining of these parts. For metallic AM parts, CT inspection has always been an expensive, but not always a practical solution to this problem. White light scanning is also used to a semi-effective result. Dye penetrant inspection of machined surfaces, in-situ build process monitoring, and other traditional inspection techniques have been used somewhat effectively. There are also challenges on the software side comparing what has been printed, in terms of dimensional conformance, to true CAD definition. I think this is an area that needs more development in the future as AM becomes more production hardened.

What needs to be improved on the 3D printers themselves? 

Recently, I believe we are beginning to see a more hyper-competitive landscape for the metal AM powder bed fusion technology. At Formnext, each year, I see exponential growth in the number of new machine manufacturer entrants into AM. I think this hyper competition will create faster, larger machines with more lasers. This seems like an incremental step, not necessarily a leap frog type of improvement. I’d like to see the other technologies, like Directed Energy Deposition or Wire Fed AM technologies, become more flexible to adapt to geometries with higher complexity. Or, perhaps a completely different type of machine/feedstock/energy delivery system architecture? In other words, I’ve been waiting for that one technology to drop that will shatter AM machines as we know it.

What is one thing that we need to do that we as an industry are not doing? 

 We need to stop promoting the technology itself as the key to world peace, while at the same time, expecting it to exhibit repeated performance of manufacturing technologies that have been around for decades or hundreds of years (castings, machining, injection molding, etc). As discussed in the book, many things within industry and within individual companies needs to change for this to be production hardened. In other words, bridle the enthusiasm a bit.

If I’m a company wishing to manufacture using DMLS, what advice would you give me? 

I would start with a series of questions that gets back to my point earlier that the technology itself is not an end. Why did you pick DMLS specifically? Did you research alternative AM technologies? What is the product you are wanting to produce? Is DMLS the most effective way to produce it? Are you wanting your product to be competitive from a cost standpoint, performance standpoint, etc? What is the objective of this product? By focusing on the product that ultimately gets sold to a happy customer, then DMLS may be a solution, or may not. By asking these types of questions first, we are more likely to arrive at better solution for the company. If DMLS is indeed the right technology choice; then drawing from the book, I would go down a road of preparing the company for the cultural, certification, organizational, talent management hurdles they would face.

What are the biggest hurdles to adopting AM? 

  1. Organizational Culture and Executive Long Term Commitment
  2. Certification Adherence
  3. Lack of Training (technician, engineers, executives)

Whats a good war story? I twice had a machine catch fire. 

That is interesting! Our AM war stories covered in the book are more aligned to cultural or organizational hurdles we’ve faced within companies. We had a lot of fun writing this section of the book and we enjoyed labeling each of the stories as they capture the essence of the challenges. For example, some stories are labeled, “Panning for Gold in Kansas”, “Pathfinder to Nowhere”, “Suckers for Sunk Costs”, “Who’s in Charge Here?”, “Engineering Rigor Mortis”, “Innovate NOW!” and many others. Each story is 100% true, company names were omitted and people’s names changed. They each are not only entertaining to read, but each has its own message relative as to what not to do when industrializing AM. For example, the “Panning for Gold in Kansas” story describes a company’s effort to scour existing products to convert to AM for cost savings potential only to discover later that the true value in AM in not directly building parts that were designed for conventional manufacturing, but rather re-designing the part for AM from the start to exploit AM design advantages, only then do cost savings occur.

3D Printing News Briefs: February 22, 2019

We’ve got some exciting dental news to share first in today’s 3D Printing News Briefs – Stratasys just announced its new full-color dental 3D printer at LMT Lab Day. Moving on, Farsoon has been busy developing an advanced pure copper laser sintering process, and Aether is working with Procter & Gamble on a joint development project. DyeMansion has announced a new UK distributor for its products, and three researchers address the challenges of adopting additive manufacturing in a new book about best practices in the AM industry.

Stratasys Introduces Full-Color Dental 3D Printer

This week at LMT Lab Day Chicago, the largest dental laboratory event in the US, Stratasys has introduced its new full-color, multi-material J720 Dental 3D printer which lets you have 500,000 color combinations for making very high resolution, patient-specific models. Its large build tray can print six materials at the same time, and it’s backed by GrabCAD Print software.

“Labs today operate in a very competitive space where differentiation counts on mastering the digital workflow and expanding into new products and services. The J720 Dental 3D Printer is designed to change the game – allowing levels of speed, productivity and realism the market has never seen,” said Barry Diener, Dental Segment Sales Leader for Stratasys. “This powers laboratories to meet the demands of a competitive market and push the boundaries of digital dentistry.”

