SmarTech Analysis Launches New Data Product Addressing Parts Produced by Additive Manufacturing

Industry analyst firm SmarTech Analysis today announced a new data product geared towards addressing the critical metric of additively manufactured parts produced. The Additive Manufacturing Applications Market Analysis Report is a first of its kind analysis looking into how the world’s users of both private and publicly accessible additive manufacturing machines are being utilized by providing a market forecast and valuation on the market value of top applications in the world of additive manufacturing in professional and industrial use environments.

The data is set to be released the week of October 21, 2019. You can learn more here.

About the Report:

This database and study tracks and reports on volumes of additively manufactured parts being produced today across numerous key industries, including parts produced by various AM service providers as well as private OEMs and suppliers in each market, split amongst the currently identified and expected future leading use cases for various AM technologies.

Users of this report and database will have access to forecast projections and current-day estimates of the volumes and total market value of all parts produced via AM in a given industry, within various print technologies, material types, and, most importantly, part functionality and type. Those stakeholders with an interest in evaluating various key use cases for specific types of AM technology, AM materials, or broader end-user markets, will be able to utilize this database to help identify market strategies to guide product development and go-to-market in the ever growing world of additive.

“As the additive manufacturing business moves towards more wide-spread production basis, it is crucial for stakeholders to be able to identify addressable markets and implement strategies to guide product development and drive go-to-market efforts, so says Scott Dunham, VP of Research at SmarTech Analysis.”  “This unique data product was developed to support clients looking for deeper reporting and analysis of machine outputs beyond simple prototyping, tooling and parts metrics.”

SmarTech has previously provided opportunity analysis in the areas of sales of additive manufacturing systems, additive manufacturing materials, software, and outsourced production services. This database and report expand the universe of market opportunity analysis for additive manufacturing to cover the total and forecasted addressable markets for specific additively manufactured parts and part categories.

The database includes, but is not limited to, the listing of specific coverages for part and part categories shown in the table below. Each of these areas and more are tracked and forecasted by individual supporting print technology, material type, and region.

The database can be purchased as a complete unit or via individual verticals listed below:

  • Aerospace
  • Automotive
  • Consumer Goods
  • Dental
  • Energy
  • General Industry
  • Medical
  • Others

3DPrint.com is an equity owner of Smartech.

The post SmarTech Analysis Launches New Data Product Addressing Parts Produced by Additive Manufacturing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

University of Mississippi: How to Trace 3D Printed Guns for Forensic Analysis

Parker Riley Ball is a thesis student at the University of Mississippi, exploring some complex areas regarding 3D printing, outlined in ‘Development of a Dart-Mass Spectral Database for 3D Printed Firearm Polymers, and Airborne Mercury at Three Lakes in North Mississippi.’

The research study, centered around the uses of chemometric analysis, offers an interesting focus on weapons forensics, as Ball expounds on ways to collect data on 3D printed guns and analyze the forensic information, along with creating another ‘sampling’ device (unrelated to 3D printing) for measuring high levels of mercury in Grenada, Enid, and Sardis Lakes, all tributaries in Mississippi.

Ball discusses the ‘threat of 3D printed firearms’ at length, delving into a worldwide conversation that is controversial to say the least. His point in the thesis is that there is a need to track weapons, and 3D printed guns are currently manufactured and possessed completely off the grid—along with safeguarding features such as the ability to evade metal detectors—prompting the possibility that there may be legal necessity in the future to track such weapons and their ‘manufacturers.’ Amidst exploration of DART-MS, the study of 3D printed guns, and forensic research, Ball mainly performed data analysis and interpretation, with the rest left up to fellow graduate student, Oscar Black.

DART-MS stands for direct analysis in real time – mass spectrometry and allows for the collection of ‘mass spectra under ambient conditions.’ Samples can be taken quickly, and simply. And while this is already a well-known technique for taking samples, using them for 3D printed gun forensics is a novel concept.

“With a DART ion source, a gas, He or N2, passes through a discharge chamber where an electric current is applied to generate a glow discharge, producing excited neutral chemical species called metastables,” explains Ball. “A perforated electrode removes ions from the gas stream as it travels through a second chamber. In a third chamber, the gas is then heated, and the sample is ionized by reacting with the metastables and causing desorption.”

A schematic diagram of a DART ion system (Photo Credit: Dr. Chip Cody, as used in Ball’s Thesis Study)

The researchers can use DART with a spectrometer for pinpointing and identifying the unique makeup and pattern of each sample—in this case, a 3D printed polymer used to manufacture a weapon. Ball points out that the process does not harm a forensic sample in any way, meaning that evidence can be stored and explored further, as needed later in a trial. The DART-MS ‘fingerprint mass spectra’ also makes it useful in many other law enforcement applications like drug busts and other criminal activities requiring trace analysis.

