Custom Prototypes Creates a Unique Metal 3D Printed Faucet

This week a Toronto based 3D printing company, Custom Prototypes, revealed an impressive metal 3D printing project, an intricately designed bathroom faucet 3D printed in stainless steel.

Over the past couple of months, Custom Prototypes has been busy fulfilling an urgent request from an interior design company to help aid with a special project. Custom Prototypes was asked to help design and build a one of a kind bathroom faucet for a new house construction.

The interior design company had been planning the look of this house for years and wanted to push the boundaries of traditional design. Each room was set to tell a unique story and draw inspiration from all of the home owner’s life travels. 

For the house’s main floor bathroom the vision was to recreate the experience of feeling like you were in a water garden. As a child growing up in Kashmir, India, the house owner had spent endless hours paddling the rivers and picking lotus flowers.

Custom Prototypes took the symbolic Lotus flower and used it to guide their design thought process. The goal for them was to achieve a product that could act as a standalone art piece even when not being used.

Once the general idea was proposed, they began to sketch up some abstract ideas on paper eventually starting to digitally sculpt it using Freeform.

One of the biggest challenges they had to face was to make sure the faucet not only achieved the aesthetic the house owner and interior design company were aiming for, but also to make sure they would actually be able to build it. The design of the base had six very small winding structures which were all hollow to allow water to flow freely, making metal 3D printing the only option.

The faucet was 3D printed in stainless steel on a DMLS (direct metal laser sintering) machine. They managed to print the entire part with no internal supports making it possible to remove any excess metal powder left inside.

If you have any questions about metal 3D printing or would like Custom Prototypes to guide you in creating your own custom product, please email

ABOUT Custom Prototypes:

Custom Prototypes is a rapid prototyping company located in Toronto, Canada. They are a local service bureau specializing in 3D printing working for industries ranging from automotive, to medical to general consumer product.

They have made international headlines and received a variety of awards over the years with a broad scope of projects. They are best known for their 2018 AMUG award winner with an entry of their creation of Marc Antony’s helmet using only 3D printing materials. Other well-known projects include their award winning reproduction of Van Gogh’s Starry Night and their stained glass window made only with 3D printing.

The post Custom Prototypes Creates a Unique Metal 3D Printed Faucet appeared first on | The Voice of 3D Printing / Additive Manufacturing.

3D Printing Metal End-use Part Applications

This article describes the ideal use-cases for each process & comparison with other solutions to help you identify opportunities using 3D Hubs in your organization for metal 3d printing service.

Definition: End-use part is any good that is either sold as a product or placed in service within a company’s internal operations.

There are 6 processes to consider:

  1. FDM / FFF (plastics)
  2. SLA / DLP (plastics)
  3. SLS / MJF (plastics)
  4. SLM / DMLS (metals)
  5. Metal FFF (metals)
  6. Binder Jetting (metals)

In part 1 we talked about plastic parts, in part 2 we discuss only metals. 


Selective Laser Melting (SLM) and Direct Metal Laser Sintering (DMLS) are metal powder bed fusion 3D Hubs printing processes that are most commonly used today as they are especially suitable for high-end applications since they offer advanced material properties and superb design freedom.

While both utilize high laser power to bond together metal powder particles to form a part– layer-by-layer, SLM will achieve a full melt, while — due to the very high temperatures — DMLS will cause the metal particles to fuse together at a molecular level. 

The majority of metal alloys are compatible with the DMLS method, wherein SLM, only certain (pure) metal materials may be used.

Still, the differences between these two 3D Hubs printing technologies are so slim; they can be treated as the same for designing purposes. 

In this section, we will take a closer look at the technical characteristics, manufacturing process, and the limitations and benefits of these two, very similar techniques.

How it works: SLM/DMLS 3D Hubs printing process basic steps:

  • First, the build chamber is filled with inert gas then heated to the optimum print temperature.
  • A thin layer (typically 50 μm) of metal powder is spread over the build platform.
  • Next, the laser scans the cross-section of the part, selectively bonding the metal particles.
  • Thus, the build platform moves down a layer when the entire area is scanned, and the process repeats until the build is complete.
  • After the printing process is complete, the build must first cool down before the loose powder is extracted.

This step is only the beginning of the SLM/DMLS 3D printing manufacturing process. Once the print is complete, several compulsory and/or optional post-processing steps are also required before the parts will be ready for use. 

