Joyson Safety 3D Prints Functional Airbag Housing Using Windform

Joyson Safety Systems, a leading provider of mobility safety components, systems and technology, recently developed its first functional 3D printed prototype of a Driver Air Bag (DAB) housing, using selective laser sintering (SLS) and Windform composite material from CRP Technology.

Image courtesy CRP Technology

Joyson Safety Systems already has a history of pioneering innovation in mobility safety solutions, such as airbags, seatbelts, safety electronics and more, for automotive and non-automotive markets. Worth noting is the fact that it was the first manufacturer to supply leading OEMs in North America and Europe with steering wheels with Hands on Detection (HOD) for autonomous driving. In this instance, the company’s Core Innovations team looked to quickly develop prototypes for its airbag housing and turned to additive manufacturing to explore new processes and materials.

Image courtesy CRP Technology

Traditionally, the airbag housing is produced using injection molding made up of a material that is polyamide with 40% glass fiber reinforcement, PA6-GF40. The DAB system, which needs to deploy in just 30-50 milliseconds to prevent injury to the driver, consists of the inflator, airbag cushion, cover and housing attached to the steering wheel. The performance of this system is essential, as a critical safety component of the vehicle that needs to have enough strength, impact resistance, and stability under heat and other diverse environmental conditions. Samer Ziadeh and Daniel Alt from the Core Innovations team explain the requirements for the DAB,

“It is to withstand a high amount of dynamic loads in addition to holding the inflator and the airbag cushion fixed in location during and after the deployment of the airbag system. This load is developed due to the pressure required to inflate the airbag, as a result the large stresses will directly be applied on the airbag system and more particularly on the DAB housing. The test procedures are normally conducted within a various range of temperatures between -35°C and 85°C.”

Image courtesy CRP Technology

In looking for the right material for the DAB, the team found CRP Technology’s patented Windform range of high performance SLS materials more than suitable for their requirements:

“…after running some market analysis in order to find out the most suitable material and process that could deliver the required performance, we came across the Windform TOP-LINE family of composite material and, specifically, the Windform SP. Windform SP brought our attention to the fact that it’s a material produced from polyamide PA grades, reinforced with Carbon fiber or fiber-glass, as a powder form material, and it has almost the required and even better performance for our application.”

Windform has emerged as a high performing SLS material which has been applied in sectors such as motorsports, as with Mercedes AMG Petronas, automotive, and aerospace, as with NASA. Windform materials not only meet the stringent requirements for use in aerospace or motorsports, but can also be CNC machined or post-processed with tooling equipment. CRP has become a leader in high-performance AM materials for SLS with Windform, applying its expertise in a range of proven applications from medical to UAVs, satellites to electric motorbikes.

Image courtesy CRP Technology

This application is a first for Joyson Safety Systems in producing, in a short period, a functional prototype of a DAB housing using SLS with composite materials.

The post Joyson Safety 3D Prints Functional Airbag Housing Using Windform appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

CRP: producing excellence with additive manufacturing technology and high-performance materials

Energica Ego Corsa for FIM Enel MotoE™ World Cup, with some 3D printed parts by CRP Technology

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the mid-90’s, CRP Technology (headquartered in Modena, Italy) has been changing the rules of manufacturing.

Most in the manufacturing Industry may have only discovered the world of additive manufacturing and 3D printing in the last decade, but CRP Technology has been familiar with its most inner dealings since 1996, when the company created, in-house, one of the first 3D printing departments with professional printers, backed up by an R&D department for material development, capable of transforming rapid prototyping into rapid manufacturing.

Franco Cevolini, VP and CTO at CRP Technology, with Energica Ego

“We’ve always believed and invested in innovation and technology” commented Eng. Franco Cevolini, VP and CTO at CRP Technology “and we still do. Since the beginning of this fulfilling business experience, a lot of water has flowed under the bridge… and now we pave new roads in technological innovations which others try to pursue, setting rules that have been adopted by others in the 3D printing of polymers”.

“Since our debut in the new-born 3D printing market,” Cevolini added “we have been working for the elite of the most demanding industrial segments, such as Motorsports and Aerospace. At that time many 3D printing suppliers in the market were not dependable yet.”

Many years of experience have contributed to the creation of the “CRP Process”, which is synonymous with tangible, turnkey solutions which can satisfy any customers’ requirements”

How it all began

CRP Technology is part of the CRP Group.  Founded in the Early Seventies by Roberto Cevolini as a company for high precision CNC machining in the Motorsports field, the company has expertly evolved over decades, skilfully responding to the demands of the international market, anticipating the need for highly unique manufacturing solutions worldwide.

In F1, obsessive attention to details quite often makes the difference. There is continuous research for the next technological innovation to get that competitive advantage even of few hundredths of a second: the CRP Group’s F1 background helped CRP Technology become a leading company in the field of additive manufacturing and laser sintering materials.

Pioneering AM revolution: Windform® Top Line for LS technology

CRP Technology not only has been amongst the first to import additive manufacturing technology to Europe and Italy but also developed the Windform® Top Line family of materials for LS technology, some of the international market’s highest-performance laser sintering materials. In use for over 20 years in the Motorsports, space, UAV, medical and other most demanding sectors. Windform® was originally devised for use in Formula One Racing, first in the wind tunnel and then on the track.

Now the Laser Sintering (LS) polyamide-based glass or carbon fiber reinforced Windform® allow for the manufacturing of functional prototypes as well as finished, high-performance functional parts, that satisfy the needs of the most demanding industries for high-performance, durable, and detailed parts.

Windform® materials are approved for space applications by international space agencies (outgassing tests carried out by NASA, ESA, JAXA) and successfully have passed other testing, such as Flammability UL 94 and VUV.

The Windform® family composite materials for LS is constantly expanding: The Windform® Top Line is nowadays composed of seven different Windform® materials. Soon it will grow to eight, “when we launch new cutting-edge composite material, the first with exceptional properties in one. It will be unique.”

Nowadays

So much of CRP’s success in Aerodynamics and Entertainment fields is due to CRP USA, CRP’s US-based partner (Mooresville, North Carolina).

3D printed hybrid rocket engine manufactured by CRP USA using LS technology and Carbon-fiber reinforced Windform® XT 2.0 composite material

Under the guidance of Stewart Davis, CRP USA’s built up considerable experience supplying cutting edge solutions for key industry leaders that chose to manufacture in the Windform® family of materials.

Automotive Intake Manifold functional prototype made of Carbon-fiber reinforced Windform® SP composite material via LS technology

CRP USA contributes to mark new milestones in the most challenging and harsh 3D printed applications arena.

Constant investment in (new) technology

Tundra-M functional drone with 3D printed body and arms made of Carbon-fiber reinforced Windform® SP and Windform® XT 2.0 composite materials via LS technology

“Our aim is producing technological breakthroughs, constantly” added Franco Cevolini “and we invest in Research and Development as well as new technology: for that reason, CRP technology’s 3D printing department is expanding towards high-tech production. We are going to integrate in-house High-Speed Sintering, introducing the P line family of materialsWe will not stop here: we will continue our work on renewal and technological expansion in the field of Additive Manufacturing. Stay tuned!”