3D Printer review: 100 hours with the Creality CR-10 V2

Creality CR 10 V2

Along with competitors Anet and XYZPrinting, Creality form a trio of manufacturers that dominate the low-cost 3D printing segment. Only a few years ago 3D printers under $500 were rare, but these firms have made them accessible and have sold hundreds of thousands of them.

In this segment, there are often a lot of issues with print quality and printer reliability. The Creality CR 10 v2 is the upgraded version of the very popular CR 10 and retails for around $500. Creality in the past has also had quality issues and even some safety issues with some components and models. The CR 10 was known to in some cases catch fire. Subsequent safety improvements have made Crealitys safer. We would not recommend running these types of machines unattended, however. Whereas Creality machines tend to work well out of the box, low-cost components do mean that after a few months you will need to replace components.

After testing it for over 100 hours of print time, we can conclude that CR-10 V2 is a value-engineered machine with a large build volume that works surprisingly well.

Unboxing and Set Up

Unboxing is easy and there is some assembly required. This process is simple if you follow instructions. You can find a video showing you how this is done. Most people should be able to do the assembly and set up of the printer.

The printer has a separate console for controls. For some this may mean that your printer takes up more space on your desk but it could also make it more accessible because you could place the console closer to you. Physically separating the main electronics and controls from the motors and frame could make the machine safer though, so that’s a positive. The filament is placed on top of this console, this seems a bit weird initially but works ok. When running the printer for a long time this does mean that you can prevent tangling by placing your filament spool at the correct angle. You can also place the spool closer to you so you can easily see if there is tangling or problems with unspooling.

Controls

Controls work through a wheeled button. It is easy to navigate through the menu screens. Do not confuse easy with intuitive, however. Menu structure and operations are far from perfect and can be time-consuming and confusing.

Structure

A nice design element is that it has an extra set of diagonal arms that gives the printer more Z-axis consistency. These arms also make the printer more stable overall and seem to have a handle in improving print quality generally. These arms also help when moving it to a new location. The arms make it much more steady overall and makes it is easy to grasp, move and re-position. Build quality on parts looks better than previous models as does overall attention to details such as cable placement. Machined parts also look like they’re better quality than before.

Operation

The ultra-quiet TMC2208 motherboard does not make the printer that quiet. It is actually annoying if you work in the same place that you print. The printer sounds like an old PC and is much too loud. This is an important point for me and actually made me use the printer less often than I would have liked to.

It has a dual-port hot end cooling fans. This is a refinement over some other clones and seems to improve the surface quality of prints. The printer warms up fast enough. Both the nozzle and the bed preheat quickly enough.

Bed leveling is still a semi-automated process. I did it manually with a piece of paper, but I only had to do it 2 times for a 100 hours of printing.

The resume printing function works extremely well. Several simulated stops and starts worked well and I was able to resume prints without incident. During normal operation, I ran out of filament and was able to replace it easily while print was automatically paused. I also really like doing gradients in colors so I like this feature a lot. It helped me play with gradient colors and gave me more confidence in the machne.

Specs

  • Build Volume 300 X 300 X 400mm
  • Weight11.5 K
  • Movement speed ≤180mm/s, normal 30-60mm/s
  • Positioning Accuracy ±0.1mm
  • Layer thickness 0.1-0.4mm
  • Heated bed temperature  ≤100℃
  • SD slot
  • File format STLOBJAMF
  • Slicing software: CuraRepetier-HostSimplify
  • OS: Mac, Linux, WindowsXPVista7810
  • Power supply AC Input 115V/230V
  • Output: 24V Power rating 350W
  • Auto leveling Optional Extra
  • Filaments: PLA/ABS/PETG/TPU (Would only recommend TPU with the optional Titan Direct Drive unit added).
  • Filament diameter1.75mm

Overall it’s well equipped for the price and especially the build volume is comparatively good.