Compulsory post-processing steps include

  • Stress relief: Before continuing with any other operation, the internal stresses that develop during printing, due to the very high processing temperatures, need to be relieved through a thermal cycle.
  • Removal of the parts: In SLM/DMLS the parts are welded onto the build platform and EDM wire cutting or a band saw are used.
  • Removal of the support: To mitigate the distortion and warping that occurs during printing, support in SLM/DMLS is required. Support is CNC machined or removed manually.

Additional post-processing steps are often required to meet engineering specifications that may include:

  • CNC machining: When tolerances are tighter than the standard ± 0.1 mm that’s required, machining is employed as a finishing step. Only the slight material is removed this way.
  • Heat treatments: Hot Isostatic Pressing (HIP) or heat treatments can be used to improve the material properties of the part.
  • Smoothing/Polishing: Certain application requires a smoother surface than the standard RA 10 μm of as-printed SLM/DMLS. CNC machining and Vibro, chemical, or manual polishing are available solutions.

How it works: Laser source bonds metal powder particles


  • Geometric freedom
  • High accuracy & fine details
  • High-performance materials


  • Stainless Steel
  • Aluminum
  • Titanium
  • Superalloys

Use case #1 – Optimized brackets

DMLS / SLM is used to create lightweight parts through advanced CAD processes, such as topology optimization. They are of particular interest in the automotive and aerospace industries.

Use case #2 – Internal geometries

A far more common use of DMLS / SLM is the creation of parts with internal channels. These find applications in the manufacturing industry (for example injection molding tooling with internal channels for cooling) or for heat exchangers.

Pro tip: Make sure that no support structures are needed to manufacture the internal channels, as they will be impossible to remove.

5. Metal FFF: What is metal extrusion?

Metal Extrusion is a low-cost metal 3D printing process alternative that is most suitable for prototyping purposes or for one-off custom parts.

It is a variation of the classic FDM method for plastics. In 2018, the first Metal Extrusion 3D printers were released also known as an Atomic Diffusion Additive Manufacturing (ADAM) and Bound Metal Deposition (BMD).

A part is built layer-by-layer, like FDM, by extruding material through a nozzle, but the material is not plastic, unlike FDM but is a metal powder held together with a polymer binder. The result of the printing step is a “green” part that needs to be sintered and de-bonded to become fully metal.

Here, we examine the characteristics and key limitations and benefits of this additive process to help you understand how you can use it more effectively.

How does metal extrusion work?

Metal Extrusion consists of a three-stage process involving a printing stage, a de-binding stage, and a sintering stage. 

The Printing Stage…

  • Raw material in a rod or filament form, which basically consists of metal particles that are bound together by wax and/or polymer.
  • This filament or rod is extruded through a heated nozzle and then deposited– layer-by-layer to build a designed part based on the CAD model.
  • While, if necessary, support structures are built. The interface between the part and the support is printed with ceramic support material that can easily be removed later manually.

When printing is complete, the “green” resulting part must be post-processed using similar steps like Binder Jetting, in order to become metal. The “green” part is washed first for several hours in a solution to remove almost all of the binders. Then it is sintered inside a furnace so that the metal particles are bonded together to form the fully-metal part.

During the sintering process, the dimensions of the parts are reduced by about 20 percent. to compensate for this, the parts are printed larger. Like the Binder Jetting process, the shrinkage isn’t homogenous, meaning that trial and error will be required to get accurate results for particular designs.

How it works: Metal/binder is extruded through a nozzle to print the part, which is then thermally sintered.


  • Does not require industrial facilities
  • Based on MIM
  • Complex metal parts


  • Stainless steel
  • Tool steel

Main use: For internal operations

An alternative to CNC, Sand casting

Quantity: 1-50 parts

Use case #1 – CNC part replacements

Metal Extrusion is excellent for functional CNC prototyping and small productions of metal parts that would otherwise require a 5-axis CNC machining to produce.

6. Metal Binder Jetting

Metal Binder Jetting is increasing in popularity rapidly. What makes it especially suitable for small to medium production runs, is its unique characteristics.

In this section, we will dive deeper within the steps used in the Binder Jetting to learn the basic characteristics of metal parts production.

What is Metal Binder Jetting?

Metal Binder Jetting is a process of building parts by placing a binding agent on a slightly thin layer of powder in through inkjet nozzles. Originally, it was used to develop full-color models and prototypes from sandstone. A variation of the technique is becoming more popular lately, because of its batch production capabilities.

