COVID-19 Pandemic: 3D Printing Events Postponed, Cancelled, Moved Online

We’ve been keeping our readers informed about what’s been going on in the 3D printing industry during the COVID-19 pandemic for quite some time; honestly, this continuing crisis has lasted longer than I ever thought, or hoped, it might. It feels like the world has been turned upside down, as major industry events continue to be cancelled, postponed, or moved to an online format, though 3D printing business seems to be going strong.

That’s why, in May, we began publishing a weekly roundup of the available online webinars and virtual events, since there’s so much online content to choose from now. For example, the ASTM International Conference on Additive Manufacturing (ASTM ICAM 2020), sponsored by ASTM’s Additive Manufacturing Center of Excellence (AM CoE), was supposed to take place in sunny Orlando, Florida from November 16-20, but has now been moved to a virtual format.

AM CoE had to consider the health and safety of not only the speakers and attendees, but also its staff members, as well as coronavirus-related travel restrictions and guidelines on large gatherings, while contemplating this decision. After consulting with the organizing scientific committee and hearing the opinions and preferences of those set to speak at the large event, the organization made the difficult choice to move this year’s ASTM ICAM online.

“This year’s event will be the largest conference we have held to date and will consist of more than a dozen tracks and double the number of speakers with respect to last year’s event. The conference will involve a broad group of ASTM committees and external stakeholders, setting the stage to bring nearly 350 experts from more than 25 countries to exchange the latest developments in the field of additive manufacturing with an emphasis on transition of research to standardization,” stated Dr. Moshen Seifi, ASTM International’s director of global additive manufacturing programs and a co-chair of ASTM ICAM 2020. “We are aware of time-zone differences and are making every effort to hold this virtual event seamlessly with the latest available technology.”

ASTM ICAM 2020, led by Dr. Seifi and fellow co-chair Dr. Nima Shamsaei, director of the National Center for Additive Manufacturing Excellence (NCAME), is being organized by 60 members of the organization’s scientific committee. This online conference will be ASTM’s fifth flagship event centered on certification, qualification, requirements, and standardization in the additive manufacturing process chain. The event will last five days, separated into online panel presentations and sessions and virtual symposia; you can register, and see the full schedule, here.

This September, the inaugural edition of the new Formnext + PM South China was supposed to take place in Shenzhen, but in a familiar refrain, organizers have made the tough decision to postpone the event due to the continuing COVID-19 crisis. So the debut will now take place in 2021 (dates yet to be determined) at the brand-new Shenzhen World Exhibition and Convention Center.

“The concept of the fair we had presented to our stakeholders emphasised it as a platform for the latest products and technologies for the entire additive manufacturing and powder metallurgy industries, and for multiple end uses,” explained Hubert Duh, Chairman of Guangzhou Guangya Messe Frankfurt Co Ltd. “In our debut edition we wanted to have this full picture presented, however after consulting with our exhibitors, supporting associations and other partners, due to various complications arising from the coronavirus pandemic we came to the conclusion that this concept couldn’t be realised adequately in 2020.

“In particular, there is ongoing uncertainty over entry into China for foreign participants which is making it difficult for our overseas stakeholders to plan ahead. What’s more, many companies in the industry will likely only just have resumed normal operations around September, which makes decision making about participating in trade fairs for that time challenging. We felt, therefore, it was in everyone’s best interests to focus on ensuring the full participation of the industry in 2021 instead.”

The Formnext + PM South China event, whenever it occurs, will offer a new experience to the manufacturing industry in China, covering a multitude of advanced equipment, products, and technology in the design, additive manufacturing, materials, software, powder metallurgy, and processing categories. Jointly organized by Uniris Exhibition Shanghai Co Ltd and Guangzhou Guangya Messe Frankfurt Co Ltd, it is part of a popular series of international manufacturing events that includes the annual Formnext trade fair held in Frankfurt, Germany, which is currently set to take place this November.

What won’t be happening in November is FABTECH 2020 in Las Vegas. The FABTECH Expo partners—SMEFMAAWSPMA, and CCAI—have decided to cancel this year’s event, once again because of continuing concerns about the pandemic.

“This decision was not made without painstaking consideration of alternative locations and dates. Ultimately, the volatile nature and duration of the circumstances surrounding this pandemic left us with no alternative but to cancel FABTECH 2020. This decision is one we hoped to avoid having to make, but we know the FABTECH community will understand the reasons for it,” the official announcement states.

“With FABTECH 2020 cancelled, we are now focused on FABTECH 2021 in Chicago next September. We are eager to be one of the signature industry leading events facilitating a resurgence in business conditions; providing an experience that allows you to meet with top suppliers, see the latest industry products and developments, find the tools to improve productivity, increase profits and discover new solutions for all your operational needs.”

According to the website, FABTECH has been “the premier event for the metal fabricating industry,” including metal fabricating, finishing, forming, and welding, since it began in 1981. It’s unfortunate that this event, along with so many others, has had to be cancelled this year, but the FABTECH partners are looking to the future, as over 48,000 attendees are expected to participate in FABTECH 2021.

If you have information to share about any upcoming webinars or virtual events in the additive manufacturing industry, please let us know! We’d love to include them in our weekly roundup.

The post COVID-19 Pandemic: 3D Printing Events Postponed, Cancelled, Moved Online appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing Webinar and Virtual Event Roundup, July 7, 2020

We’ve got plenty of 3D printing webinars and virtual events to tell you about for this coming week, starting with nScrypt’s webinar today. 3Ding and Formlabs will each hold a webinar tomorrow, July 8th, and 3D Systems is hosting a virtual event on the 8th. There are two more webinars on July 9th, by KEX Knowledge Exchange and ASME, and Additive Industries is holding a virtual event that day. Finally, a 3D Health Hackathon will take place starting July 10th.

nScrypt’s Cutting Edge of Digital Manufacturing Webinar

On June 30th, nScrypt held the first of a two-part Cutting Edge Digital Manufacturing webinar series, and is holding the second part today, July 7th, at 1 pm ET. In part two of “Pushing the Envelope of Digital Manufacturing,” the speakers will be Eric D. Wachsman, PhD, from the University of Maryland; Eduardo Rojas, PhD, with Embry-Riddle Aeronautical University; Hjalti Sigmarsson, PhD, from Oklahoma University; and Craig Armiento, PhD, with the University of Massachusetts Lowell.

Topics of discussion in this webinar include the use of metamaterials, building radio frequency devices, systems, and the first 3D/volumetric electrical circuits and antennas, and the state of the art of 3D manufacturing. Register here.

3DIng “Let’s Talk 3D Printing” Webinar

Indian 3D printer manufacturer 3Ding recently began holding a weekly webinar about 3D printing-related topics, such as SketchUp training, different types of 3D printing, OpenSCAD, slicing, applications in rapid prototyping, and how to choose a 3D printer. Tomorrow, July 8th, the topic of the weekly webinar will be “Live Demo of FabX, Hydra Series 3D Printers & AMA.”

Surendranath Reddy, the founder, CEO, and CTO of 3Ding, is leading the remote webinar session, which will take place at 6:30 am ET and last about 45 minutes. You can join the session here.