Results


Test 1 and 2: Not bad! Some light stringing. Cura: Layer hight: 0.2 – Print speed: 60mm/s – No Supports

Test 3: This shape is not possible to get right a 100% because the tube has a 1cm diameter and is very sensitive to vibrations, but I use it as a test for the Z axis. Cura: Layer hight: 0.2 – Print speed: 60mm/s – No infill

Verdict 

Pretty good at details. Cura: Layer hight: 0.2 – Print speed: 40mm/s – No Supports

Higher than initial Creality price points of around $200 or $300, this is still a good value machine at around $500. Build and parts quality is not stellar so I will expect to have to replace parts in the long run. Machined parts and build quality does seem superior to previous models, however. Day to day this printer is adequate for an entry-level user. Operation is not super intuitive but you will get the hang of this machine. It is easy to unbox, set up and organize. An issue that I have with it is that it is surprisingly noisy, also when compared to other similarly priced machines I have. The CR-10 V2 is a value-engineered low-cost machine with a large build volume that works surprisingly well. I was happy with the print results overall and the printer let me customize enough through settings that I could dial in new materials, new colors and optimize prints. The print detail is actually quite good. If you’re willing to take the time to understand the process and variables this could be a good first printer for you.

The post 3D Printer review: 100 hours with the Creality CR-10 V2 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Thesis Student Creates Business Case for Desktop 3D Printing E-Cigarette Cases

Thesis student Calvin Smith, at Minnesota State University, brings up a topic most 3D printing enthusiasts and users should be interested in as he explores the limits—and endless possibilities— of desktop fabrication in Developing a Commercial Product Using a Consumer Grade 3D Printer.’ Undeniably, 3D printing has changed the face of production on all levels of industry, from home fashion designs to haute couture, small car parts made in the workshop to myriad prototypes and components now used by automotive leaders, and much more, spanning nearly every industry you can think of. But, how do we go from the 3D printing idea towards practical implementation? Can one really start a business with a desktop 3D printer? What are the costings and what is the business case? Calvin Smith’s research looks into these questions and is a valuable resource for anyone wishing to start a business using desktop 3D printers.

Smith points out that with the self-sustainability afforded through 3D printing, entrepreneurs are imbued with new power to create and sell, and even found their own startups. The desktop 3D printing marketplace is vast, and it is not hard to find the hardware, software, and materials to excel in low-volume manufacturing even from the home. As a good example for the purpose of his study, Smith uses the idea of 3D printed pod cases for electronic cigarettes as a business model that would be feasible, to include designing, manufacturing, and distributing.

Standard types of e-cigarettes (CDC, 2019)

Standard types of e-cigarettes (CDC, 2019)

At the time of this thesis, Smith was actually smoking the Myle brand of e-cigarettes in an attempt to quit smoking regular cigarettes. In terms of a business development plan, to include the cases, Smith studied the potential with Myle and Juul. Along with pinpointing the best 3D printers for small businesses (Prusa I3 MK3, MakerBot Replicator, and Lulzbot TAZ 6), along with ABS and PLA as the most affordable materials, Smith moved on to breaking down costs (see the table below).

Intellectual property protection was an obvious concern, and Smith was surprised to find out the costs and complications associated with filing a patent—as are many individuals in the US. While it can be critical to protect your inventions, it is often cost-prohibitive too.

“While research was conducted on the patent application, life span and earning potential of the product a temporary provisional patent was filed so the design would have an official timeline attached to it,” stated Smith. “This patent-pending status is easy to file and has a filing fee of $147, patent-pending status is considered active for 1 year from the date the application is filed and can be converted to a complete patent any time during that 1 year. The patent-pending status does not give any protection to the design however it does give an earlier filing date.”

This was a smart move considering the rapid acceleration of the e-cigarette market and the length of time it takes to be approved for a patent (or find out that you have been declined), which can be 18 months to two years in many cases.

They then moved on to creating the cigarette pod cover case for 3D printing in PLA on the Prusa MK3.

“The goal for the size of the case with device and pods was to be 50% smaller than a pack of traditional cigarettes which measures 3.5” tall by 2.125” wide and 0.875” thick,” stated Smith.

Design V1.0

The first 3D design was functional and ‘worked as intended,’ but not without some kinks that needed to be worked out as there was not an area to charge the e-cigarette, and it was also difficult to remove the extra cigarette pod from the bottom due to lack of a good grip.

“This case was printed using PLA (Polylactic Acid) plastic which is the standard 3d printing plastic because it is renewable, biodegradable, cheap, has minimal warping, easy to print, and high strength,” stated Smith. “The downfalls to printing with PLA is it is brittle, and due to its glass transition temperature or temperature when the material becomes soft enough to flow, it does not hold shape in hot environments.

The first case took 45 minutes to print and used 6.8 grams of material—at a cost of 17 cents per case.