In metal Binder Jetting printing, the printing step is done at room temperature, which means the thermal effects, such as, internal stresses and warping aren’t a problem, like in SLM/ DMLS, and therefore, supports are not needed. To create a fully metal part, an additional post-processing step is required.

How does Metal Binder Jetting work?

Metal Binder Jetting involves two-stages; a printing stage and a post-processing stage.

The printing process works like this…

  • A thin layer (typically 50 μm) of metal powder is spread out over the build platform.
  • A carriage that has inkjet nozzles will pass over the bed while selectively depositing binding agent droplets of wax and polymer to bond together the metal powder particles.
  • When done, the build platform will move down, then the process will repeat until the entire build is complete.

The result of this printing process is a part of the “green” state. To create fully metal parts and remove the binding agent, a post-processing step is necessary.

This post-processing stage requires two variations: Infiltration and Sintering.

How it works: Binder is jetted onto metal powder particles to create the part, which is then thermally sintered


  • Great design freedom
  • Based on MIM
  • Batch production


  • Stainless steel 
  • Tool steel

Main use: Low-run metal production

An alternative to Metal Injection Molding, Die casting

Use case – Low-run production

Binder Jetting is the only metal 3D printing technology today that can be used cost-effectively for low-to-medium batch production of metal parts that are smaller than a tennis ball.

Why engineers use 3D Hubs for 3D printing

Instant quoting & DFM feedback

Build and edit your quote online. Review your parts for manufacturability and assess the cost of different materials, processes and lead times for your project in real-time. Explore our 3d printing service for every type of additive manufacturing project. 

Readily available capacity

Benefit from our network of 250 manufacturing partners to access instantly available capacity. Our manufacturing partners are both local and overseas.

Quality & reliability

Dedicated 3D Hubs team to ensure your parts consistently meet your quality expectations. We also offer phone, email and chat support for any concerns or questions you may have.

The post 3D Printing Metal End-use Part Applications appeared first on | The Voice of 3D Printing / Additive Manufacturing.

Interview with Guy Ofek of GF Machining Solutions on Integrating Metal Additive in Manufacturing

Guy J. Ofek has spent over 16 years helping companies find the best manufacturing solutions throughout Asia. Nearly 11 years of those were in 3D Printing for Stratasys and other vendors. This has made him a seasoned veteran in the field. Guy now works for GF Machining Solutions, a leading provider of machine tools, solutions, and services that is bringing automation and integrated manufacturing to 3D Printing. We’re all becoming aware that the current area of expansion in 3D printing is on the concrete floors of manufacturing facilities worldwide. Companies are taking the lab boxes that were made to discover new materials and print prototypes and try to turn them into production devices. Whereas in the marketing copy and press releases everyone is a professional and focused on manufacturing, very few companies are actually manufacturing using 3D Printing. Those who do, quickly find out that they need to integrate this foreign process into tried and true systems, facilities and processes. This is difficult and leads to tough projects worldwide that need new thinking, new processes, and new machinery.

GF Machining Solutions is a firm that has squarely put itself in between that problem and possible solutions for clients. It’s a bold and smart play for a 1,066 million Swiss franc revenue firm with close to 4,000 employees. GF Machining Solutions offers an extensive portfolio, ranging from Electrical Discharge Machining (EDM) solutions, Milling machines and Spindles to 3D Laser texturing machines, Additive Manufacturing and machines for Laser micromachining targeted at the aerospace, automotive and medical segments, among others. All of these areas have seen strong impacts from 3D printing. A few years ago, GF Machining Solutions, on the one hand, has found itself under possible disruption by 3D printing, while on the other has found its machining solutions being used extensively by the 3D printing industry. Wire-cutting EDM (WEDM, Wire EDM) is almost a necessary step for many metal 3D printed parts. The firm has since taken its many complementary skillsets and has begun offering integrated solutions for the 3D printing industry. With partnerships, devices and solutions, GF Machining Solutions seems to be one of only very few large industrial machine tool companies taking 3D printing seriously at the moment, so we thought it very prudent to find out what the firm is up to.

What is GF Machining Solutions?

