3D Printing Design for Automotive to Be Supported by Lehvoss & FENA

3D printing materials provider Lehvoss North America, part of the LEHVOSS Group of chemical companies operating under parent company Lehmann&Voss&Co., announced that it is partnering up with Forward Engineering North America (FENA), a new division of global engineering and consulting firm Forward Engineering. This collaboration between the two is for the purposes of supporting the automotive industry through Design for Additive Manufacturing (DfAM), helping to translate the performance characteristics of both 3D printed and injection molded components.

(Image courtesy of Forward Engineering)

Forward Engineering’s particular specialty is helping to include cost-effective parts, made out of fiber-reinforced polymer composite materials, in serial mass-produced automotive structures. As Lehvoss is something of a materials expert, it makes sense for FENA to partner with the group in order to teach how DfAM can positively benefit automotive components.

“Local support and bringing expertise around 3D printing together will create a hub for the 3DP value chain further strengthening the region and accelerating the deployment of additive manufactured components at automotive OEMs and tier suppliers,” stated Martin Popella, Sales & Business Development Manager at Lehvoss North America.

Germany-headquartered Forward Engineering has long supported clients in North America, which is why it opened the division in Royal Oak, Michigan. FENA, which offers production-based design and engineering services to meet the growing demand for cost-effective and automated solutions, works with technology partners in the area to speed up the adoption of “composite intensive mixed material solutions.”

We’ve definitely seen AM used for automotive applications, but materials that offer the same high-performance properties and characteristics as filled structural and semi-structural injection molding grade resin components can be difficult to find. But Lehvoss has expanded its reach, and is now offering its materials, such as Luvosint and Luvocom 3F, in North America.

3D printed automotive structural component (Image courtesy of Lehvoss North America)

Lehvoss materials have many application-specific properties, such as flame retardance, and can be custom compounded to fit specific requirements from customers, so that they can meet any necessary industry standards and requirements. One of its lines of high-performance compounds, available for FFF and powder bed fusion technologies in filament, pellet, and powder formats, definitely meet the criteria needed for automotive OEM applications.

Forward Engineering is helping OEMs and automotive tier suppliers translate specific product requirements so they can 3D print functional, structural 3F parts that mimic how the injection molded twin part performs. The 3F Twin Process that the firm developed will help engineers quickly develop and validate their concepts, and then interpret them for production parts.

“Automotive OEMs and suppliers want to accelerate product development through the production of functional structural prototypes with Additive Manufacturing (AM),” Popella explained. “3F Printing offers a relatively fast and cost-effective means to produce these functional structural prototype parts that meet demanding performance requirements. However, the right materials and process parameters must be selected to deliver quality parts that meet targeted requirements including quality, consistency and repeatability.”

(Image courtesy of Lehvoss)

As a result of their partnership, FENA and Lehvoss have set up a joint additive manufacturing lab, also in Royal Oak, Michigan, that will offer support to product development and automotive manufacturing engineers. These engineers can work directly with the Lehvoss/Forward Engineering team to determine the processes and materials that will best suit automotive applications, and even help them create functional prototypes on site.

“Successful product development requires the right mix of design, material and process,” said Adam Halsband, Forward Engineering North America’s Managing Director. “The Lehvoss/Forward Engineering collaboration and establishment of the AM lab in the center of the North American automotive product development region brings these resources together in a responsive package that is accessible to the engineers that need them.”

(Source: JEC Group)

The post 3D Printing Design for Automotive to Be Supported by Lehvoss & FENA appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

The 3 Reasons Your 3D Printed Parts are so Expensive

It’s 2020, and additive manufacturing has finally emerged as a mature technology for production in a growing number of sectors. In the last decade, it made a full run of the technological Hype Cycle but has finally arrived at the Plateau of Productivity.

Pankl Racing Systems showcases a replicable custom fixturing system with Formlabs technology

Despite recent technical progress, many industrial 3D printing programs are still not making the financial returns that business owners expect. Often one of the biggest reasons is under-utilization: groups simply not using additive capital equipment often enough to justify the expense. Under-utilization can be caused by a lack of applications or technological inadequacy, but usually it’s the symptom of a much deeper problem that leaders need to address: a severe lack of design for additive manufacturing (DFAM) skills within their engineering organization. When designers and engineers don’t know how or when to design for additive, they create bad, expensive parts or just avoid using it altogether.