See the new J720 Dental 3D printer at LMT Lab Day Chicago today and tomorrow at Stratasys Booth A9. It’s expected to be available for purchase this May.

Farsoon 3D Printing Pure Copper

Pure copper heat exchanger

Two years ago, after Farsoon Technologies had introduced its metal laser sintering system, the company’s application team began working with industrial partners to develop an advanced 3D printing process that could additively produce components made of pure copper. Copper is a soft, ductile metal with both high electrical and thermal conductivity, and it’s often used in industries like shipbuilding, electronics, automotive, and aerospace. But most additive copper is based on alloys, and not the pure metal itself, which is hard for lasers to regularly and continuously melt and can cause problems like thermal cracking and interface failure.

That’s why Farsoon’s work is important – all of its metal laser sintering systems can successfully create cost-effective, high-quality pure copper parts. The company’s process and unique parametric design is able to meet custom needs of customers, and to date, it’s launched 13 process parameters for metal powder sintering, including pure copper. Some of the parts that have come out of Farsoon’s recent collaborations include a pure copper heat exchanger, which featured a 0.5 mm wall thickness, complex spiral geometry and was printed in a single piece. Farsoon is open for additional partners seeking to further develop the 3D printing of pure copper and other specialized materials.

Aether and Procter & Gamble Begin Joint Development Project

Aether CEO Ryan Franks and Director of Engineering Marissa Buell with an Aether 1

San Francisco 3D bioprinting startup Aether has entered into a two-year joint development agreement with Procter & Gamble (P&G) in order to develop 3D printing and artificial intelligence technologies. The two will use the multi-material, multi-tool Aether 1 3D printer as a technology creation platform, and will create several hardware and software capabilities that hope to automate and improve P&G’s product research applications and develop a next-generation Aether 3D printer. An interconnected network of computer vision and AI algorithms aims to increase automation for multi-tool and multi-material 3D printing, while high-performance cameras will enable new robotics capabilities. Aether is also working on additional software that will help P&G automate and speed up image processing.

“Aether is working with P&G to completely redefine 3D printing.  It’s no longer going to be just about depositing a material or two in a specific pattern. We’re building something more like an intelligent robotic craftsman, able to perform highly complex tasks with many different tools, visually evaluate and correct its work throughout the fabrication process, and constantly learn how to improve,” said Aether CEO and Founder Ryan Franks.

DyeMansion Names New UK Distributor

3D print finishing systems distributor DyeMansion, headquartered in Munich, announced that Cheshire-based 3D printing services supplier Europac3D will be the UK distributor for its range of machines. Per the agreement, Europac3D will now offer all of the AM finishing systems in DyeMansion’s Print-to-Product workflow, which includes its Powershot C powder blasting system, DM60 industrial coloring system, and the PowerShot S, which delivers homogeneous surface quality to 3D printed, powder-based plastics. Because of this, Europac3D is one step closer to achieving its mission of being a one-stop shop for 3D printing, scanning, and post-processing services.

“DyeMansion’s post-production systems are worldclass and add the all important finish to additive manufacturing,” said John Beckett, the Managing Director of Europac3D. “Their systems are perfect for companies or 3D print bureaus that have multiple SLS or HP 3D printers and allow us to extend our offer by providing market leading additive manufacturing finishing systems for 3D-printed polymer parts.”

New 3D Printing ‘Best Practices’ Book

We could go on and on about the many benefits offered by 3D printing (and we do), but there are still industry executives who remain unconvinced when it comes to adopting the technology. But a new book, titled “Additive Manufacturing Change Management: Best Practices” and released today, is here to provide some guidance for those still holding back. The book, which addresses some of the challenges of adopting 3D printing, was published by CRC Press as part of its Continuous Improvement Series and written by Dr. Elizabeth A. Cudney, an associate professor of engineering management and systems engineering at the Missouri University of Science and Technology, along with Divergent 3D’s VP of Additive Manufacturing Michael Kenworthy and Dr. David M. Dietrich, who is an Additive Manufacturing Engineering Design Fellow for Honeywell Aerospace and Dr. Cudney’s former doctoral student.

Dr. Cudney said, “If company leaders are interested in bringing additive manufacturing online, this book can help them decide if it makes sense for their industry.

“There’s often a lack of planning, a lack of understanding, a resistance to change and sometimes fear of the unknown. Our hope is that this book will provide a good road map for managers to advance additive manufacturing at a faster pace.