“ABS is stronger than PLA, less brittle, and still cheap. It has the added benefit that ABS can be vapor polished using acetone, this smooths the part giving it a better visual appearance and makes it stronger by increasing the layer adhesion,” said Smith.

The second 3D case design was refined to solve the previous problems, and they also tried using ABS instead. It took much longer to print at a total of 160 minutes, but with the same cost of 17 cents; however, problems with cracking proved the design to be problematic later.

Their next, and successful, design (Version 2.4) occurred with NinjaFlex, printed in 52 minutes, consuming only 11 grams of material—but at an increased price of $1.22 per case.

“The cases must be printed one at a time to obtain the best surface finish and to minimize material stringing. This design and process allows to produce up to 12 cases per day, with a single printer and operator taking into account for other work, errors, and miss prints 50 cases per week can easily be printed,” stated Smith.

There was also one more iteration ‘reworked for manufacturability’ that could also be made through traditional injection molding processes, and could still show promise for the future.

“Version 2.4 of the Pod Case was the final developmental stage for 3D printing of the Pod Case, this design was approved by the stores interested in carrying the case and the distributer who was interested in the case for wholesale. The cost to produce a Pod Case via 3D printing is estimated at $3.00. The cost to retail outlets of the finished case with packaging was $5.00 per unit with the capacity to deliver 50 units per week and a retail sale price of $10.00. This price point and production capacity makes the case too expensive for wholesale distributers, however there is still research being done to make V2.4 via injection molding and estimates at time of writing this thesis show cases could be manufactured, packaged, and delivered for $1.25 per unit with a wholesale cost of $3.00 per unit. There must be a market to sell 5000 units minimum to continue research into mass production via injection molding,” concluded Smith.

“The possibility to earn extra income from 3D printing is very realistic with minimal labor involved. Overall there was strong profit margin in small scale manufacturing and prototyping as the labor involved only includes basic setup and design time while the printer can run unsupervised for the majority of time involved,” concluded Smith.

Most makers are habitual rule-breakers when it comes to 3D printing. If a material or technique is designated for a particular level or limit, be assured they will soon be using it to innovate far beyond what the developer originally intended—whether showing off with a 3D printed car engine or transmission or even a tiny home.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: ‘Developing a Commercial Product Using a Consumer Grade 3D Printer’]

Airbus Chooses Ultimaker 3D Printers for Desktop Use in European Facilities

As a pioneer in the aerospace industry, the Airbus has used 3D Printing in creating parts for flight controllers, cabin parts, helicopter parts, along with combining robotics in other collaborations—of which there have been many in the past few years. Now, Airbus continues their ventures into 3D printing with Ultimaker known for desktop 3D Printers that are  popular with users from the individual to the industrial level.

Airbus has chosen a range of Ultimaker 3D printers, Cura software, and materials for use in their European facilities fabricating local parts such as:

  • Tools
  • Jigs
  • Fixtures
  • Lightweight design parts

With a reputation that precedes them in terms of reliability and versatility, Ultimaker was chosen as the 3D printer of choice for Airbus due to their requirements for ease in use, dependable results, and open-source technology. Services and support will play a big role in the choice of Ultimaker too, as they promise to deliver in terms of ensuring consistency and ultimately, product quality for all of their teams involved—not only in Europe, but in other Airbus facilities around the globe too. So far, they will be awaiting delivery of Ultimaker S5 3D printers, along with corresponding software, material, parts, services, and peripheral features.

“We are very proud that Airbus selected Ultimaker. Strict rules regarding safety and certifications can make manufacturing and model-making workflows complicated, especially for engineers in the aerospace industry,” said Jos Burger, CEO at Ultimaker. “I am glad that our certified solution and the possibility to print with composite materials, enables these engineers to keep innovating. The team at Airbus can fully rely on our dedicated global sales and partner network for full support.”

While enormous industrial companies like Airbus are choosing Ultimaker for serious tasks at the desktop, other users around the world are making strides in science with complex shape shifting geometries, fabrication of prosthetics for children in third-world countries, and using this hardware for new learning endeavors in STEAM education.

Headquartered in the Netherlands, Ultimaker was founded in 2010 and is an OEM that also develops software with its Cura platform.

Ultimaker maintains other offices also as they maintain a growing and international presence from New York to Boston to Singapore, along with other production facilities in both Europe and the US. Currently, around the world, Ultimaker employs over 400 individuals.