Webinar on Formlabs’ New Materials

Formlabs recently launched two new materials, Flexible 80A and Elastic 50A resins, which allows customers to make soft, flexible parts with ease. In a webinar on July 8th at 2:00 pm ET, attendees will get to learn all about these resins with the company’s Materials Product Manager Kathy But and webinar specialist Faris Sheikh. Topics will include when to use these materials, optimal applications, 3D printing material properties like spring back, tensile strength, and shore durometer, and the Ross Flex Test.

“To make soft and flexible parts with traditional methods, such as RTV moldmaking, can be a lengthy process. If you’ve also tried directly 3D printing flexible parts, you probably know there’s not many high performing materials available. That is now changing.

“With the launch of our Flexible 80A and Elastic 50A Resins, you’ll be able to easily fabricate flexible parts that are both soft and hard.”

Register here.

3D Systems’s Virtual Tradeshow 

3D Systems is holding a virtual event on July 8th in order to teach attendees how to transform their manufacturing workflows. There will be a keynote address, networking opportunities, multiple live webinars, and even a virtual exhibition hall. The company will provide examples of digital manufacturing solution workflows with plastic and metal additive manufacturing, subtractive manufacturing, and on-demand services.

“Businesses are focused on lowering risk, resolving supply chain dependencies, streamlining supplier distribution and avoiding interruptions to supply access.

“Join 3D Systems at this exclusive virtual event to find out how Digital Manufacturing Solutions designed for today’s production needs, enable you to integrate additive and subtractive technologies into your manufacturing environment and workflow — providing increased agility, quicker lead times, improved productivity, and allowing you to offer new innovations to your customers.”

All presentations will be in English, and available on-demand for 30 days. Register here.

KEX Knowledge Exchange on Powder Bed Fusion

KEX Knowledge Exchange AG, a former spinoff of Fraunhofer IPT, offers technology consulting. As a service to its industrial and research partners, the company also has a web platform that offers over 7,000 profiles of AM technologies and materials, in addition to industry news, and has now launched a section devoted to webinars, with topics including post-processing and powder bed fusion (PBF) 3D printing.

“Together with one of our appreciated network partners, the ACAM Aachen Center for Additive Manufacturing, we now launched a webinar section,” Jun Kim Doering, a technical writer with KEX, told 3DPrint.com. “Due to the COVID19 situation, ACAM has shifted their focus to an online offering, including webinars on different aspects of the AM technologies and applications.”

The first, “Webinar Powder Bed Fusion (PBF) – Advanced insights into Process, Parameters & Hardware,” will take place this Thursday, July 9th, and Erik Feldbaum, ACAM Aachen Center for Additive Manufacturing, will speak. It’s free for ACAM members, and will cost €175 for non-members.

ASME on 3D Printing in Hospitals

AM Medical, powered by ASME International, will be holding a free, live webinar this Thursday, July 9th, on “Building the Business Case for 3D Printing in Hospitals.” Point-of-care manufacturing leaders will discuss necessary skills, where to find the proper resources, how to address reimbursement, and other important questions during the hourlong session, from 4-5 pm ET. Speakers are Andy Christensen, the President of Somaden; Jonathan Morris, MD, Neuroradiologist and Director of the Mayo Clinic’s 3D Printing Anatomic Modeling Lab; Beth Ripley, MDAssistant Professor of Radiology with VA Puget Sound; Justin RyanResearch Scientist at Rady Children’s Hospital-San Diego; and Formlabs’ Director of Healthcare Gaurav Manchanda.

“The ability to manufacture from the patient’s data (medical imaging or surface scan) has been compelling to a community always looking for ways to innovate. With improving patient care as the primary goal, 3D printing has directly impacted more than 1 million patients. More than 25 years ago, anatomical models began to be used for planning of complex surgical procedures. Today, hospitals are using the technology for surgical guides and more. With increasing numbers of hospitals looking to bring 3D printing into their facility, how are they building the business case?”

Register here.

Additive Industries Hosting Digital Event

On July 9th and 10th, Additive Industries is getting the trade show season running again with what it calls “a corona-proof way to get out of the starting blocks.” At its two-day virtual event, attendees can visit the company’s digital booth, view presentations, and talk to the experts to learn more about the MetalFAB1 3D printer and how the company can help turn your ideas into reality…all without traveling or waiting in line.

“While the virtual domain has limitless possibilities, we still live in the physical world. With our exclusive industry additive manufacturing event – we are making the virtual world a reality.”

Register for the virtual event here.

3D Health Hackathon

The Jersey City Rapid Maker Response Group (JCRMRG), a volunteer collective in New Jersey, is hosting a virtual Community Health Hackathon this week in order to foster community entrepreneurship and take on sustainability, supply chain, and manufacturing challenges that are related to healthcare and PPE (personal protective equipment) during COVID-19. There are three categories: sustainable PPE, modular solution labs, and day-to-day PPE, and the deadline to register is this Friday, July 10, at 12 pm ET. Panelists will meet the nine judges during a Zoom call that night to present their ideas, and then the next two days will be spent hacking. The final submission deadline is July 13th at 9 am, and winners will be announced on July 16th.

“Throughout the COVID-19 health crisis healthcare workers faced critical shortages in PPE created by supply chain disruptions and shortages. Jersey City Rapid Maker Response Group, as well as other groups like them around the country, proved that by quickly deploying 3D-printing capabilities and then extending those capabilities through rapid manufacturing – they were able to scale from producing 1,000 face shields a week to 10,000 face shields a day, both at a fraction of traditional pricing.

“We have reached out to leaders in the tech, manufacturing and 3D-printing communities to form a community-led virtual make-athon.  Our collective goal is to continue to bring bright minds together to develop 3D-printing, manufacturing and community-based engineering solutions to address the ongoing needs surrounding supply chain disruptions in emergent and healthcare settings.”

The current prize pool is valued at over $7,500, so what are you waiting for? Register for the hackathon here.

Will you attend any of these events and webinars, or have news to share about future ones? Let us know! Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below.

The post 3D Printing Webinar and Virtual Event Roundup, July 7, 2020 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D-Printed Respirator Masks Below N95 Standards, Says Virginia Tech Team

We’ve been cautious and careful about promoting 3D-printed COVID safety equipment here at 3DPrint.com. We talked about a general principle of first doing no harm and also discussed safety recommendations for 3D-printed medical devices. Specifically, we addressed safety concerns related to 3D printing masks and provided some recommendations.

It was notable that, in this current crisis, the U.S. Food and Drug Administration (FDA) and other authorities relaxed their existing standards for face shields but did not do so for respirators. A respirator is a close-to-the-skin device that is worn over one’s mouth for hours per day and can impede breathing or could lead to foreign particles in the wearer’s lungs. Even at their most inventive and creative, health authorities would not budge from keeping it a Class II medical device that would have to be made in a good manufacturing practice environment and subject to strict FDA regulation.

Initial findings point to the regulator’s findings being borne out by research. A paper by a team at Virginia Polytechnic Institute and State University (Virginia Tech) points to a decided lack of effectiveness on the part of 3D-printed respirators. We must point out that the paper itself is in the preprint stage. Preprint means that it has not yet been peer reviewed. This means that we are now forming our opinion about a hasty engineering effort to make life-saving devices through a paper that itself has been presented to us earlier (and one would expect more error-prone) than usual.