GF Machining Solutions is the world’s leading provider of machine tools, diverse technical solutions and services to manufacturers of precision molds and tooling and of tight-tolerance, precision-machined components. The key segments we serve include the aerospace, automotive, medical, energy, information and communications technology (ICT) and electronics industries. Our extensive portfolio ranges from Electrical Discharge Machining (EDM) solutions, three- and five-axis Milling machines and Spindles, 3D Laser texturing machines, Additive Manufacturing and machines for Laser micromachining to solutions for Tooling, Automation, Software and Digitalization – all backed by unrivaled Customer Services and support. Based in Switzerland, GF Machining Solutions belong to Georg Fischer AG (FI/N: SIX Swiss Ex) and is present in over 50 countries with its own sales companies. In addition, we operate production facilities and research and development centers in Switzerland, the USA, Sweden, and China.

For a century and a half, GF Machining Solutions has been an innovator and a source of strength to customers. Our history of technology leadership includes expansion into technologies that have spurred our customers’ growth, and – with an eye to the future – we continue to innovate in order to advance the success of our customers in particular and the machine tool industry as a whole.
In Milling, EDM, Laser texturing and Automation technologies across a variety of segments from automotive, aerospace and aeronautics to Medtech, electronic components, and ICT, GF Machining Solutions’ customers worldwide depend on our application know-how and process expertise. Our customers range from small and medium-sized toolmakers to global corporations.

Why did you get involved with Additive Manufacturing?

GF Machining Solutions believe that Additive Manufacturing will play an important role in the future of manufacturing. Given our specific expertise in traditional subtractive manufacturing and Automation, we feel the latter can help bridge the gap between prototyping and manufacturing, especially since metal Additive Manufacturing today―and going into the future―will be all about hybrid manufacturing.
Hybrid production environments will include an additive technology, but also the relevant downstream processes such as Milling, EDM, wire-cutting EDM, Laser texturing solutions and so on, that are required to finish the part, and all these technologies need to be integrated and work in tandem to form the `factory of the future`.

Do you see it working closely with other machining operations?

Yes by all means, in particular when it comes to metal additive, as users must always separate the metal-made part from the metal build plate. This is an operation normally done by band saws or wire-cutting EDM machines, so as part of the GF Machining Solutions mission “To integrate and optimize metal additive workflow“, we will introduce a wire-cutting EDM machine dedicated to metal additive at the coming EMO show this September. It will allow manufacturers to separate parts from the build plate in a horizontal manner. This new AgieCharmilles WEDM product will use GF Machining Solutions’ fast-wire technology and is ready for integration with any other technologies, using its built-in System 3R clamping solution.

In addition, more often than not, the surface quality of parts out of any metal printer out there is insufficient to meet the Ra requirement of tool makers, aero-engine OEMs and many others, who use metal additive to produce final parts, hence the need for Milling technology and or EDM machines to better the surface up to the mark.

How does your extensive experience in machining help you?

It is no secret that the additive industry has been “living on an island”, so to speak, for most of its over 30 years of existence, having serviced mainly applications around product development―in other words, prototypes aimed for fit, form and functional testing. I say “living on an island”, because the additive industryin the past eight to ten yearshas been pushing towards the adoption of the technologies in manufacturing and production environments, which are “the mainland” or the 12 trillion “Holy Grail” if you like, and in this environment, the rules of the game are somewhat different. For instance, in the world of product development, one must employ absolute flexibility allowing to design and test as many variations as possible of that one specific product in order to establish which one actually works best.
Production environments, on the other hand, have almost the opposite mindset in the sense they allow zero flexibility and mandate tight tolerances. Their goal is always the same, to create as many versions as possible of that one specific product, all while assuring all products are identical and of the highest possible quality.

On top of that, elements such as productivity, robustness, cost efficiency, redundancy, Mean Time Between Visits (MTBV), response time and many more, all are very important when we talk about production, yet have far less importance, if any, in the world of product development.
Considering GF Machining Solutions’ leadership in high-speed Milling with its Mikron Mill machines and in EDM with its AgieCharmilles machines, we feel we have the capacity to better understand the unique needs and challenges of users out there battling the quest of adopting Additive Manufacturing in production environment.

 You’ve partnered with EOS and 3D Systems?

Indeed, in the past, we collaborated with EOS in order to promote a specific metal-printing machine (AM 290 Tooling) to the mold and die segment given our strong affinity to the segment. Later in 2018, we announced a strategic cooperation with 3D Systems for jointly developed and integrated manufacturing solutions based on 3D printing. The first product of this cooperation  – the DMP Factory 500 metal Additive Manufacturing solution – was launched in September 2018 during IMTS in the US. Now, 11 months after we inked this partnership, we are very happy with the developments made thus far and feel there is much we can do to bring our shared vision of integrated and optimized metal additive workflow to our customers looking to integrate metal additive into their production environments.