(Photo credit: Ultimaker)

What do you think of this news? Let us know your thoughts; join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

(Photo credit: Airbus)

3D Printing News Briefs: February 6, 2018

We’re talking about business, training, and events on today’s 3D Printing News Briefs. The first European 3D printing incubator will soon be inaugurated in Barcelona, and 3devo is launching training workshops about desktop filament extrusion. nScrypt’s Director of 3D Printing and a surgeon from Belfast will be presenting at upcoming events, and Arburg will display a complete turnkey system at an Italian trade fair. Finally, because we celebrate all accomplishments in our industry, we’re sharing some good news about a Xometry employee.

3D Factory Incubator Inauguration

This coming Monday, February 11th, the inauguration of the first European incubator of 3D printing – 3D Factory Incubator – will take place in Barcelona. The Minister of Science, Innovation and Universities, Pedro Duque, will chair the inauguration’s opening act. This High-Tech Business Incubator, a project led by Fundación LEITAT and El Consorci de Zona Franca de Barcelona (CZFB), is working to promote the adoption of 3D printing by creating a space to incubate related SMEs and micro-SMEs.

The 600 sqm incubator space is located at CZFB’s headquarters, and will include training areas, offices, meeting rooms, laboratories, and co-working zones, in addition to a variety of services. The inauguration will begin promptly at 11 am.

3devo Launching Training Workshops

Dutch technology company 3devo, which creates desktop-based material development and recycling solutions such as SHR3D IT, is launching a series of hands-on training workshops all about desktop filament extrusion for professionals, which will be branded as DevoTraining. The workshops will be held at 3devo’s Utrecht headquarters, and participants can choose one of three programs: a basic, 4-hour module for €499, a 1-day intermediate workshop for €899, and a 2-day advanced level course for €1549.

“The demand for unique 3d printing materials is ever-growing, which requires new knowledge on how to process it,” said Tim Wesselink, the CEO of 3devo. “With DevoTraining, we offer the answers to those innovators who seek to take matters into their own hands. Giving them complete guidance to create and customize their own filament – on demand.”

DevoTraining will be officially released next Tuesday, February 12th.

nScrypt Discussing 3D Printed Munitions and Other DoD Applications

Orlando, Florida-based nScrypt, which manufactures micro-dispensing and 3D printing systems, announced the release of its hybrid Factory in a Tool (FiT) integrated system for Direct Digital Manufacturing in October. nScrypt’s Director of 3D Printing, Larry (LJ) R. Holmes, Jr., is in charge of directing the company’s market participation for industrial-level 3D printing hardware, including its work with the US Department of Defense (DoD). This week, Holmes will speak about nScrypt’s 3D printed munitions, as well as its other DoD applications, on the “AM Innovation Panel: Developing the Next Generation of 3D Printing and Processes in Support of the Warfighter” in Tampa at the Military Additive Manufacturing Summit & Technology Showcase.

“Our FiT platform is ideal for DoD’s 3D printing applications because it does next generation Direct Digital Manufacturing, which means no retooling to build a product or to change from printing one product to another. Just change the CAD file. Our FiT’s pick and place tool head adds actives to the prints, making them electrically functional if needed. We just delivered a Factory in a Tool to the Army’s Redstone Arsenal. It has one full meter of travel in the XY plane,” Holmes said.

“nScrypt’s goal is to disrupt how manufacturing happens. Munitions printed on-demand, where and when they are needed; a ruggedized 3D printer for use in forward deployed locations; and printed electronics, like conformal Active Phased Array Antennas for improved performance at lower cost, are a few of the examples of capabilities currently being transitioned from nScrypt to the DoD and the global manufacturing industrial base.”

SXSW 3D Printing Presentation About 3D Printed Kidney Model

SXSW 2019 begins next month in Texas, and in addition to the many other innovations on display at the event, Dr. Tim Brown, Consultant Transplant Surgeon at Belfast City Hospital, will share his experience of using 3D printing to successfully perform a first of its kind, life-saving operation during a presentation titled “Tumours, Transplants and Technology: AI for Life.” His patient needed a life-saving kidney donation, and while her father was willing to donate, his kidney had a tumor on it. Together with UK medical 3D printing company axial3D and Digital Catapult, Dr. Brown used a 3D printed kidney model to safely complete the transplant surgery and save his patient’s life.