A display including 30 of the plastic samples analyzed for this study.

As the researchers expanded their analysis efforts in conjunction with the DART-MS data, they were able to categorize samples by different polymers—followed by analysis of manufacturer and color. Ball emphasizes the importance of this work for law enforcement officials in the future as they could have greater luck in identifying crimes that are gun-related, requiring further evidence for trials and convictions. Samples were taken from 50 different types of 3D printing polymers, including PLA, ABS, PETG, nylon, and more.

While the second part of the study was not related to 3D printing, Ball was engaged in creating other analytical sampling devices, with the use of a Direct Mercury Analyzer. Find out more about that study and the mechanics of measuring mercury and toxicity levels here.

“The results from this study show strong potential for the classification and identification of unknown polymer evidence as the 3D-print polymer database continues to grow,” reports Ball in the conclusion of his thesis. Chemometric analysis of mass spectral data allowed for the successful classification of various 3D-print polymer samples, and thermal desorption techniques provided an even stronger basis for this classification. It is recommended that another full study be done in the future, with a focus on modifying the parameters used in the chemometric analysis of polymers for potentially stronger separation when generating PCA plots.”

Most of the 3D printing realm is uncharted territory, and as soon as the technology hit the mainstream, designers, engineers, and a multitude of creative users around the world were left to think up an infinite amount of ways to ‘change the world’ – and get in some trouble too. Weapons of course were high on the list for enthusiasts to take a stab at, whether in creating replicas for cosplay, creating gun designs and advocating, or bikers 3D printing guns in Australia to promote crime endeavors. It’s not likely that 3D printers are going to take over as the manufacturing technique of choice, but users are curious about what they can do, and weapons enthusiasts are often very passionate about their guns and different ways to construct, and enjoy them.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Direct analysis of 3D-Print Polymer

Thermal Desorption unit coupled to DART source at the MS inlet

[Source / Images: Development of a Dart-Mass Spectral Database for 3D Printed Firearm Polymers, and Airborne Mercury at Three Lakes in North Mississippi]

3D Printing News Briefs: February 16, 2019

We’ve got business, events, software, and materials news for you in today’s 3D Printing News Briefs. MELD has introduced a new operator training course, and Protolabs is launching a range of secondary services. AMUG announced the keynote speakers for its upcoming conference, while the call has gone out for submissions to the 2019 Altair Enlighten Award. This week at SOLIDWORKS WORLD 2019, Stratasys introduced AdvancedFDM software for GrabCAD Print. Finally, a gold partner at America Makes has created an Ultem 9085 materials database for FDM 3D printing, and 3D MicroPrint is using a powder rheometer to push the limits of additive manufacturing.

MELD Manufacturing Offers Training Program

MELD Manufacturing Corporation is launching a new operator training program to teach participants how to operate its award-winning technology, which uses an innovative no-melt process to additively manufacture, repair, coat, and join metals and metal matrix composites. The 4-day courses will provide both classroom instruction and hands-on machine training, and attendees will also review the history of MELD’s development.

“This program creates certified MELDers and delivers the capacity to integrate and innovate with MELD. Our customers have raved about the elegance of the MELD process and the ease of training. We’re excited to offer more of these opportunities,” said MELD’s CEO Nanci Hardwick.

The size of the classes, which will be held at MELD’s Virginia headquarters, will be limited so that each attendee can have the maximum amount of machine time in order to become certified, so you should register ASAP.

Protolabs Launches Secondary Services in Europe

Protolabs is a digital manufacturing source for custom prototypes and low-volume production parts and offers all sorts of traditional and additive manufacturing services. This week, the company announced that it was introducing detailed measurement and inspection reporting, which will be only the first part of its newly launched in-house Secondary Services across Europe. These services will provide support for the company’s On-Demand manufacturing requirements, and will also help in launching more value-add secondary operations, like assembly and surface treatment, in the future.

“Our customers really value our rapid manufacturing services for low-volume parts and prototypes, but they now want the benefit of On-Demand manufacturing for production parts, which have higher expectations for sampling, measurement and process documentation,” said Stephen Dyson, Protolabs’ Special Operations Manager. “The marked increase from customers across all industries wanting to take advantage of the speed and flexibility of On-Demand manufacturing brings with it a desire to simplify the supply chain. We are offering Secondary Services to reduce the number of process steps that the customer has to manage, saving time and resources.”