Here are three ways that bad DFAM is holding up the profitability of many additive manufacturing programs:

1. Additive processes are still misunderstood.

While 3D printing OEMs race to make the fastest, most efficient industrial additive equipment, the excitement for advancement is not reciprocated by most engineering groups. 3D printing technology can keep getting better and better, but if users don’t familiarize themselves with the basics of additive processes, part designs will never be truly optimized for 3D printing.

All the CAD skills in the world can’t substitute for understanding additive constraints and benefits.

For example, both DLP and FDM 3D printing gets faster and better materials ever year. But neither technology will ever overcome the need for support material. By redesigning this military vehicle equipment bin (below) with the goal of eliminating support material, Blueprint engineers produced it for 33% of the cost of the original design. The design is no better or worse in performance, but it is much faster to produce due to some simple knowledge of DFAM.

Designing with knowledge of self-supporting structures is just one of the ways that build time and material consumption can be reduced on many technologies including DLP, FDM, DMLS, stereolithography, etc.

What should you do? How do you know if your group needs upskilling? You’ll start to see low machine ROIs, frequent failed prints, and difficulty removing support material or excess powder. It’s also to hear frequent complaints of the inadequacy of the technology, which while sometimes valid can also point to a limit of users’ knowledge or skills. These symptoms are demoralizing and are bad for business… but fortunately they’re caused by a very solvable problem. There are good guidebooks and DFAM courses that teach the technical side of additive manufacturing. But nothing can replace trial and error with the equipment and proactively developing your internal additive language.

2. Additive design software is lacking in usability.

The birthplace of organic, geometrically complex designs was the world of digital art: concept design, video game design, and illustrations. The software used to make these designs have absolutely nothing in common with the engineering CAD packages engineers use to make parts manufacturable. Additive manufacturing introduces a new paradigm of design, one that introduces manufacturability to optimal, organic designs that break the mold of traditional manufacturing design processes.

A new generation design software is needed to make value-optimized designs, like this topology-optimized brake caliper by Bugatti.

To fill this gap, a host of software companies have risen to the challenge of designing geometrically organic manufacturable parts. Below are a couple examples of these offerings and some of their current limitations.

  • Autodesk Generative Design is a simple tool that generates geometry connect anchor features in an organic way. Today it still doesn’t yield a 100% manufacturable design, and the outputs require either tweaking or a full redesign based on the generated result.
  • Materialise 3-Matic offers a variety of DFAM modules from part lightweighting to digital texturing. Procedures can be convoluted and because it outputs mesh files manufacturability and file integrity are still concerns.
  • nTop by nTopology is a promising new software that combines the organic shapes of generative design with well-understood geometric patterns. It’s a fairly new software that has yet to pass through the test of widespread adoption.

What should you do? Additive users are between a rock and a hard place. They’re forced to choose between spending expensive engineering time on powerful, yet new software and under-designed parts that are material-intensive or prone to failure. The bottom line? Expensive. But user organizations must embrace the fact that no design software is perfect yet and focus their energy on discerning the type and depth of software needed to create value. Future-ready engineering organizations should engage subject matter experts to assess whether investment in additive-specific design tools is on the critical path to success.

3. Additive is too often an afterthought

Unless additive is brought in at the very beginnings of a product’s lifecycle, it will simply not yield much value. An organization must do more than try to implement additive at a few stages in product development. Its people must “think additively”, considering and applying this new manufacturing methodology across the organization. Without embedding additive thinking from the beginning of a project with the support of all departments, the necessary CAD data, requirements analysis, or design resources won’t be available, resulting in failure and wasted effort.

What should you do? Start to Think Additively by considering additive before every step in the product development process.

Think Additively for Prototyping – In all stages of product development, designers should embrace the “agile” nature of additive manufacturing, assuming every part will need to be printed twice – once for testing and once for use. Additive manufacturing is the right technology for the old innovation adage: “Fail fast, and fail often”

Think Additively for Fixturing and Tooling – When it comes to fixturing and tooling, additive manufacturing is often disregarded as too expensive or too weak. Adding bushings to for strength or reducing material around the cradle geometry are ways to improve the design for performance and economics.