“As the cyst was buried deep within the renal cortex and therefore invisible on the back bench, a replica 3D model was used for preoperative planning and intra-operative localization of the lesion,” explained Dr. Brown. “It’s difficult to underestimate how valuable this strategy was in terms of preoperative planning and achieving successful clearance of the lesion.”

axial3D won the Healthcare Application Award at the 2018 TCT Awards for creating the 3D printed model, and the company’s CEO Daniel Crawford and Operations Manager Cathy Coomber will join Dr. Brown for a panel discussion at SXSW, along with Nigel McAlpine, Immersive Technology Lead at Digital Catapult. The session will take place at SXSW on March 12th, at the JW Marriott Salon FG.

Arburg Exhibiting at MECSPE 2019

Arburg Allrounder Freeformer

At next month’s MECSPE 2019 trade fair in Italy, German machine construction company Arburg will be focusing on 3D printing, automation, and digitalization. The company will be displaying a complex turnkey system, built around a Freeformer 200-3X industrial AM system and a hydraulic Allrounder 370 S; both the Freeformer and Allrounder are networked live with the company’s ALS host computer system. In addition to displaying the system at the trade fair, Arburg will also have experts presenting their outlook on the digital future of plastics processing at Stand F49 in Hall 6.

“MECSPE 2019 is the most important trade fair for the manufacturing industry in Italy and, with its focus on Industry 4.0 and automation, it is an ideal match for Arburg. We are not only a machine manufacturer and expert in injection moulding, but we also have our own MES, our own controllers, automation technology and the Freeformer for industrial additive manufacturing as part of our product portfolio,” said Raffaele Abbruzzetti, the new Managing Director of Arburg Srl. “With more than 30 years of experience in networked and flexibly automated production, we offer our customers everything they need in the era of digitalisation to increase their added value, production efficiency and process reliability – from the smart machine to the smart factory and smart services. We will present examples of all of this at MECSPE.”

Xometry Employee Wins Game Show

This last News Brief has nothing to do with 3D printing itself, but rather an unrelated, but still incredible, accomplishment from one of the industry’s own. On Thursday, January 24th, employees from on-demand manufacturing and 3D printing service provider Xometry gathered to watch one of their colleagues – marketer Aaron Lichtig – compete, and eventually win big, on the popular Jeopardy! game show that night.

Lichtig started off at a steady pace, competing against returning champion and astrophysicist Rachel Paterno-Mahler and sales manager Nancy Rohlen, and was leading the pack with a final score of $12,400 by the end of the Double Jeopardy round. He squared off against Rohlen during Final Jeopardy with the clue, “He was the first U.K. prime minister born after Elizabeth II became queen.” While both correctly guessed the answer as Tony Blair, Lichtig’s steep lead made him the winner that night. Congratulations from your friends at 3DPrint.com!

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

3D Printing News Briefs: November 9, 2018

Buckle your seat belts, because we’ve got a of news to share with you in today’s 3D Printing News Briefs, starting with more event announcements and moving on to several new partnerships, a workshop, and a 3D printing project. Nanogrande introduced its new 3D printer for nanometer metallic particles at Fabtech this week, while Sartomer and Nanoe are launching new 3D printing innovations at formnext. Creatz3D is working to accelerate ceramics 3D printing in Singapore, while partnerships were announced between Valuechain and Clad Korea, PostProcess and Rösler, and Additive Manufacturing Technologies and Mitsubishi Electric. Finally, two Fraunhofer Institutes are hosting an AM materials workshop, and a maker from YouTube channel Potent Printables is sharing a new project.

Nanogrande Introduced First 3D Printer for Nanometer Metallic Particles

At FABTECH 2018 in Atlanta this week, Nanogrande officially introduced its new 3D printer. The MPL-1, enabled with the company’s Power Layering Technology, is actually the first nanoscale 3D printer for metallic particles in the world, and could successfully open up new 3D printing horizons. Nanogrande has spent years working to develop the new 3D printer.

“Power Layering, while maximizing particle compaction, allows MPL-1 to use particles of all shapes, sizes and types. With this approach, we can easily print with particles as small as a nanometer, but also particles of 5 microns, what the industrial sector is currently seeking. At this size, the particles stick to each other, virtually eliminating the need for support structures typical to 3D printing. In this way, there is a considerable reduction in post- printing costs,” said Juan Schneider, the President and Founder of Nanogrande.