Just to be clear, we celebrate everyone’s engineering and maker efforts to make COVID devices of all kinds. We think this is truly one of the brightest and best moments in our industry’s history. We have an important role to play in making spare parts, new solutions, and unavailable items in this current crisis. Furthermore, it is becoming clear to us and many more people that 3D printing has a real role to play in many supply chains and in future crises, whatever they may be. We are now much more relevant than at the start of the year to any further breakdown of the very fabric of the global supply chain or as some kind of magical duck tape solution to a shortage.

This expectation and interest is, of course, a double-edged sword and we could squander it by over-claiming and underdelivering. Or we could meet the challenges of the future with forthrightness and honesty. Yes, we are an interesting shape-making technology. This does not mean that all of our shapes are functional for all of the applications now, in all materials.

The paper is by Bezek, L.B.; Pan, J.; Harb, C.; Zawaski, C.E.; Molla, B.; Kubalak, J.R.; Marr, L.C.; Williams, C.B.  and is titled “Particle Transmission through Respirators Fabricated with Fused Filament Fabrication and Powder Bed Fusion Additive Manufacturing“. The summary is as follows (the text is quoted but formatted by me for readability):

  • “Results from this study show that respirators printed using desktop/industrial-scale fused filament fabrication [FFF] processes and industrial-scale powder bed fusion [PBF] processes have insufficient filtration efficiency at the size of the SARS-CoV-2 virus, even while assuming a perfect seal between the respirator and the user’s face.

  • Almost all printed respirators provided <60% filtration efficiency at the 100-300 nm particle range.

  • Only one respirator, printed on an industrial-scale fused filament fabrication system provided >90% efficiency as-printed.

  • Post-processing procedures including cleaning, sealing surfaces, and reinforcing the filter cap seal generally improved performance, but no respirator sustained the filtration efficiency of an N95 respirator, which filters 95% of SARS-CoV-2 virus particles.

  • Instead, the printed respirators showed similar performance to various cloth masks.

  • While continued optimization of printing process parameters and design tolerances could be implemented to directly print respirators that provide the requisite 95% filtration efficiency, AM processes are not sufficiently reliable for widespread distribution and local production of N95-type respiratory protection without commensurate quality assurance processes in place.

  • Certain design/printer/material combinations may provide sufficient protection for specific users, but the respirators should not be trusted without quantitative filtration efficiency testing. It is currently not advised to expect printed respirators originating from distributed designs to replicate performance across different printers and materials.”

Generally, a lot of the conclusions that the paper has made are what we have previously pointed out and what many in the industry were saying, as well. It seems that, once again, we’re shadowboxing overinflated claims that the media (and some of us) have made.

The paper points out that

  • “One concern about the efficacy of using AM to produce direct replacements for N95 respirators is the intrinsic porosity in FFF and PBF-produced parts, which can affect filtration efficiency, accuracy, and reliability of the printed respirators. In FFF processes, porosity can result from adjacent layers not fully fusing, gaps left from changing direction and stopping/starting melt extrusion, and/or gaps left from adjacent extruded paths failing to fuse together”
  • “Such inherent, process-induced defects have been shown to cause up to 32% porosity in FFF parts, with 200-800 Mu diameter pores , which could render them ineffective in protecting against 0.3 mu virus particles.”
  • “Similarly, parts produced via PBF can be up to 30% porous [16] due to insufficient delivery of energy, recoating defects, and/or the use of heavily recycled powder.”
  • One solution to mitigate porosity in printed polymer parts is to seal them in a post-processing step.
  • “Another anticipated challenge in the use of AM to directly fabricate PPE through shared digital designs is the inherent variability between AM machines, materials, and build parameters, which can affect the mechanical properties of the printed materials and the accuracy of the printed geometries.”

That final issue is also a potential limitation to testing how effective these masks are, since individual machine settings, materials, material handling, toolpaths and local variables could have interfered with the test parts themselves. The paper goes on to look at the parts where the mask could fail through insufficiently covering the face or through gaps.

The masks chosen were the Montana mask by Make the Masks, the Factoria mask, and the Stopgap Surgical Face Mask. They printed these masks on a Sinterstation (polymer powder bed fusion), Fortus 400mc (industrial FFF) and an Afinia (desktop FDM). We have made some progress since the venerable Sinterstation and porosity has been reduced in current generation sintering machines with better software and processing so that we would expect less porosity than with a machine that was released in 1998. On the one hand, it’s amazing that these machines last so long, but it is perhaps slightly unfair to use a 22-year-old 3D printer as the industrial sintering system for this important test.

The paper states that, “the PBF models were de-powdered and bead blasted to remove adhered powder and improve surface finish,” but, crucially, it is unclear if “rinse parts with water to remove remaining media and dry parts using compressed air” was done as per the general instruction attached to the file. Also, they state that the powder used was “Nylon-12 (Factoria: 100% recycled; Montana/Stopgap: 50% recycled / 50% virgin).” It’s unclear whose powder it was. Now, its not apparent why they would use different mixes between virgin and recycled powder for different masks but a 100 percent recycled material is not really something I’d recommend. I think it’s also unfair to compare a 100 percent recycled mask to anything.

I also have concerns about the filament materials printed. I also thought that ULTEM 9085 printed at 350°C? I’m confused about the ABS print that has 15-20% infill. To me, for a day-to-day use part, I’d use a much higher infill percentage of 30 percent at least. I also don’t understand why the PLA part has 15 percent infill either. I couldn’t find the machine settings or the name of the filament supplier either. There could be a lot of variability in their nozzle temperature as per indicated and actual also. We all know that we can get a lot of layer adhesion differences in prints from speed, material, temperature. So this is one caveat. I’d really like for the Cura profile and the machine settings to be included in this kind of research. If we’re going to be testing parts then we should know how they were made.

This isn’t a gripe specific to this paper however; no papers have this. I personally can’t really get ABS to work at all below a 100°C bed temperature and most recommend 110°C, so that seems low, while 260°C sounds like it could be rather too fume-y. I’d never recommend that you print ABS above 250°C and, most of the time, I’d expect the right temperature to be far lower than that, much lower than 260°C anyway. Also, each test part was only printed once (apart from the stopgap that they tried in two orientations). That to me is putting rather a lot of stock in the five-year-old Afinia’s accuracy and I would have much rather seen a number of parts printed and tested.

The team then shows us that they had visible defects in the prints.

“(a) The Stopgap respirator in ABS oriented with the filter cap face down on the build plane has a few mislaid layers; (b) The Stopgap respirator in ABS in an alternate orientation also suffers from periodic sparsity; (c) The Stopgap respirator in PLA is visibly thin across most surfaces; (d) The Stopgap respirator in ULTEM shows porosity on the surface parallel to the filter.”

“Figure 4c shows the Stopgap respirator fabricated with PLA held up to a light to enable observation of several regions of thin material along the shell (as in Figure 4a and b), along the seal to the face, and on the surface flush with the filter cap. Figure 4d displays the Stopgap respirator fabricated with ULTEM held up to a light. Macroscale pores across the entire surface flush on the build plane are observed despite this part being printed in 100% infill on an industrial-scale FFF system,” the authors write. The team does say that the Stopgap respirator was made for powder bed fusion ,so that it was not meant to be printed with FFF/FDM. They go on to test the Stopgap FFF/FDM prints and I think that this is rather unfair.