Think Additively for Production – There are two things that must drive design for production AM parts: the firm requirements (including surface quality, mechanical loads, and economics) and the goal (reduce weight, reduce cost, improve function). Designers should throw out the traditional manufacturing assumptions and start from the ground up with these two considerations.

3D printing requires a new thought process and the cooperation of multiple departments

Overcoming these three barriers to good design are crucial to creating an efficient, profitable additive operation.

Why? Because while traditional methods of manufacturing tie designers’ hands with manufacturability constraints, the flexibility of additive manufacturing frees the designer in an unprecedented way. And while 3D printing shifts control from the manufacturing process to the engineer, it also puts inadequate designs painfully on display through waste, whether it’s wasted time, material, or iterations. Waste and expense ultimately eclipse the expected business benefit of this disruptive technology.

This is why DFAM skills are so important to realizing intended business benefits.

David Busacker is a Senior Engineering Consultant for Blueprint. He is an experienced additive manufacturing designer and has developed multiple additive manufacturing design courses.

Blueprint is an additive manufacturing consultancy, bringing together more than 16 years of knowledge and experience across the industry. As the world’s leading additive manufacturing consultancy, Blueprint regularly assists future-ready companies achieve additive success. Based in Eden Prairie, Minn., and Milford, U.K, the firm offers a unique, technology-agnostic perspective on all things additive, from strategic advice to design optimization services. More information is available online at www.additiveblueprint.com.

The post The 3 Reasons Your 3D Printed Parts are so Expensive appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Additive Manufacturing: Still a Real Need for Design Guidelines in Electron Beam Melting

Researchers from King Saud University in Saudi Arabia explore the potential—and the challenges—for industrial users engaged in metal 3D printing via EBM processes. Their findings are outlined in the recently published ‘Design for Metal Additive Manufacturing – An Investigation of Key Design Application on Electron Beam Melting,’ as authors Wadea Ameen, Abdulrahman Al-Ahmari, and Osama Abdulhameed not only explore metal 3D printing but work to establish more specific guidelines for designers and engineers.

Electron beam melting (EBM) is an additive manufacturing technique used in many critical applications today like the production of aviation and aerospace components, medical implants and devices, further development of materials, and more. The authors point out however that a lack of Design for Additive Manufacturing (DFAM) rules continues to cause challenge in using certain AM technologies.

Defined as a method that ‘considers the functional performance and other product considerations like manufacturability, reliability, and cost,’ DFAM is a system that helps designers choose parameters and create successful prototypes and necessary high-performance parts with less error.

While considerable research has been performed in assessing mechanical properties and improving methods, not so much attention has yet been given to design rules for EBM.

Following are procedures the researchers recommend guidelines for:

  • Benchmark parts – designed and 3D printed to offer a better way to test small features and overhang structures.
  • Minimum Resolvable Feature Size – assesses feasibility for production of wall thicknesses, slots, holes, and more.
  • Overhang structures – support structure limits should be added, considering three fundamentals: angle overhang with varying angles, convex overhang with varying radius, and hole overhang with varying diameters
  • Materials and equipment – for this study, Ti6Al4V in powder form with particles size of 30-50 µm was used, with an ARCAM A2 3D printer.

Features configurations (a) round holes (b) walls thickness (c) round bars (d) round slots (e) cubed slots

Overhang structures (a) angle overhang (b) convex overhang (c) round hole overhang

“In general, the results showed that the minimum though round hole is 0.5 mm diameter, the minimum wall thickness, minimum round bar, minimum round slot and minimum cubed slot that can produced by EBM are 0.6 mm, 0.65 mm, 0.1 mm and 0.4 mm, respectively. Also, the results showed the lowest self-supporting angle overhang is 50 degrees, the smallest radius of self-supporting convex curve overhang is 7 mm radius, and the smallest self-supporting hole is 18 mm diameter,” concluded the researchers.

“The change of the material builds orientation, and the process parameters will result in change of the manufacturability limitations. For future work, other features could be considered and the effect of features orientation as well as the process parameters could be investigated.”

Small fabricated holes

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Fabricated overhang test specimens by EBM

[Source / Images: ‘Design for Metal Additive Manufacturing – An Investigation of Key Design Application on Electron Beam Melting’]

The post Additive Manufacturing: Still a Real Need for Design Guidelines in Electron Beam Melting appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.