“Today we are witnessing the culmination of a long process of research and development that has given us the chance to set up a team that generates many innovative ideas. Alone, it is possible to have excellent ideas; but, as a team, we can bring these ideas to life. I am very pleased to highlight the success of the efforts of the people who work for Nanogrande.”

Sartomer Europe Introducing New UV-Curable Resins

At formnext in Frankfurt next week, the European division of specialty chemical supplier Sartomer, a business unit of Arkema, will be launching new products in its N3xtDimension line of UV-curable engineered resins as part of its new commercial 3D printing-dedicated platform. The new materials will help companies fulfill performance and regulatory requirements for multiple industrial applications, thanks to their excellent tunability and mechanical properties. At its booth H58 in Hall 3.1 at formnext, Sartomer will introduce N3D I-2105, with impact resistance for manufacturing functional parts; N3D-F2115, which can achieve varying levels of flexibility depending on post treatment; and N3D P-2125, which is perfect for prototyping with its homogeneous network and limited evolution of mechanical properties after post-curing is complete.

“We are addressing the needs of demanding and innovative 3D printing markets by partnering with global leaders to deliver custom material solutions for end-use applications. Through our range of products and services dedicated to additive manufacturing, we are supporting the 3D printing sector as it grows and continues to develop new applications,” said Sumeet Jain, the Global Director for 3D Printing Business at Sartomer.

Nanoe Launches Ceramic and Metal 3D Printer

In other formnext news, French company Nanoe, which is a leader in high-tech raw materials and also specializes in ceramics 3D printing, will be introducing its new Zetaprint system for desktop 3D printing of ceramic and metal materials. The team will perform a live demonstration of the 3D printer at the event, and explain the full 3D printing, debinding, and sintering process.

Additionally, the company will be launching its new stainless steel 16L Zetamix filament. These filaments, made up of a ceramic or metal powder and a polymer matrix, can be used to make high density parts in any FDM 3D printer.  Nanoe, which is also developing materials in Inconel and titanium, will also soon be launching a complete line of adapted FDM 3D printers. Visit the company at booth A74 in Hall 3.0 next week at formnext to see a live Zetaprint demonstration and 3D printed parts in various Zetamix materials.

Creatz3D Accelerating Ceramics 3D Printing in Singapore

Speaking of ceramics, Creatz3D Ceramics Service Bureau is dedicated to 3D printing ceramics parts. Founded last year, its parent company is Singapore-based 3D printer and AM software solutions seller Creatz3D, which partnered with 3DCeram Sinto in Limoges to create the service. This partnership, signed in 2016, facilitated the first installation in Singapore of 3DCeram Sinto’s Ceramaker 900 Ceramic 3D printer, at the Advanced Remanufacturing Technology Centre. The Creatz3D Ceramics Service Bureau, which offers diverse material options and a hassle-free experience, is the first, and only, ceramics-focused 3D printing service in the country, and is helping to increase awareness and adoption of ceramics for 3D printing.

“The addition of ceramics to Creatz3D’s portfolio ensures that they stay ahead of the pack in the competitive 3D printing landscape, and their expertise can demonstrate the game-changing capabilities that the technology has to offer to help advance design, engineering, and manufacturing,” said Sean Looi, the General Manager of Creatz3D.

Valuechain Signs Strategic Partnership with Clad Korea

British technology company Valuechain reports that it has signed a strategic partnership with manufacturing company Clad Korea, in order to digitalize 3D printing in East Asia. Both companies will be able to grow their association together in the initial agreement, in addition to bringing Valuechain’s solutions, including its flagship DNA am production control software, to the East Asian AM marketplace. This software addresses 3D printing production process niche requirements, like powder traceability and managing AM build plans.

“Valuechain’s DNA am technology is a unique offering to the market, with great potential to enable rapid and mass production of additive manufactured parts. As we look to enter the additive manufacturing market ourselves, we believe this product will give us a competitive advantage in the industry, and we’re excited to be able to contribute to the growth of this technology in Asia by helping to deliver this solution throughout South Korea,” said Brandon Lee, the CEO of Clad Korea Co. Ltd.