Protolabs will hold a webinar for designers and engineers on February 28th as part of its Secondary Services launch.

AMUG Announces Keynote Speakers

L-R: Brian McLean, Brad Keselowski, Todd Grimm

The Additive Manufacturing Users Group (AMUG) recently announced who the keynote speakers will be for its 2019 conference, which will be held in Chicago from March 31st to April 4th. The conference, which will have nearly 200 presentations, workshops and hands-on training sessions, is designed for both novice and experienced additive manufacturing users, and the three keynote speakers will address the use of additive manufacturing in a variety of different applications. Brian McLean, the director of rapid prototype for LAIKA, will take attendees on a visual journey of how 3D printing has helped to redefine stop-motion animation, while NASCAR driver Brad Keselowski, the owner and founder of Keselowski Advanced Manufacturing (KAM), will share how technology such as 3D printing can help companies win the race. Finally, Todd Grimm, the president of T. A. Grimm & Associates, is returning to the conference as a keynote speaker again.

“We are extremely excited about our 2019 AMUG Conference keynote speakers,” said Gary Rabinovitz, the AMUG chairman and chair of its program committee. “They will provide a snapshot of the most transformative ideas shaping the AM industry today.”

2019 Altair Enlighten Award Submissions

Michigan-based technology company Altair, together with the Center for Automotive Research (CAR), are now taking submissions from around the world for the 2019 Enlighten Award, which is the only award from the automotive industry for dedicated lightweighting. The award will be presented in the categories of Full Vehicle, Module, Enabling Technology and The Future of Lightweighting, and winners will be recognized during the CAR Management Briefing Seminars (MBS), along with getting the chance to ring the Nasdaq stock market opening bell in New York. Suppliers and manufacturers can learn more about the criteria and submit an entry for the awards here.

“We are pleased to continue our collaboration with Altair because of their global leadership in solutions that produce the optimal balance between weight, performance and cost. This award helps drive innovation in lightweighting, which is critical to the success of e-mobility solutions,” said Carla Bailo, the President and CEO of CAR. “We can’t wait to see the key contributions the 2019 nominations will bring in new approaches to automotive engineering and design, contributing to further reductions in weight, fuel consumption, and emissions.”

Stratasys Announces AdvancedFDM Software for GrabCAD

At this week’s SOLIDWORKS World 2019 in Dallas, Stratasys introduced a new feature for its GrabCAD Print software that will remove more complexity from the design-to-3D print process. Advanced FDM will use intuitive model interaction to deliver lightweight yet strong and purpose-built parts to ensure design intent, and is available now via download with GrabCAD Print from versions 1.24 on up. The software feature will help users avoid long, frustrating CAD to STL conversions, so they can work in high fidelity and ramp up parts production, and it also features CAD-native build controls, so no one needs to manually generate complex toolpaths. Advanced FDM can automatically control build attributes, as well as calculate 3D print toolpaths, in order to streamline the process.

“For design and manufacturing engineers, one of the most frustrating processes is ‘dumbing down’ a CAD file to STL format – only to require subsequent re-injection of design intent into the STL printing process. This software is engineered to do away with this complexity, letting designers reduce iterations and design cycles – getting to a high-quality, realistic prototype and final part faster than ever before,” said Mark Walker, Lead Software Product Manager at Stratasys.

America Makes Ultem 9085 FDM Properties in Database

America Makes has announced that its gold-level member, Rapid Prototype + Manufacturing LLC. (rp+m), has created and delivered a complete, qualified database of material properties for the FDM 3D printing of high-performance ULTEM 9085 thermoplastic resin. This comprehensive database, which features processing parameters and both mechanical physical properties, was released to America Makes, and the rest of its membership community, in order to ensure the widespread use of the Type I certified material for 3D printed interior aircraft components. The database is available to the community through the America Makes Digital Storefront.

“The qualification of the ULTEM 9085 material and the establishment of the material properties database by the rp+m-led team are huge steps forward for AM, particularly within the aerospace and defense industries. On behalf of all of us at America Makes, I want to commend rp+m and its team for enabling the broad dissemination of the collective knowledge of ULTEM 9085 for the innovation of future part design,” said Rob Gorham, the Executive Director of America Makes. “The ability to use AM to produce parts with repeatable characteristics and consistent quality for certifiable manufacturing is a key factor to the increased adoption of AM within the multi-billion dollar aircraft interior parts segment.”