You are developing “integrated manufacturing solutions” with 3D Systems, what does that mean?

As GF is a full partner in the design, development and production of some of  the co-branded 3D metal printers, the goal of both companies is to jointly develop solutions able to close the gap between the current stand-alone metal AM machines, and the “factory of the future”, where all elements of Industry 4.0 are fully integrated.  In other words, in order to be able to realize our shared vision, which have driven the additive industry for years now, and see end-to-end additive solutions actually being integrated into the shop floor, we believe it’s vital to make adjustments to the existing hardware and software environments to enable a seamless and efficient workflow.

For example, at present Additive Manufacturing machines, as well as the much-required post processing―whichever it may be―are very labor intensive, as the entire process is manual. Even if additive manufacturing is not meant for mass production, all agree that automation, of some sort, must be introduced in order to improve the workflow, increase operators’ safety and create a cost-efficient process all together. For these purposes, we took the first step by integrating a System 3R Delphin chuck into the DMP Factory 500, thereby allowing the operator to seamlessly move the build plate (which sits on-top of the chuck) from the metal additive machine onto a wire-cutting EDM or Milling machine for further processing. This saves time in clamping and making dedicated tooling after the part has been separated from the build plate.

Is 3D printing a threat to casting, or will it augment traditional casting operations?

Historically, there were only two traditional ways to turn a raw material into a shape that was as close as possible to the desired product: Forging or Casting, and each had its own pros and cons. With Additive Manufacturing, we now have a third method, which opens new possibilities and as such, is very exciting. Additive, however, has its own limitations, and it is because of that it is perhaps very complementary to Casting.

The Sales Manager of GF Additive SA (AMotion Center) in Switzerland, Mr. Marco Salvisberg, recently noted that on the one hand, 3D printing certainly poses a threat to some investment casting applications, as parts that used to be produced by investment casting are already being 3D-printed today, and one can only expect the scale to grow in the future. This depends on the segment, but with regard to aviation and IGT (Industrial Gas Turbine) business, 10-40% of today’s portfolio of casted parts will be printed in the AMotion Center in the long term.
On the other hand, as Marco added, 3D printing is a great opportunity for the foundries. Wax, ceramic cores and polystyrene printing can drastically reduce development times and tooling costs. In addition, 3D metal printing is a good way for foundries to expand their production portfolio. Printing itself is only a small portion of a long production process, which includes finishing, surface treatment, heat treatment, none-destructive testing etc., the components of which many foundries already have.

Is more automation needed in 3D Printing, and if so, where?

Automation is of course required in 3D printing, much like in any other process or technology, in order to foster productivity and improve workflow efficiency. Automation comes in two basic forms, internal and external, and we foresee that additive, in time, will adopt both. A simple example of internal automation is an Automatic Tool Changer (ATC) in a CNC machine, while an example for external automation could be an integration of a robotic arm―stationary or on a slide base―into a production cell, turning it into a Flexible Manufacturing System (FMS).
The integration of a chuck system into an additive machine, as previously suggested, is the first step when it comes to industrialization of the AM process, in particular for metal additive. It requires the separation of the printed metal part from the metal build plate, as well as several post processes and treatments, which are all aimed at turning a part on a plate into a finished product.

How do you wish to partner with customers in 3D Printing?

Ideally, we see ourselves collaborating with companies and organizations having existing metal additive experience, as those very often understand far better not only the benefits the technology has to offer, but also the challenges and complexities involved in moving from prototyping and R&D to the production floor.

For such users, we believe we bring the most value considering the robustness of our co-branded metal additive solutions – such as the DMP Factory 350 – in addition to the built-in automation it incorporates, which is translated directly to maximum powder utilization and providing a safer environment for the operator.

At the end of the day, the additive process in itself is merely 30% of the entire production workflow, so special attention should be paid to additional downstream processes.

What can you offer them?

As a group, drawing from the combined knowledge and experience in precision engineering and industrial automation, as well as the accumulated expertise in the provision of various casting solutions (iron sandcasting, aluminum and magnesium pressure die casting, precision casting) and additive technologies, we have the unique ability to offer clients far more than just a metal 3D printer.