PostProcess Technologies Partnering with Rösler

Moving on with strategic partnerships in the 3D printing world, PostProcess Technologies Inc., a pioneer of software-drive 3D post-processing solutions, is working with Rösler Oberflächentechnik GmbH, which sells finishing systems for traditional manufacturing, to bring automated, intelligent post-print solutions to Europe. Rösler will provide PostProcess’ data-driven support removal and surface finishing solutions for 3D printing to the European market, making it the only surface finishing supplier that will be providing solutions tailored to the needs of both traditional and additive manufacturing. The two companies will debut their partnership next week at formnext, with PostProcess’ technology on display in its booth H68, as well as Rösler’s booth E20, both of which are in Hall 3.0.

“The additive space is rapidly growing, especially in Europe, and as such, the demand for an automated post-printing solution is accelerating. Rösler is a unique partner for PostProcess, bringing expertise in finishing systems with a broad European footprint, thousands of existing customers, and a strong presence across a range of industries that will greatly benefit from PostProcess’ proprietary and integrated software, hardware, and chemistry solution,” said Bruno Bourguet, the Managing Director for PostProcess Technologies.

Additive Manufacturing Technologies Announces Partnership with Mitsubishi Electric

Sheffield-based Additive Manufacturing Technologies Ltd (AMT) has entered into a partnership with Mitsubishi Electric in order to further develop its PostPro3D system with an integrated automation solution, which could provide a major productivity boost for 3D print post-processing. This new solution is based on Mitsubishi Electric’s MELSEC iQ-F Series compact PLC, HMIs, SCADA and MELFA articulated arm robots. While PostPro3D is already pretty impressive, with its ability to automatically smooth an object’s surface to 1μm precision, AMT wanted to further develop the system with certified automation products so it would be suitable for Industry 4.0. Now, PostPro3D is equipped with a Mitsubishi Electric power supply and low voltage switchgear, servo drives and motors, FR-D700 frequency inverters and the optional six-axis robot arm.

“To realise our concept, we needed an automation partner that could provide the whole range of machine control systems, as well as the actual robotics. This is fundamental to truly integrate our machine into the production line of the future as well as to benefit from a lean, single vendor distribution model,” explained Joseph Crabtree, CEO at AMT.

“Mitsubishi Electric was the clear choice because it offers a one stop shop for state-of-the-art automation solutions. In this way, we can be sure that the different components are compatible and can share data. Overall, the company can offer us products that adhere to UL, CE as well as Industry 4.0 requirements.”

Fraunhofer AM Materials Workshop 

On November 29 and 30 in Dresden, Germany, Fraunhofer IKTS and Fraunhofer IWS are holding a workshop called “Hybrid materials and additive manufacturing processes.” The two institutes are working together to organize the workshop, which will be held in English and discuss innovative technologies for 3D printing metallic and ceramic components, in addition to application-specific manufacturing of material hybrids. Participants in the workshop’s practical insight sessions will be able to see diverse AM devices for multimaterial approaches live and in action.

“Why is that interesting? Additive manufacturing technologies for material hybrids open up new possibilities in production for diverse industrial branches,” Annika Ballin, Press and Public Relations for Fraunhofer IKTS, told 3DPrint.com. “It is not only possible to realize complex geometries, but also to functionalize components (sensors, heaters), to individualize production (labeling, inscriptions) and to combine different materials properties in one component (conductive/insulating, dense/porous etc.).”

The workshop, which costs €750, will be held at Fraunhofer Institute Center Dresden, and registration will continue until November 22.

DIY 3D Printed Linear Servo Actuators by Potent Printables

A maker named Ali, who runs the Potent Printables YouTube channel, recently completed a neat design project – 3D printed linear actuators. Ali, who was partly inspired by a Hackaday post, said that the project has received a great response on both Twitter and Instagram. He designed the parts in SOLIDWORKS, and controls them with an Arduino Uno. The simple rack-and-pinion design, perfect for light loads, comes in two sizes for different space constraints and force outputs.

“Each design has a pinion that has to be glued to a servo horn, and a selection of rack lengths to suit your needs,” Dan Maloney wrote in a new Hackaday post about Ali’s project. “The printed parts are nothing fancy, but seem to have material in the right places to bear the loads these actuators will encounter.”

Check out the video below to see the 3D printed linear actuators for yourself:

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

Desktop 3D Printing and Functional Replacement Parts

3D printing is seeing increasing use in the manufacture of components for bikes, and sometimes even the bikes themselves. Bikes with 3D printed parts don’t just look cool, either – they perform just as well as, and sometimes even better than, regular bikes.