3D MicroPrint Identifying Ultra-Fine 3D Printing Powders

Additive Manufacturing Powder Samples

Germany company 3D MicroPrint uses 3D printing to produce complex metal parts on the micro-scale with its Micro Laser Sintering (MLS) technology, and announced that it is using the FT4 Powder Rheometer from UK-based Freeman Technology, which has over 15 years of experience in powder characterization and flow, in order to push the technology to its limits by identifying ultra-fine metal powders that will process efficiently. The system can differentiate raw powder materials, less than five microns in size, with the kinds of superior flow characteristics that are needed to produce accurate components using 3D MicroPrint’s Micro Laser Sintering (MLS) technology.

“With MLS we are essentially pushing standard AM towards its performance limits. To achieve precise control at the micro scale we spread powders in layers just a few microns thick before selectively fusing areas of the powder bed with a highly focused laser beam. The ultra-fine powders required typically behave quite differently to powders of > 25µm particle size,” explained Joachim Goebner, the CEO at 3D MicroPrint. “We therefore rely on the FT4 Powder Rheometer to identify materials which will perform effectively with our machines, with specified process parameters. Before we had the instrument selecting a suitable powder was essentially a matter of trial and error, a far less efficient approach.”

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

3D Printing News Briefs: June 29, 2018

In today’s 3D Printing News Briefs (the last one this month, how is the summer going by so quickly?!), a few companies are announcing special honors and recognitions, and then we’re sharing stories stories about some interesting new 3D printing projects, and finally wrapping things up before the weekend with some business news. Renishaw’s Director of R&D has been honored by the Royal Academy of Engineering, while MakerBot earned an important designation for its 3D printing certification program for educators and Renovis Surgical Technologies received FDA approval for its new 3D printed implant. Festo is introducing three new bionic robots, one of which is partially 3D printed, and CINTEC is using 3D printing for its restoration of a famous government house. GE wants to use blockchains for 3D printing protection, and ExOne announced a global cost realignment.

Royal Academy of Engineering Honors Renishaw’s Chris Sutcliffe

Earlier this week, the Royal Academy of Engineering (RAE) awarded a Silver Medal to Professor Chris Sutcliffe, the Director of Research and Development of the Additive Manufacturing Products Division (AMPD) for global metrology company Renishaw. This award is given to recognize outstanding personal contributions to British engineering, and is given to no more than four people a year. The Silver Medal Sutcliffe received was in recognition of his part in driving the development of metal 3D printed implants in both human and veterinary surgery, and also celebrates his successful commercialization of 3D printed products with several companies, including Renishaw, and the University of Liverpool.

“Throughout my career I’ve worked hard to commercialise additive manufacturing technology. As well as AM’s benefit to the aerospace and automotive sectors, commercialisation of AM and associated technologies has been lifechanging for those with musculoskeletal diseases,” said Sutcliffe. “The award celebrates the successes of the engineers I have worked with to achieve this and I am grateful to receive the award to recognise our work.”

MakerBot’s Certification Program for Educators Gets Important Designation

One of the leaders in 3D printing for education is definitely MakerBot, which has sent its 3D printers to classrooms all over the world. Just a few months ago, the company launched a comprehensive, first of its kind 3D printing certification program, which trains educators to become 3D printing experts and create custom curriculum for STEAM classrooms. An independent review of the program showed that it meets the International Society for Technology in Education (ISTE) standards, and it has earned the prestigious ISTE Seal of Alignment from the accreditation body. In addition, a survey conducted over the last three years of over 2,000 MakerBot educators shows that the percentage of teachers reporting that MakerBot’s 3D printers met their classroom needs has doubled in just two years.

“This data shows that MakerBot isn’t just growing its user base in schools. We’re measurably improving teachers’ experiences using 3D printing,” said MakerBot CEO Nadav Goshen. “Much of this impressive teacher satisfaction is thanks to the effort we’ve put into solving real classroom problems—like the availability of 3D printing curriculum with Thingiverse Education, clear best practices with the MakerBot Educators Guidebook, and now training with the new MakerBot Certification program.”

Earlier this week, MakerBot exhibited its educator solutions at the ISTE Conference in Chicago.

FDA Grants Clearance for 3D Printed Interbody Spinal Fusion System 

California-headquartered Renovis Surgical Technologies, Inc. announced that it has received 510(k) clearance from the FDA for its Tesera SA Hyperlordotic ALIF Interbody Spinal Fusion System. All Tesera implants are 3D printed, and use a proprietary, patent-pending design to create a porous, roughened surface structure, which maximizes biologic fixation, strength, and stability to allow for bone attachment and in-growth to the implant.