“We wanted to take a look at how companies can roll out a new technology, new processes and equipment and integrate that in such a way that you have a good product in the end.”

In the 17-chapter book, the authors present what Dr. Cudney refers to as a ‘road map’ for business leaders looking to adopt 3D printing. The eBook format costs $52.16, but if you want that shiny new hardcover version, it will set you back $191.25.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

Researcher and 3D Printing Enthusiast Authors Chapter in New Book on 3D Printing in Education

Dr. James Novak, a postdoctoral researcher, industrial designer, and self-professed 3D printing geek, started a blog called edditive back in 2014 as a way to document his 3D printing projects. He recently got in touch with 3DPrint.com to let us know about his latest project – he wrote a chapter in a newly released book about 3D printing, titled “Interdisciplinary and International Perspectives on 3D Printing in Education.”

“Obviously 3D printing is changing education in many ways, but it is also challenging for teachers and schools to understand and bring into the classroom,” Dr. Novak told us. “This book can help fill this gap in knowledge.”

The book, which is nearly 350 pages long, covers a wide variety of academic topics, including:

  • 3D printing
  • STEM Education
  • Professional Development
  • Millennial Learners
  • Conceptual Frameworks
  • CAD Software
  • Augmented Reality


The book is a collection of research which can be used to assist during discussions related to interdisciplinary fields and educational perspectives from all around the world, all the way from kindergarten up through institutions of higher learning, to, as the description reads, “inform the uses of 3D printing in education from diverse and broad perspectives.”

“Although 3D printing technologies are still a rarity in many classrooms and other educational settings, their far-reaching applications across a wide range of subjects make them a desirable instructional aid,” the book’s description reads. “Effective implementation of these technologies can engage learners through project-based learning and exploration of objects.”

The book was designed and written specifically for educators, instructional designers, practitioners, and researchers. Dr. Novak’s 22-page chapter is titled “Re-Educating the Educators: Collaborative 3D Printing Education,” and, as he told us, “covers research into how to upskill school teachers in 3D printing through collaboration with universities.”

“I have been running workshops for teachers for 5 years based at universities in Australia and in the chapter I detail the contents of a one day workshop for school teachers, broken up into 3 sessions, and all involving hands-on activities,” Dr. Novak explained to 3DPrint.com. “This could be adopted by any other trainers of teachers, and the book as a whole will interest a broad range of 3D printing researchers and practitioners, as well as curriculum planners and educators of all levels.

“The majority of 3D printing news articles focus on new technological achievements in the industry, and this could be a good opportunity to provide some new resources to the educators involved in training the next generation of designers, engineers etc.”

Dr. Novak’s book chapter uses images from some of his one-day workshops, which he also discusses in the book, and the goal behind the chapter is to call attention to some of the many real challenges that plague teachers who are attempting to adopt 3D printing in the classroom. The chapter starts with a summary of how Australian schools are adopting the technology, and moves on to new research and peer-reviewed literature about how short, intensive courses are helpful in offering teachers “meaningful training” in regards to 3D printing.

“Despite increasing pressure from Science, Technology, Engineering and Mathematics (STEM) policies, there is little support offered to schools and teachers to learn 3D printing and associated skills such as Computer-Aided Design (CAD) and 3D scanning,” the chapter introduction reads. “Such technologies have traditionally been the domain of designers and engineers, trained through years of university and commercial practice, and may be daunting for many teachers, particularly those in disciplines where computing and technical expertise is minimal. It is unrealistic to expect teachers to add lengthy training courses in these technologies to their already busy workload, so novel methods of training, driven by bottom-up engagement, must be implemented to ensure teachers and students benefit from the opportunities presented by 3D printing.”

Other interesting chapters in the book include “3D Printing Glitches: Learning From Manufactured Errors,” “Girls and 3D Printing: Considering the Content, Context, and Child,” and “Creating Tactile Graphs for Students with Visual Impairments: 3D Printing as Assistive Technology.”

While this is all well and good, when I saw the price of this book I nearly had a heart attack – the list price for a hardback copy is $195, and while the price drops 20% to $156 when you purchase it through the IGI Global Online Bookstore, that’s still a pretty penny…and even more than it costs to purchase your own entry-level 3D printer! So you’ll need to decide if the knowledge in this book is worth breaking the bank for…or you could just purchase Dr. Novak’s chapter in PDF format for less than $40.

What do you think? Discuss this book and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Images provided by Dr. James Novak]