Open source advocate and 3D printing educator at Michigan Tech Dr. Joshua Pearce recently published an Ultimaker blog post about how to use your desktop 3D printer to create functional, inexpensive replacement parts for complex machines that require mechanical integrity – like bicycles.

Dr. Pearce’s team partnered up with the research group of John Gershenson. Dr. Pearce, Gershenson, Nagendra Tanikella, and Ben Savonen completed a study on the use of open source 3D printers for making components for the popular Black Mamba bicycle.

Dr. Pearce wrote, “Specifically, we chose to start tests with pedals that fail often and have clear standards namely the CEN (European Committee for Standardization) standards for racing bicycles for 1) static strength, 2) impact, and 3) dynamic durability.”

First, the teams used parametric open source FreeCAD to design a custom CAD model of a replacement pedal; the model and STL files are available for download from Youmagine. The pedal was made using the most common 3D printing material – biodegradable, inexpensive PLA.

Static strength test

The pedal was first subjected to a 1,500 N vertical downward force under the CEN static strength test, which found no fractures. Then, the pedal was tested to a 3,000 N compression load applied pedal uniformly – this is actually twice the required amount, which meant that the pedal well exceeded the standard, and, as Dr. Pearce put it, was able to “clear the first hurdle!”

A mass of 15 kg was dropped onto the pedal from 400 mm up, 60 mm from the mounting face, for the CEN bicycle pedal impact resistance test. While the test resulted in a minor dent, there weren’t any fractures – another test passed.

In order to simulate a real-world bicycle, with a person on the pedals, the CEN developed its dynamic durability test for bike pedals. For this test, the research groups had to spin the spindle at 100 rev/min for 100,000 revolutions; at the same time, the pedal also had a mass of 65 kg suspended only by a string. Just like with the static strength test, the pedal’s dynamic durability was designed to exceed the CEN standard under normal conditions.

Impact resistance

Rather than using a rig, the team attached the 3D printed pedal to a bicycle for direct testing, and went 200,000 revolutions with a person’s 75 kg weight being carried solely by the pedals. Again, this was twice the CEN standard, and passed again – I’m sensing a theme here.

Dr. Pearce wrote, “Our humble 3D printed pedal is now good enough for European [racing] bikes…but wait it is actually better!”

The 3D printed pedals are nearly a third of the moss of the Black Mamba stock pedals, which is performance-enhancing as well as cost-effective…if raw PLA pellets or recycled materials, like ABS, nylon, or PET, are used, that is.

Dr. Pearce also provided some easy, DIY guidelines to achieve lab-worthy results for the 3D printed pedals, so you won’t have to redo any bike part experiments.

First, look into expertise already available through a study that researched the parts you were interested in, such as this one regarding the viability of distributed manufacturing of 3D printed PLA bike pedals. Then, determine the material’s mechanical requirements – check out this study for a handy open access list of most of the commonly available tensile strengths of the more common 3D printing materials.

Sub-optimal layers

Print the component in the right material, and with required infills, to achieve your application’s desired mechanical properties. Then, make sure to check out the print’s exterior for any sub-optimal layers from under-extrusion – if the part is under-extruded, fix your 3D printer and try it again.

Finally, weigh the part to make sure there isn’t any under-extrusion inside that you’re not able to see; Dr. Pearce explained that a digital food scale has “acceptable precision and accuracy” for most prints done on extrusion-based 3D printers.

“This mass is compared to the theoretical value using the densities from this table for the material and the volume of the object,” Dr. Pearce said.

The previously mentioned study with the list of tensile strengths was able to find a linear relationship between a 3D printed part’s ideal mass and the maximum stress able to be undertaken by samples. You can just check the study to see how far off from the ideal your part is, and then determine if it needs to be reprinted before figuring out the high probability of your needed properties.

According to mechanical studies completed on many extrusion 3D printers, open source machines produce stronger prints than proprietary systems, mostly thanks to the setting limitations of the latter.

“But be aware that there is a range and the properties of your parts will depend a lot on your machine and the settings you use,” Dr. Pearce warns. “In general printing at the high end of the extruder temperature range for your material will result in a higher strength.”

Just use that weighing technique, and compare your part’s mass to the ideal, to find out where it will most likely lie on the strength range.

You can read Dr. Pearce’s full rundown at Ultimaker.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.