I have a real issue with the authors changing the roll of filament for build orientation prints “a” and “b” and not mentioning that this is a different material. Even if it was from the same vendor and the handling was the same, then the different colorants mean that there is a different optimal print temperature there. It’s strange to me to both change print orientation and material and then compare those prints. Also, the authors say that this is an adhesion issue, but is it? Is it digging by the nozzle? The “c” part is a great example why you should not have letters on your part. The hatched pattern on the “d” print made from ULTEM is very strange. Is that the Sparse Double Density infill pattern? Did it not print because they didn’t support the part well?

The team went on to test the results of the different filter designs:

“The particle analyzer simply counts the frequency of detected nanoparticles; it does not distinguish between nanoparticles resulting from the generated aerosol and residual nanoparticles resulting from stray particulates shed from the shell,”  was an issue that they identified.

They go on to treat the masks, saying that the “FFF respirators were rinsed thoroughly with tap water and dried with compressed air. Since water could cause aggregation among dry powder, the cleaning step for PBF respirators involved additional compressed air followed by the application of two coats of acrylic paint to form a sealant.”

I’m confused about this since I know that water can have effects on porous sintered parts long-term, but am not sure why the researchers didn’t just wash them in water, which would be fine short-term. Also, painting it changes the part and makes it less flexible. I don’t understand the “aggregation among dry powder” part at all really and am not sure why they’d need to paint the model. I especially worry that the coats of paint will effect how the different parts of the mask fit together. I may have read it wrong but why then in the table above do they say that they rinse and dry the PBF parts? Also I’m pretty sure that the PLA models were made more brittle by the water, but perhaps that’s a limitation of the mask that’s good to include.

The paper goes on to show that, “none of the printed respirators provided the requisite 95% filtration efficiency.”

“Montana respirator results (Figure 5a) show filtration efficiency consistently under 60% for the ABS, PLA, and nylon materials, which is far from the baseline performance of the ULPA filter medium. The ULTEM variant of the Montana respirator could not be tested as printed because the filter cap was too loose to adequately secure the filter.”

The team makes the following determination:

“The Factoria respirator results are provided in Figure 5b. The PLA and ABS respirators filter out more particles than in the Montana respirator design, but both still only protect against ~75% of particles. The ULTEM Factoria respirator provides the highest observed performance, with a filtration efficiency between 90-95%, depending on particle diameter; however, it falls slightly less than the tested ULPA filter (99% efficiency). Similar to the Montana respirator results, the PBF-printed respirator presents the lowest filtration efficiency (~45%).”

“Montana and Factoria respirators are nearly identical in shell design, it is expected that the difference in filter cap design is the cause for the consistently worse performance of the Montana respirator compared to the Factoria respirator. The press-fit cap of the Montana respirator may have allowed particles around the filter (which correlates to the loose-fitting filter cap printed in ULTEM), whereas the larger cap of the Factoria respirator completely encloses the filter.”

Another thing that I don’t get is this: “It is observed in Figure 6a that cleaning the ABS Montana respirator increases the filtration efficiency measurement by ~20%, but the ABS Factoria measurement decreases in efficiency by ~10%. The ABS Stopgap efficiency measurements significantly improve, with both print orientations offering similar performance once cleaned. In Figure 6b, it is seen that the ULTEM Factoria respirator decreases by ~15% efficiency following cleaning.”

I’m quite surprised that there would be such a huge difference in filtration efficiency just from cleaning the parts? To me, this points to the fact that the testing apparatus is picking up loose powder and particles on the masks themselves from before, or that they are created or released through cleaning. But, I don’t know enough about the filtration side of things to know.

The team concedes, “These results highlight the inherent variability in results due to the testing method and testing conditions, which is why it was critical to use the same respirators for repeat tests. The testing environment was kept as close to the same conditions each time, yet the Factoria respirators somehow declined in filtration efficiency. It is believed that a coupling of the failure modes identified in Section 1.2 could be contributing to the erratic trends.”

They go on to look deeper, “Application of the epoxy sealant to the shell increases efficiency to peak at ~75%. This indicates that the porosity of the PLA material drops filtration efficiency by ~20%.” And “Residual powders from printing, post-process, or handling are likely to blame for the poor performance of the respirators as-printed. This also corroborates the reason why the as-printed nylon Montana and Factoria respirators had such low filtration efficiency. While testing some intermediate modifications were forgone, it is evident that the dominant failure mode is the filter cap/shell interface.”

Their conclusions are the following:

“As printed, most of the respirators performed poorly, with almost all providing less than 60% filtration efficiency (significantly below the requisite 95% efficiency of a N95 respirator). This result is especially discouraging when considering that the testing was done with the approximation of a perfect seal between the respirator and user’s face (a common failure mode for standard N95 textile respirators, and likely a significant failure mode for the rigid printed polymers). When printed in ULTEM on an industrial-scale FFF system, the Factoria respirator provided the best filtration efficiency of those evaluated, consistently exceeding 90% efficiency for all particle sizes.”

They also say that, “For example, while the Factoria respirator in ULTEM reached >90% filtration efficiency in the as-printed state, its measured efficiency was reduced to ~80% following cleaning. No tested design with modifications was able to consistently attain 95% filtration efficiency, although the nylon Stopgap respirator with modifications was able to filter ~85% of particles at the size of 300 nm.”

“The results from this study do not completely discount AM from being appropriate for making an effective N95 respirator,” the authors write. “The ULTEM Factoria’s performance suggests that (i) high quality, repeatable printing technology with (ii) proper process settings, and (iii) tolerancing of the filter cap/shell interface that is aligned with a specific machine/material combination could provide an effective solution.”

Further on they, say, “In the case of the Montana and Stopgap respirators, the as-printed performance falls below that of many simple textile materials. The as-printed Factoria respirators and post-process modified Stopgap respirators provide equivalent protection to these textile materials and surgical masks, with the ULTEM Factoria and modified PBF Stopgap respirators providing slightly enhanced performance to these materials.” This was a result that many of us would actually have been happy with, I believe.

Also, “The modified PBF Stopgap respirators can perform better than the surgical mask, high-threaded cotton, and N95 respirator from the study by Konda [33]. This study shows AM respirators are capable of achieving competitively high filtration efficiency on par with non-medical use masks only when assuming a perfect seal to the face.” This is a very good result however and one that we’d be very happy with. But, as the paper rightfully states, this perfect seal is illusory and is probably not the case for these relatively rigid parts. The inability to make a good seal, especially when compared to a home-sewn mask has always to me been the Achilles heel of 3D-printed respirators.

On the whole, it is very good that this kind of research is being done. I’m a little confused by some of the printing and parameters involved. I would have liked to have seen more consistency there. But assembly and print-related issues in experiments only cause me to consider how such variability precludes us from making respirators. On the whole, we can conclude that it will be difficult to make a respirator that works well with 3D printing. This does not mean that we should be dissuaded from trying to improve these designs but rather that we should welcome scientific rigor and analysis to our endeavors.

The post 3D-Printed Respirator Masks Below N95 Standards, Says Virginia Tech Team appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing and COVID-19 Update, June 23, 2020: General Motors, Simplify3D

Companies, organizations and individuals continue to attempt to lend support to the COVID-19 pandemic supply effort. We will be providing regular updates about these initiatives where necessary in an attempt to ensure that the 3D printing community is aware of what is being done, what can be done and what shouldn’t be done to provide coronavirus aid.