The SA implant, made with Renovis’s trabecular technology and featuring a four-screw design and locking cover plate, is a titanium stand-alone anterior lumbar interbody fusion system. They are available in 7˚, 12˚, 17˚, 22˚ and 28˚ lordotic angles, with various heights and footprints for proper lordosis and intervertebral height restoration, and come with advanced instrumentation that’s designed to decrease operative steps during surgery.

Festo Introduces Partially 3D Printed Bionic Robot

German company Festo, the robotics research of which we’ve covered before, has introduced its Bionic Learning Network’s latest project – three bionic robots inspired by a flic-flac spider, a flying fox, and a cuttlefish. The latter of these biomimetic robots, the BionicFinWave, is a partially 3D printed robotic fish that can autonomously maneuver its way through acrylic water-filled tubing. The project has applications in soft robotics, and could one day be developed for tasks like underwater data acquisition, inspection, and measurement.

The 15 oz robot propels itself forward and backward through the tubing using undulation forces from its longitudinal fins, while also communicating with and transmitting data to the outside world with a radio. The BionicFinWave’s lateral fins, molded from silicone, can move independently of each other and generate different wave patterns, and water-resistant pressure and ultrasound sensors help the robot register its depth and distance to the tube walls. Due to its ability to realize complex geometry, 3D printing was used to create the robot’s piston rod, joints, and crankshafts out of plastic, along with its other body elements.

Cintec Using 3D Printing on Restoration Work of the Red House

Cintec North America, a leader in the field of structural masonry retrofit strengthening, preservation, and repair, completes structural analysis and design services for projects all around the world, including the Egyptian Pyramids, Buckingham Palace, Canada’s Library of Parliament, and the White House. Now, the company is using 3D printing in its $1 million restoration project on the historic Red House, which is also known as the seat of Parliament for the Republic of Trinidad and Tobago and was built between 1844 and 1892.

After sustaining damage from a fire, the Red House, featuring signature red paint and Beaux-Arts style architecture, was refurbished in 1904. In 2007, Cintec North America was asked to advise on the required repairs to the Red House, and was given permission to install its Reinforcing Anchor System. This landmark restoration project – the first where Cintec used 3D printing for sacrificial parts – denotes an historic moment in structural engineering, because one of the reinforcement anchors inserted into the structure, measuring 120 ft, is thought to be the longest in the world.

GE Files Patent to Use Blockchains For 3D Printing Protection

According to a patent filing recently released by the US Patent and Trademark Office (USPTO), industry giant GE wants to use a blockchain to verify the 3D printed parts in its supply chain and protect itself from fakes. If a replacement part for an industrial asset is 3D printed, anyone can reproduce it, so end users can’t verify its authenticity, and if it was made with the right manufacturing media, device, and build file. In its filing, GE, which joined the Blockchain in Transport Alliance (BiTA) consortium in March, outlined a method for setting up a database that can validate, verify, and track the manufacturing process, by integrating blockchains into 3D printing.

“It would therefore be desirable to provide systems and methods for implementing a historical data record of an additive manufacturing process with verification and validation capabilities that may be integrated into additive manufacturing devices,” GE stated in the patent filing.

ExOne to Undergo Global Cost Realignment

3D printer and printed products provider ExOne has announced a global cost realignment program, in order to achieve positive earnings and cash flow in 2019. In addition to maximizing efficiency through aligning its capital resources, ExOne’s new program will be immediately reducing the company’s consulting projects and headcount – any initial employee reductions will take place principally in consulting and select personnel. The program, which has already begun, will focus first on global operations, with an emphasis on working capital initiatives, production overhead, and general and administrative spending. This program will continue over the next several quarters.

“With the essential goal of significantly improving our cash flows in 2019, we have conducted a review of our cost structure and working capital practices. We are evaluating each position and expense within our organization, with the desire to improve productivity. As a result, we made the difficult decision to eliminate certain positions within ExOne, reduce our spending on outside consultants and further rely on some of our recently instituted and more efficient processes,” explained S. Kent Rockwell, ExOne’s Chairman and CEO. “Additional cost analyses and changes to business practices to improve working capital utilization will be ongoing over the next several quarters and are expected to result in additional cost reductions and improved cash positions. All the while, we remain focused on our research and development goals and long-term revenue growth goals, which will not be impacted by these changes, as we continue to lead the market adoption of our binder jetting technology.”

Discuss these stories, and other 3D printing topics, at 3DPrintBoard.com or share your thoughts in the Facebook comments below.