Patented Metals with Extremely High Carbide Content

Metal materials with remarkable properties. This has been the focus of Swedish company VBN Components since the very start. In the middle of the financial crisis in 2008, VBN saw the opportunity to turn the steel business upside down by using additive manufacturing of high strength, carbide-rich materials. Today they present a range of patented alloys with unique performance.

The Vibenite® materials

VBN Components nurtures the Swedish heritage within the metal industry by continuously developing new and improved materials branded Vibenite®. Sweden was one of the first countries in the world to produce industrial steel with purity as a key factor. VBN takes this to the next level by 3D printing materials unique in their composition, offering exceptional wear resistance. Their properties are achieved by a patented additive manufacturing process through which metal materials with 100% density can be produced. Small sized uniformly distributed carbides in a specific matrix are the reason for the materials’ performance. They are all produced from a base of gas atomized metal powder and are therefore classified as powder metallurgy materials.

Vibenite® technology allows the user to switch to a more wear resistant material than what can be produced with traditional manufacturing. When 3D printing, most production and transportation steps are eliminated, material usage optimized, and environmental impact significantly reduced. Both performance and life-time of components increase with Vibenite®. These properties are easily tested by simply printing a full-quality prototype and running it! Better material properties are normally not heard of in the 3D printing business today, where typically difficult geometries are promoted.

Your application of choice can be printed with Vibenite® materials.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cross section of shaper cutter showing a 100% dense material.

 

 

 

 

 

 

 

 

 

 

 

 

 

Caption: Hardness of Vibenite® materials compared to H13, a common tool steel.

Vibenite® 290, the world’s hardest steel

Today there are five different types of Vibenite® materials, with a hardness range from 58-72 HRC (600-1100 HV). Among them we find the world’s hardest steel, Vibenite® 290 with 25% carbide content. Its hardness of 72 HRC means it could never be processed traditionally. It was recently put through two abrasion tests to measure wear against rock, in collaboration with Robit Plc. The results spoke for themselves; Vibenite® 290 showed only 50% of the wear rate compared to reference material H500 (51 HRC) in the first test, and 25% of the wear rate in the second. H500 is commonly used in these types of abrasion lab-tests.

Total wear in grams in high-speed slurry pot test.

 

 

 

 

 

 

 

 

 

 

 

 

 

Vibenite® 480 – a new type of cemented carbide

Recently, VBN Components announced that they can print cemented carbide. This type of material has previously been considered “impossible” to print, due to high carbide content. Vibenite® 480 contains an astonishing ~65% of carbides, which really beats al the odds. There is no mixing, drying, pressing or sintering needed, as in the traditional process. It has a long-term heat resistance of 750°C, is corrosion resistant and magnetic. Vibenite® 480 is niched both towards applications where steel is normally used, but where replacing it with hard metal would increase production efficiency, and also towards hard metal applications with complex geometry. Since it combines the best of two material worlds – powder metallurgy high-speed steel and cemented carbide, it is referred to as “hybrid carbide”.

3D Benchy printed with Vibenite® 480.

 

Milestones and future projects

These material innovations have raised quite a lot of attention. Already in 2013, VBN Components was awarded with Sweden’s largest and most important innovation prize, SKAPA, established in honor of Alfred Nobel. In that same year, Swedish steel giant Uddeholms AB contested VBN’s first patent regarding high purity in high carbon content materials. It took five years before the battle was finally settled, in favor of VBN Components, at the European Patent Office (EPO) in Munich. Not long thereafter, just before Christmas of 2018, a multi-million license agreement was signed with a global engineering group. It implies an exclusive license within a specific niche of high-strength components, which is kept confidential for now.

VBN Components is the only company 3D printing alloys with high carbon content, resulting in hard and wear resistant unique materials. The extremely high cleanliness of Vibenite® alloys gives very high fatigue resistance. Following this path, VBN will continue developing new metal alloys and novel ways to print these. The possibilities are vast, from “Vibenite® Combo” which implies printing Vibenite® upon other existing components, to “Vibenite® Grado” which would give different properties in different parts of the component.

3D Printing News Briefs: January 19, 2019

Welcome to the first edition of 3D Printing News Briefs in 2019! We took a brief hiatus at the beginning of the new year, and now we’re back, bringing you the latest business, medical, and metal 3D printing news. First up, Sigma Labs has been awarded a new Test and Evaluation Program Contract, and Laser Lines is now a certified UK Stratasys training provider. Michigan’s Grand Valley State University, and a few of its partners, will be using Carbon 3D printing to make production-grade parts for medical devices. Cooksongold is launching new precious metal parameters for the EOS M 100 3D printer, and VBN Components has introduced a new metal 3D printing material.

Sigma Labs Receives Test and Evaluation Program Contract

This week, Sigma Labs, which develops and provides quality assurance software under the PrintRite3D brand, announced that it had been awarded a Test and Evaluation Program contract with a top additive manufacturing materials and service provider. This will be the company’s fifth customer to conduct testing and evaluations of its technology since September 2018, and Sigma Labs will install several PrintRite3D INSPECT 4.0 in-process quality assurance systems in the customer’s US and German facilities under the program. It will also support its customer in the program by providing engineering, hardware, metallurgical consulting and support services, software, and training.