Among the companies tasked by the federal U.S. government to tackle medical supply shortages was General Motors, which was contracted under the Defense Production Act to build 30,000 ventilators. As of June 1, the company—which has struggled as an automaker over the years—delivered the first 6,132, with the rest expected to be delivered by the end of August.

To produce the ventilators, GM leaned heavily on 3D printing. In addition to personal protection equipment, the auto company 3D printed nearly all of the tooling necessary to build the ventilator systems with its partners Ventec Life Systems and Hamilton Medical. Many of these are fixtures that were reverse engineered from Ventec and Hamilton part data and were meant to hold parts in place during assembly. In order to have the 3D printing capacity necessary, GM had 3D printers shipped from its Additive Innovation Lab and Additive Industrialization Center in Warren, Michigan to its manufacturing plant in Kokomo, Indiana.

Fixtures 3D-printed for holding parts into place during assembly. Image courtesy of GM.

Dominick Lentine, senior manufacturing engineer of additive applications at GM, said of the technology’s use in ventilator production, “3D printing allows us to make constant, rapid changes to fixtures based on feedback from the assembly teams. We can receive feedback from Hamilton, improve a part and have it flown back to Reno in less than 24 hours.”

SME has published an account of some of the challenges to 3D printing PPE in the current environment, touching on many of the topics that we have already discussed in previous stories and some that we have not. For instance, the post highlights the overabundance of designs now available for producing PPE and how some actually don’t work, while others do. Another issue is the creation of one-size-fits-all designs that may not actually work for every wearer. Material shortages have also been a problem for some efforts to 3D print PPE. Perhaps most importantly, the fear of liability still hangs over all of those involved in the 3D printing of medical devices who may not have the proper facilities, equipment, training and certifications.

Additive software developer Simplify3D has begun publishing a series detailing research dedicated to 3D printing PPE amid the COVID-19 pandemic. Titled “Lessons from the Field,” the work combines experience from Simplify3D engineers who spent hundreds of hours producing PPE equipment and feedback from over 40 organizations that were engaged in similar operations. Every post in the series will cover a different piece of PPE, including 3D model recommendations based on testing and feedback from healthcare professionals, sourcing, print optimization advice, assembly instructions and tips on distribution.

3D printing isn’t the only technology being used to deal with the new normal of life under COVID-19. As with AM, other technologies meant to address the crisis can seem either opportunistic or truly innovative.

As states and municipalities begin to reduce quarantine requirements, businesses operations are attempting to restart with new measures in place to reduce the possibilities of infection. Looking to capitalize on that process, British wearables firm Equivital has developed a social distancing device called eqWave, which alerts workers if they’re within 2 meters of one another. The product uses ultra wide band radio and Bluetooth to detect other eqWaves to provide 360-degree coverage around the wearer, alerting them with an LED light and haptic vibration.

Singapore-based robotics manufacturer Otsaw Digital Pte. has developed what it calls an autonomous disinfection robot. The system, dubbed O-RX, uses UV-C LED technology kill microbes, such as bacteria and COVID-19. The company suggests that, unlike UV-A and UV-B emitting mercury lamps, the machine’s UV-C LED light is safe and non-carcinogenic. Otsaw also claims that the O-RX has a disinfection rate of over 99.999%. Developed in just eight weeks, the O-RX uses a 360-degree camera and LiDAR sensors to allow it to drive automatically and avoid obstacles.

The O-RX robot from Otsaw. Image courtesy of Otsaw.

As the pandemic continues to grip the world, we will continue to provide regular updates about what the 3D printing community is doing in response. As always, it is important to keep safety in mindremain critical about the potential marketing and financial interests behind seemingly good humanitarian efforts from businesses, and to do no harm.

The post 3D Printing and COVID-19 Update, June 23, 2020: General Motors, Simplify3D appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs, May 18, 2020: Fraunhofer, Formnext, Visagio & DiManEx, BCN3D Technologies

In today’s 3D Printing News Briefs, Fraunhofer will soon discuss adoption of Industry 4.0-related technologies in a webinar, and we’ve learned that Formnext 2020 is still planned for this November. Moving on, Visagio and DiManEx have announced a partnership. Finally, BCN3D’s technology was used to make an interesting event installation.

Fraunhofer’s Industry 4.0 Webinar

Tomorrow, May 19th, the Fraunhofer Project Center (FPC) at the University of Twente will be holding a free webinar called “The Road to Digitalisation” that explains some of the challenges in adopting technologies related to Industry 4.0, such as 3D printing, as well as the solutions. Industry 4.0 is about optimization, and can offer companies many benefits, such as increased revenue, better quality, and reduced cycle times and costs. But, it can be a tough journey to start, and companies looking to start could use some help.

“Industry 4.0 is all about optimization; from managing big data to efficiency in the production line. All this aims at enabling businesses to make quicker, smarter decisions while minimizing costs. This webinar sets out to explain the challenges and to offer solutions in the adoption of I4.0 related technologies.”

The webinar, featuring Join Biba Visnjicki, Managing Director of FPC, and Thomas Vollmer, Head of Production Quality Dept. from Fraunhofer IPT, will last 60 minutes; register for free here.

Formnext 2020 Still a Go in Frankfurt

As many places in the world are cautiously reopening after recent mass shutdowns due to the COVID-19 pandemic, we need to look to the future. In that vein, Mesago Messe Frankfurt GmbH is still planning to hold the AM industry’s biggest event, formnext 2020, this November 10-13. Recently, the Federal Government and the Federal States of Germany ruled that trade shows are no longer under the ‘major events’ category for health risks, but the health of all the employees, exhibitors, and visitors are still considered the highest priority if the event does indeed take place this fall. That’s why the exhibition organizer is working around the clock to develop an updated health concept, such as introducing contact tracing and decreasing visitor density, along with a supplementary digital/virtual program.

“We remain convinced of the unique value and advantages of a physical exhibition. And although digital interaction will never be able to replace face-to-face contact, it does offer more scope than previously thought possible only a few weeks ago,” stated Sascha F. Wenzler, Vice President of Formnext, Mesago Messe Frankfurt GmbH.

“Ultimately, even in these challenging times, we want to organize a trade show that is as responsive as possible to the current situation and the needs of participants and the market.”

Visagio and DiManEx Partnering to Improve AM Supply Chains

(Image: DiManEx)

Management consultancy Visagio Ltd and DiManEx BV are partnering to strengthen end-to-end 3D printing usage in supply chains. Companies are looking to conquer supply base disruptions, and by pairing Visagio’s supply chain services with DiManEx’s end-to-end 3D printing platform, they can do so by digitizing their inventory and 3D printing parts on demand, which can delivered all over the world. The collaboration is a representation of how both companies address market needs, especially in these challenging times as COVID-19 disrupts the global supply and demand process.

“Companies are increasingly looking for ways to optimize their supply chains and mitigate risks, such as those brought about by pandemics or geo-political tensions. Our platform embeds 3D printing in supply chains easily, realising the concept of ‘Digital Inventory at your Fingertips, Ordered at a Click of a Button’. Coupled with Visagio’s industry and management expertise, this is a winning combination for supply chain optimization,” said Tibor van Melsem Kocsis, the Founder and CEO of DiManEx.

3D Printed Cisco Live 2020 Installation

Thanks to 3D printing, it was possible to quickly iterate not only the main design, but also all the smaller parts of the internal mechanisms.