GF Machining Solutions sees itself as a provider of end-to-end value, ranging from consulting, part design, powders and parameters optimization, rapid prototyping using LPBF, EBM and DMD technologies and part certification (NADCAP) all the way to bridge and serial production of AM parts including processes for surface treatment, machining and coating and supply chain management.

Do you wish to sell machines, solutions, parts?

As our name suggests, GF Machining Solutions is all about solutions rather than selling individual machines or technologies. What sets us apart is our unique ability to offer a wide range of technological solutions on top of our metal additive machines, in conjunction with the ability to integrate such solutions using our System 3R automation product line to create a workflow-optimized metal additive production environment.

For clients looking for part production, application development and such other services, we normally suggest they work with our AMotion Center, which is geared toward consultancy and many other services. Those range from application, powder and parameter development all the way through design for AM, prototyping, bridge and serial production using multiple additive technologies (DMLS, EBM, DED), and above it all, they are NADCAP certified for aerospace and aeronautic companies.

Can you build me a 3D printing factory?

I am confident our decades-long experience and leadership in precision engineering and industrial automation can and will play a part when it comes to offering our clients integrative approach to metal additive. Producing metal additive parts require professionalism and expertise, and considering the fact many additional technologies are required in order to see a finished part, GF I believe is an ideal partner for anyone making his first steps into this fascinating technology and in particular for advanced users looking to move into series production. Such step requires finding ways to lower cost per part, enablement of operation and productivity excellence and reduction of total cost of ownership and I fundamentally believe the metal AM production units we produce, are designed to deliver not only very high quality parts, but also to do so over lengthy periods allowing maximum uptime leading to lower cost per part and a solid return on investment.

What is the AM market like in Asia?

Asia is a mixed bag as you may know, and as such, one can see all the shades of the rainbow when moving from north to south or east to west. When it comes to metal additive, we see a nice and steady adoption in China and Japan, where users in segments such as aerospace, energy, medical and tooling are using metal additive more and more in an effort to create lighter parts, better functional designs and speed up their lead times. Other than that, we also see interesting opportunities in Korea, Taiwan, Singapore and India, with innovative users looking to either adopt metal additive, or even step up and move into production-related applications, after their R&D departments have been exploring the technology and created viable applications for the past years.

What advice do you have for companies who wish to manufacture with 3D Printing?

Additive is all about customization, different ways to design products and making products in a completely different way compared to what we’ve grown accustomed to, which leads me to believe there is no “one size fits all”. Having said that, what I see separating the winners from the rest of the pack is an innovative spirit, a “can do” attitude, coupled with a drive to learn and develop, and yes, also to fail.

Additive is an industry where everyone is learning and exploring, and in such an environment there are no “Plug-and-Play” solutions. Hence, in order to manufacture with 3D printing, one must first make sure one is in the game, and one willing to fail and unlearn – not only because failure to do so could be detrimental to the viability of the business in the long run, but mainly because the rewards one stands to reap as a result of incorporating additive into the process chain may very well be significant.


The post Interview with Guy Ofek of GF Machining Solutions on Integrating Metal Additive in Manufacturing appeared first on | The Voice of 3D Printing / Additive Manufacturing.

Farsoon successfully adapts H13 tool steel for DMLS additive manufacturing

Farsoon Technologies, a Chinese metal and polymer 3D printer manufacturer, has devised a method to produce H13 tool steel parts by laser sintering. After parameter optimization tests, the company has managed to 3D print H13 with properties comparable to those made by forging.  In collaboration with American tooling production company Next Chapter Manufacturing, Farsoon has […]

Interview With SmarTech’s Scott Dunham on the Additive Manufacturing Metal Powders Research

For the past five years, Scott Dunham has been preparing the Additive Manufacturing with Metal Powders Report for SmarTech. SmarTech, part-owned by, is the only analysis and research firm that is focused on the Additive Manufacturing and 3D Printing market. With the release of the new Additive Manufacturing with Metal Powders Report, we thought we’d delve into the report to share some of Scott’s findings and methodologies.

The report focuses on Powder Bed Fusion, Directed Energy Deposition, and Binder Jetting metals. It goes into the major players in each segment and catalogs mayor market events over the past year. Another section looks at standards formation, M&A activity as well as investments and things such as VC activity. It catalogs leading companies in metal printing and looks at the overall competitive landscape. It delves deeper at industrial use of metal 3D printing and looks at key trends in the industry. Through interviews and surveys, industry participants help identify key trends in the industry. 