“Sigma Labs is deeply committed to our In-Process Quality Assurance tools, supporting and moving forward with them,” said John Rice, the CEO of Sigma Labs. “I am confident that this initiative, which marks our fifth customer signed from diverse industries in the past four months, will validate our PrintRite3D technology in commercial-industrial serial manufacturing settings. We believe that going forward, AM technology will play an increasingly prominent role in the aerospace, medical, power generation/energy, automotive and tooling/general industries, all areas which are served by this customer.”

Laser Lines Announces New Stratasys Training Courses

Through its new 3D Printing Academy, UK-based total 3D printing solutions provider Laser Lines is now a certified provider of Stratasys training courses. The custom courses at the Academy for FDM and Polyjet systems are well-suited for new users, people in need of a refresher, or more experienced users, and include tips and tricks that the company’s certified trainers have personally developed. One-day and two-day courses are available at customer sites, or at the Laser Lines facility in Oxfordshire.

“The training courses are an extension of the advice and education we have been providing to customers for the past 20 years. With our experienced team able to share their knowledge and experience on both the FDM and Polyjet systems and materials, customers who are trained by us will get the value of some real life application examples,” said Richard Hoy, Business Development at Laser Lines.

“We want to ensure that our customers get what they need from our training so before booking, our Stratasys academy certified trainers can discuss exact requirements and advise both content and a suitable duration for the training course so that it meets their needs entirely.”

Exploring Applications in Medical Device Manufacturing

Enabled by Michigan state legislation, the Grand Rapids SmartZone Local Development Finance Authority has awarded a half-million-dollar grant that will be used to fund a 2.5-year collaborative program centered around cost and time barriers for medical devices entering the market. Together, Grand Valley State University and its study partners – certified contract manufacturer MediSurge and the university’s applied Medical Device Institute (aMDI) – will be using 3D printing from Carbon to create production-grade parts, out of medical-grade materials and tolerances, in an effort to accelerate medical device development, along with the component manufacturing cycle. A Carbon 3D printer has been installed in aMDI’s incubator space, where the team and over a dozen students and faculty from the university’s Seymour and Esther Padnos College of Engineering and Computing will work to determine the “tipping point” where 3D printing can become the top method, in terms of part number and complexity, to help lower startup costs and time to market, which could majorly disrupt existing manufacturing practices for medical devices.

“We are thrilled to be the first university in the Midwest to provide students with direct access to this type of innovative technology on campus. This novel 3D additive manufacturing technology, targeting medical grade materials, will soon be the new standard, and this study will be a launch pad for course content that is used in curriculum throughout the university,” said Brent M. Nowak, PhD, the Executive Director of aMDI.

New Precious Metal 3D Printing Parameters at Cooksongold

At this week’s Vicenzaoro jewelry show, Cooksongold, a precious metal expert and the UK’s largest one-stop shop for jewelry and watch makers, announced that it is continuing its partnership with EOS for industrial 3D printing, and will be launching new precious metal parameters for the EOS M 100 3D printer, which is replacing the system that was formerly called the PRECIOUS M 080. The EOS M 100 builds on the powder management process and qualities of the PRECIOUS M 080, and the new parameters make it possible for users to create beautiful designs, with cost-effective production, that are optimized for use on the new 3D printer.

“We are proud to continue our successful partnership with Cooksongold, which was already established 2012,” said Markus Brotsack, Partner Manager at EOS. “The EOS M 100 system increases productivity and ensure high-quality end parts as we know them. Based on our technology, EOS together with Cooksongold plans to develop processes for industrial precious metals applications too.”

VBN Components Introducing New Cemented Carbide

Drill bits in Vibenite 480; collaboration with Epiroc.

In 2017, Swedish company VBN Components introduced the world’s hardest steel, capable of 3D printing, in its Vibenite family. Now it’s launching a new 3D printing material: the patented hard metal Vibenite 480, which is a new type of cemented carbide. The alloy, which has a carbide content of ~65%, is heat, wear, and corrosion resistant, and based on metal powder produced through large scale industrial gas atomization, which lowers both the cost and environmental impact. What’s more, VBN Components believes that it is the only company in the world that is able to 3D print cemented carbides without using binder jetting. Because this new group of materials is a combination of the heat resistance of cemented carbides and the toughness of powder metallurgy high speed steels (PM-HSS), it’s been dubbed hybrid carbides.

“We have learned an enormous amount on how to 3D-print alloys with high carbide content and we see that there’s so much more to do within this area,” said Martin Nilsson, the CEO of VBN Components. “We have opened a new window of opportunity where a number of new materials can be invented.”

Early adopters who want to be among the first to try this new material will be invited by VBN Components to a web conference at a later date. If you’re interested in participating, email info@vbncomponents.com.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.