Speaking of collaborations, Barcelona data interpretation firm and design studio Domestic Data Streamers pairs data and arts with storytelling to develop “participatory projects” for community building and education. Its workshop has long used 3D printers from BCN3D Technologies, and recently turned to the technology again to create an installation for the Cisco Live 2020 event. The studio wanted to give attendees “a better experience” by displaying the event schedule on an interactive Recommendation Wall of clickable screens; once clicked, the animated image turned into a QR code, which visitors could scan for more information. The screens had to be custom-made, and so Domestic Data Streamers turned to its in-house printer farm, and the BCN3D Epsilon 3D printer. They used PETG to print over 40 of the main covers in just four weeks, which equaled major cost savings.

“The printers work very well, we count on a very high success ratio, and the support from the team is always quick and helpful,” said Pol Trias, the Head of Design at Domestic Data Streamers.

“It gave us great agility when it comes to functionally and aesthetically validating the designs at a very low cost…our processes were more efficient and much faster thanks to our BCN3D Epsilon.

“This could not have happened without 3D printing. For a project like this one, where you want high-quality results in a short time and within a limited budget, there is no better option than 3D printing.”

You can learn more about the project here, or check out the video below.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

The post 3D Printing News Briefs, May 18, 2020: Fraunhofer, Formnext, Visagio & DiManEx, BCN3D Technologies appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing and COVID-19, May 14, 2020 Update: Arburg, America Makes, Caracol-AM

Companies, organizations and individuals continue to attempt to lend support to the COVID-19 pandemic supply effort. We will be providing regular updates about these initiatives where necessary in an attempt to ensure that the 3D printing community is aware of what is being done, what can be done and what shouldn’t be done to provide coronavirus aid.

After participating in a simulation of a similar such pandemic, the World Economic Forum has been leveraging its might to shape response to the outbreak. The non-governmental organization has highlighted the work that its corporate partners have performed, including the use of JD drones for delivery of medical supplies in China and data gathering about people’s movements in Norway by the country’s leading telecom company. The Davos group also launched the 3D Printing COVID-19 Rapid Response Initiative, which more or less collates the ongoing projects from its partners, ranging from America Makes and Carbon to Roboze and Royal DSM.

Caracol-AM’s automated 3D printing system featuring KUKA robots. Image courtesy of Caracol-AM.

Caracol-AM, a 3D printing provider in Italy, is manufacturing face shields and masks using both its proprietary extrusion system mounted on a KUKA industrial robotic arm and more traditional fused deposition modeling printers. According to KUKA, the company is producing 1,000 parts daily for use by local healthcare workers.

The “Moldable Mask” from Carnegie Mellon University. Image courtesy of Carnegie Mellon University.

America Makes has announced the winners of its Fit to Face – Mask Design Challenge, hosted with the U.S. Department of Veterans Affairs. The designs had to meet the requirements of five head form datasets shared by the National Institute for Occupational Safety and Health (NIOSH), before being judged on manufacturability, assembly and instruction. The top designs were the “Vader Small Mask” from Alliance PCB Solutions and “Moldable Mask Small and Moldable Mask Large” from Carnegie Mellon University, which will be hosted on the NIH 3D Print Exchange and America Makes websites. Honorable mentions for the challenge were the “Every Mask” from the National Institute of Standards and Technology and the “Flex Fit Small and Flex Fit Large” from Re:3D.

The “Vader Small Mask” from Alliance PCB Solutions. Image courtesy of Alliance PCB Solutions.

Seattle Children’s has 3D printed clips for its supply of Controlled Air Purifying Respirator helmets. The hospital’s Chief Procurement Officer, Greg Beach, along with its Clinical Engineering team feared a shortage of clips necessary to secure face shields to their CAPR helmets. The Radiology department relied on a CT machine to scan existing clips, before Friedman used Materialise’s Mimics Medical & 3-matic Medical software to reverse engineer them. Using an in-house 3D printer, the hospital was able to fabricate the parts and determine that they fit. Stratasys then offered to print batches of the tools using its V650 Flex stereolithography 3D printer.

A medical worker wearing a CAPR helmet, featuring 3D-printed clips to mount a face shield. Image courtesy of Materialise.

After producing protective glasses using its Allrounder injection molding machines, Arburg is making face masks, injection molded from liquid silicone rubber (LSR) and polypropylene (PP). With a goal of making about 3,500 masks daily, the company will begin by distributing them to its own employees and then providing them to hospitals and care facilities in the district of Freudenstadt in Germany. The mask is made up of a soft mouth cover, moulded from a food-safe LSR material, with PP eyelets for attaching elastic bands. FFP2 or FFP3 filters can then be connected to provide filtration for healthcare workers.

Masks made with injection molding from Arburg. Image courtesy of Arburg.

At full capacity, Arburg believes it could make 15,000 masks weekly. If production were kicked up to a 24-hour schedule, this number could feasibly be doubled. The LSR masks are being made using a larger injection moulding machine at the Arburg Training Center while a smaller system creates the PP shields at its Customer Center. Working in tandem with the larger machine, a six-axis Kuka robotic arm removes the masks from the mold and places them onto a conveyor belt. Meanwhile, a linear Multilift Select robotic system handles the PP shields. The PP shields are then manually attached to the LSR masks, connected to elastic bands, and packed.

Four LSR masks are produced per cycle and then removed by a six-axis robot. About 3,500 multifunctional high-tech masks can be produced per day. Image courtesy of Arburg.

As the pandemic continues to grip the world, we will continue to provide regular updates about what the 3D printing community is doing in response. As always, it is important to keep safety in mindremain critical about the potential marketing and financial interests behind seemingly good humanitarian efforts from businesses, and to do no harm.

The post 3D Printing and COVID-19, May 14, 2020 Update: Arburg, America Makes, Caracol-AM appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing and COVID-19, May 12, 2020 Update: Limbitless Solutions, Dunlee, 3DPRINTUK

Companies, organizations and individuals continue to attempt to lend support to the COVID-19 pandemic supply effort. We will be providing regular updates about these initiatives where necessary in an attempt to ensure that the 3D printing community is aware of what is being done, what can be done and what shouldn’t be done to provide coronavirus aid.

Albert Chi, a trauma surgeon from Oregon Health and Science University (OHSU), and the team at Limbitless Solutions, a 3D printed prosthetics company, are creating a ventilator that does not require electricity. Instead of using electronics, the device relies on airflow from an oxygen tank. The design is made up of 3D printed parts, low-cost, off-the-shelf components and can be made with less than $10 in materials, according to its makers. This makes it possible to not only manufacture the product nearly anywhere in the world, but use it in places without electricity.

Using printers at its lab at the University of Central Florida, Limbitless was able to make 10 iterations of Chi’s designs for the device, which were then sent to his lab at OHSU for testing. After seven days of continuous functioning, the team found that there were no issues, leading Chi to file for emergency approval by the U.S. Food and Drug Administration.

The 3D printed ventilator device being tested. Image courtesy of OHSU/Kristyna Wentz-Graff.

Because CT scanning is a crucial technology for examining the respiratory issues caused by severe cases of COVID-19. To deal with the increased use of the technology during this time, Dunlee is ramping up production of anti-scatter grids for CT systems with 3D printing. The grids are used to absorb unwanted scatter radiation, in turn improving the quality of CT scans. Its Cone Beam CT line, for instance, is able to improve the signal-to-noise ration by 1.7 times, according to the company.  Working with EOS, the company is obtaining new printers and using its existing machines to print pure tungsten grids 24 hours a day.

3D printed, tungsten anti-scatter grid from Dunlee. Image courtesy of Dunlee.

3DPRINTUK is helping to provide facial shields to workers at the National Health Institute. Pointing out that some of the existing shield designs are meant for material extrusion systems, the British 3D printing service bureau has optimized a model for large batch printing using selective laser sintering machines.

By nesting the parts, the company is able to print 260 brackets for face shields in a single print in 27 hours on an EOS Formiga P110 system. The bracket is made from PA2200/Nylon 12, features a closed-peak design for greater protection, and can be flat packed in an A4 envelope, according to the company. Managing Director of 3DPRINTUK Nick Allen said:

“That is 6 minutes per shield, which is a game changer. The design that we created clips together in 10 seconds, uses silicone straps for adjustment, can take an acetate sheet with 3 holes, is lightweight at only 42 g, and is sterilisable with IPA, autoclave, or ethylene oxide (Et0). All in all, we believe that this is the most efficient visor design to produce via 3D printing available today.”

Because 3DPRINTUK is currently using its own fleet of printers to produce ventilator parts with the UK cabinet and manufacturers, the company partnered with the Arts University Bournemouth, who used its own P110 machine and laser cutting capabilities to produce 5,000 face shields. The partners are inviting other SLS systems owners to aid in production capacity, as well.

One employee of Thomson Reuters has been producing face shields at the company’s office in Costa Rica, making over 100 such devices for healthcare workers and raising money within the office to buy filament. Given the fundraising effort, it’s worth noting that the multinational media conglomerate has a net income of $4 billion. The company’s chairman, David Kenneth Roy Thomson, is the Lord Baron of Fleet in the U.K. and, as of 2019, was the wealthiest person in Canada with a net worth of $37.8 billion.

Global military members are also producing medical devices. A fighter pilot for the Italian Air Force is 3D printing valves for ventilators at local Italian hospitals, including 50 “Charlotte Valves” and 50 “Dave Valves”. Soldiers from the 20th Chemical, Biological, Radiological, Nuclear, Explosives Command, which has a unique role given the nature of the pandemic, are using their 3D printing capabilities to produce NIH-approved face shield designs for local healthcare workers and beyond. The 10 volunteer soldiers, who met in an Explosive Ordnance Disposal (EOD) Facebook group, aim to make more than 13,500 face shields to send to 28 states and one U.S. territory.

ExOne has posted its Q1 20202 earnings in the midst of the pandemic and has reported total revenue of $13.4 million, a 40 percent increase over Q1 2019. The company also says that it has a record backlog of $33.8 million, with CEO John Hartner tying this strong to new product introductions and the number of orders backlogged from the end of 2019. Like SLM Solutions, which reported a similar pattern of increased revenues and orders from the previous year,  Hartner says that the impact of the virus could be felt in March:

“Despite initial effects of COVID-19 on our business, our execution performance was solid. Globally, our facilities continued to operate in support of our customers in critical industries and essential businesses, subject to social distancing and other procedures to keep our employees safe.” He continued, “However, conditions clearly changed in March. We previously anticipated that growth would continue during 2020, but the COVID-19 pandemic has impacted shipping, travel and installation schedules, as well as the timing of customer capital investments. The uncertainty of our outlook caused by this situation prompted us to reduce our cost structure as we manage through these historic times.”

As the pandemic continues to grip the world, we will continue to provide regular updates about what the 3D printing community is doing in response. As always, it is important to keep safety in mindremain critical about the potential marketing and financial interests behind seemingly good humanitarian efforts from businesses, and to do no harm.

The post 3D Printing and COVID-19, May 12, 2020 Update: Limbitless Solutions, Dunlee, 3DPRINTUK appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing and COVID-19, May 8, 2020 Update: HP, Rolls Royce, SPEE3D, Rize, Dassault & Stratasys

Companies, organizations and individuals continue to attempt to lend support to the COVID-19 pandemic supply effort. We will be providing regular updates about these initiatives where necessary in an attempt to ensure that the 3D printing community is aware of what is being done, what can be done and what shouldn’t be done to provide coronavirus aid.

HP has provided some interesting details to 3D Printing Media Network, about the extent to which it has been involved in manufacturing medical supplies. It has produced over a million parts for COVID-19 protection with Multi Jet Fusion, including over 200,000 face shields for Sant Pau Hospital in Barcelona. To do so, it has partnered with such large companies as Lamborghini, Volkswagen-Seat, Ferrari, Skoda. Among the parts printed is one that connects a continuous positive airway pressure (CPAP) device to an oxygen mask, as well as one that connects to a diving mask, various face masks and parts for the Leitat1 emergency ventilator. For the U.K. alone, HP and its partners have made more than 50,000 face shields, mask adjustors and hands-free door openers.

A door handle printed using SPEE3D’s ACTIVAT3D copper. Image courtesy of SPEE3D.

SPEE3D has begun deploying its antimicrobial ACTIVAT3D copper printed devices, starting with the Northern Territory Department of Trade, Business and Innovation which is replacing door handles with ACTIVAT3D copper handles. According to SPEE3D and its testing partner, these copper parts are able to kill 96% of SARS-CoV-2 virus within two hours of contact, compared to stainless steel which had no impact.

RIZE is also producing face shields for workers at Cardiovascular Medicine, PC, in Davenport IA and Moline IL, emphasizing the US Pharmacopeia Class VI certification its RIZIUM ONE filament has achieved. This is considered the highest level of biocompatibility, such that it has no adverse impact on the wearer’s skin after long periods of use. The company also claims that this material does not trap moisture that can contain the virus, like other common 3D printing plastics, such as ABS and nylon.

An Duong, a Rolls-Royce worker making face shields in the U.K. covered in a previous update, is now asking for help. Having donated over 700 masks to National Health Services staff, Duong is hoping for donated filaments and funds, via GoFundMe. In return, he is planning to send one donor, chosen via random name drawing, a printed Jet-M1 models.

The RespiraWorks ventilator concept. Image courtesy of GrabCAD.

Stratasys has reported that over 200 teams have submitted designs for GrabCAD’s CoVent-19 Challenge and that the finalist round has begun, with seven teams selected to build working prototypes of rapidly deployable, minimum viable ventilators. After that, judging will proceed, led by 12 anesthesiology resident physicians from Massachusetts General Hospital. The finalist projects chosen are the following: SmithVentCORE Vent, InVent Pneumatic VentilatorRespiraWorksOP VentLung Evolve, and the Baxter Ventilator. A winner will be selected by the beginning of June, which will see them attempt to bring the device to market with FDA approval.

The Consumer Technology Association (CTA) and other trade groups are attempting to push the United States Trade Representative (USTR) Office to broaden tariff exemptions on products during the pandemic from imported ventilators, oxygen masks and nebulizers to include 3D printers, drones, robots and personal computers that are made in China.

The groups suggest that these technologies are important to managing the COVID-19 outbreak, with the CTA saying in a letter to the USTR Office, “These tariffs are not only a barrier to the entry of necessary products, they are a tax on businesses and consumers that has become ever more harmful as many enter ‘survival mode’.”

Dassault Systemés has published some of the efforts of its Open COVID-19 Community, including the work of Inali, a non-profit in India, that has developed what it suggests is a safe, affordable ventilator in only eight days. It should be noted that the device is of the Ambu bag variety, like the Leitat1, which can be dangerous due to the high incidence of delivering too much air to the patient and leading to aspirating vomit into their airways or lungs and even dying.

As the pandemic continues to grip the world, we will continue to provide regular updates about what the 3D printing community is doing in response. As always, it is important to keep safety in mindremain critical about the potential marketing and financial interests behind seemingly good humanitarian efforts from businesses, and to do no harm.

The post 3D Printing and COVID-19, May 8, 2020 Update: HP, Rolls Royce, SPEE3D, Rize, Dassault & Stratasys appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Prellis Biologics Pursues Bioprinted Lymph Nodes for Production of COVID-19 Antibodies

Bay Area bioprinting firm Prellis Biologics is researching the use of bioprinted lymph nodes for the production of SARS-CoV-2 antibodies. The idea of using antibodies as a form of preventing an illness is an increasingly popular one, with the idea of injecting a person with pre-existing, artificially manufactured antibodies to an illness before their body has a chance to develop their own either through recovering from a virus or through a vaccine.

Prellis is working to procure a heat-killed virus with a goal of having the sample within 14 days of the project’s start, at which point the company will spend about four weeks printing human lymph nodes and inoculate it, screening for antibodies and sequencing them. After that, the firm suggests that it will be able to find a research center that can gest for viral neutralization and binding affinity of a given antibody before the antibodies will be mass manufactured by a partner company.

Image courtesy of Prellis Biologics.

Prellis isn’t the only one working to make synthetic antibodies to the SARS-CoV-2 virus. In particular, Dr. Jacob Glanville, of Distributed Bio, has received a great deal of attention for promoting the idea. Manufactured antibodies would be injected into frontline workers, who would theoretically be able to fight off the virus with those antibodies for a shorter period of time, maybe eight to 10 weeks.

Synthetic antibodies have been approved by the U.S. Food and Drug Administration (FDA) since 1986, with 570 therapeutic synthetic antibodies studied in clinical trials by commercial companies and 79 FDA approved for the market. About 30 of these are for cancer, with the rest covering asthma, arthritis, psoriasis, Crohn’s disease, transplant rejection, migraine headaches and infectious diseases. Synthetic antibodies to treat viral illnesses, however, is still in the exploratory phase.

The first clinical trials for an antibody therapy for COVID-19 are now underway with an antibody called gimsilumab, which inhibits the growth of a protein that appears in high concentrations in the blood serum of COVID-19 patients and is thought to contribute to the hyper-inflammation in their lungs.

Though we are not experts in antibody production, we should of course be skeptical about the Prellis COVID-19 project because the stakes are so high. From what we know of bioprinting, it has come a long way since its inception in the early 2000s, including a number of recent achievements in the creation of bioprinted organoids, from hearts to kidneys to tumors.

However, the applications of this technology are yet to be fully realized, with even drug testing, one of the more immediately viable uses of bioprinting tissues, still in the exploratory phases. Some animal studies are currently in the works and have great promise, such as the successful transplantation of 3D-printed knee cartilage into sheep. With that said, even if Prellis were able to print lymph nodes and see them develop antibodies, there are numerous other variables and obstacles to account for when considering the possibility of successfully mass producing and then deploying these antibodies as a form of therapy.

There is some good reason for hope for the Prellis project to keep in mind. According to Prellis, founder Melanie Matheau was able to create a fully functional human lymph node that produced 11 active antibodies to the Zika virus in 2017, receiving a U.S. patent for the technique in December 2019. The process was repeated with different blood donors, with each sample producing antibodies. The company claims that it can perform the same process to develop antibodies to at least one of the strains of coronavirus currently involved in the global pandemic.

Due to the emergency approval fast-tracking that the FDA is currently implementing, a number of initiatives are being given emergency authorization. This includes potentially problematic ones, such as clinical trials for DNA and RNA vaccines developed by companies partnered with the Defense Advanced Research Projects Agency that were previously unable to get their products licensed for human use, as their vaccines were unable to offer sufficient immunity in human trials. It is possible that, if Prellis is able to achieve its goals, it could be given emergency authorization to perform Clinical I trials.

The post Prellis Biologics Pursues Bioprinted Lymph Nodes for Production of COVID-19 Antibodies appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Rapidly Producing Nasal Swabs Using 3D Printing Technology

shapeways 3d printed swabs

Nasal swabs (or nasopharyngeal swabs) are used in gathering samples for different types of tests. During the COVID-19 pandemic, these swabs are essential for collecting samples to test if a patient has contracted coronavirus.

Hospitals, laboratories, and other facilities are facing shortages in these swabs to meet the current demand. Using 3D printing technology and its ability to manufacture rapidly, Shapeways has partnered with EnvisionTEC to produce 3D printed nasal swabs in its FDA-approved facility in Long Island City, New York. Hospitals and medical providers that need swabs in their testing kits can contact us here.

If you’re unfamiliar with nasal swabs, here’s a brief overview of what they are and how Shapeways is producing them for use in the medical industry.

What are Nasal Swabs Used for?

COVID-19 testing is currently the most common reason why a nasal swab is needed, but it is certainly not the only use. Millions of nasal swabs are used each year for various testings. Some examples include:

  • Flu Tests – Many influenza tests are
    performed in the same way as a coronavirus test. A nasal swab is used to take a
    sample from deep within the nasal cavity. During flu season, nasal swabs are an
    essential testing tool. 
  • Strep Tests – Testing for strep throat
    requires a sample from the back of the throat to be tested. This is done using
    nasal swabs.
  • Whooping Cough Tests – If someone has
    whooping cough symptoms, the test will require a nasal swab to gather the
    necessary samples.
  • Medicine Delivery – Some medications are
    delivered using a nasal swab. Zicam, for example, is a brand name cold
    shortening treatment that has a medication on the end of a nasal swab. The user
    applies the medication into the nasal passages to help treat the cold.

Customized Nasal Swabs for Any Use

Nasal swabs come in different sizes based on their intended use. A swab used to collect samples from the back of the throat, for example, will need to be longer than one used to deliver medication into one’s nasal passage. 3D printing allows these swabs to be made to precise specifications.

Shapeways is currently producing sterilized and unsterilized nasal swabs that are chemically safe and can bend 180 degrees without breaking, ensuring that the swabs would be able to safely collect enough viral particles from the nasal passage to effectively test.

Solving the Medical Supply Shortage

During the COVID-19 pandemic, 3D printed nasal swabs are able to fill in the supply shortages quickly and reliably. More importantly, modern industrial 3D printers can print these swabs with precision to meet FDA standards. Through an institutional review board (IRB)-approved clinical trial, the 3D printed nasal swabs produced by Shapeways through its partnership with EnvisionTEC are shown to be safe alternatives to those manufactured in traditional methods. See report of the clinical trial here.

Contact Us

While the current pandemic has illustrated the importance of having reliable medical supplies, it has also shown the benefits of 3D printing technology for the medical industry.

Shapeways has been printing devices to help battle COVID-19 and has added nasal swabs in addition to face shields and contact-less door handles. We’re here to help hospitals and healthcare providers care for their patients.

The post Rapidly Producing Nasal Swabs Using 3D Printing Technology appeared first on Shapeways Blog.