Things such as customer openness, competency, and spare parts are some of the elements the report looks at more in-depth. Things such as the industrialization of Powder Bed Fusion, increases in machine costs, process parameters, and market share are shared. For Directed Energy Deposition things such as the repair market, adding other AM processes to DED business units and segmentation are looked at. The growth in the binder jetting part of the market is revealed. Trends and drivers in metal powders are cataloged as well. Sales channels for powder, demand for custom alloys, and long term supply are discussed. The overall market growth in 2018 is shared, as are the differences across regions and new developments.

Scott says that the primary audience for this report is “business unit or business line managers of companies in metal powders or machine OEMs, or those companies that wish to enter the market. Consultancy firms, analysts, financial analysts, and business development people also make up a strong contingent of customers. One surprisingly large group of customers is researchers at research institutes and universities.”

Different customers have different motivations for buying the report. With prices starting at $5000 a copy it often requires a degree of interest or investment in 3D printing metals to consider it.

“Researchers and academics, for example, will use it to identify problems that do not yet have solutions or where adequate solutions have not yet been commercialized. For startups, it is used by the whole team to validate business cases and plans. For large teams at industrials or other multinationals, the entire product team would get a license to accompany their evaluation of the market. A business unit leader elsewhere may be very interested in drivers, market outlook, and developments. Consultants will use the report to get up to speed on 3D printing in relevant client engagements. OEMs and powder companies like to be abreast of the latest developments but also use it to benchmark themselves, measure unit performance, establish performance goals, and goal setting.”

Scott considers the Fifth Additive Manufacturing Metal Powders report to be a “full resource on metal additive manufacturing.”

“As per all of the powder based technologies, we provide a guide and detailed analysis based on dozens of interviews and many more surveys of market participants. Why should you trust us? We were the first to offer a market research report focused on powder processes. Over the five years, we’ve refined it, learned and sifted through a lot of data to make it more accurate and usable for customers. At SmarTech, we only do Additive Manufacturing; for us, this is not a part-time thing, but a complete focus for us as a business. This lets us build up and sharpen our knowledge. The effect is that our reports gain in useful information and in depth. The specific expertise and research we do let us make a more solid report than other firms that may have the same people cover IoT, the cloud, or other subjects. Additive Manufacturing is a fast growing, very competitive industry that deserves full time committed analysts, not tourists.”

With regards to specific trends Scott points out a “few soft last quarters” that are due to many factors, but one is the increasing complexity of implementations while others is a gulf between what is promised and what is achievable.

“The promise and hype of binder jetting has also given some customers some pause with powder bed fusion implementations. The landscape can be very confusing for new market entrants, and some decisions are tough to make and require technical expertise and understanding that new entrants often don’t have.”

He goes on to say, “the market is strengthening this quarter, and we are seeing a rapid rate of change in the industry.” Interested? Download the SmarTech Additive Manufacturing with Metal Powders report here. is part owner of SmarTech.

3D Printing News Briefs: June 27, 2019

In today’s 3D Printing News Briefs, we’re starting with a couple of stories from the recent Paris Air Show: TUSAS Engine Industries has invested in GE Additive technology, and ARMOR explained its AM materials partnership with Airbus. Moving on, Formlabs just hosted some live webinars, and PostProcess Technologies released a whitepaper on surface finishing metal 3D printed parts. Modix is sharing a lot of news, including four new 3D printer models, and finally, FormFutura has introduced sustainable packaging.

TEI Invests in GE Additive Technology

TUSAŞ Engine Industries, Inc. (TEI), founded in Turkey as a joint venture in 1985, has invested in GE Additive‘s direct metal laser melting (DMLM) technology. GE Additive announced at the recent Paris Air Show that TEI had purchased two of its M LINE factory systems and two M2 cusing machines. While the financial terms of the investment were not disclosed, the 3D printers will be installed at TEI’s Eskişehir headquarters, joining its current fleet of laser and Arcam EBM printers.

Professor Dr. Mahmut Faruk Akşit, President and CEO of TEI, said, “Today, we invest in TEI’s future by investing in additive manufacturing, ‘the future of manufacturing.’ Our longstanding partnership and collaboration with GE is now broadening with GE Additive’s machine portfolio.”

Armor and Airbus Partner Up for Aerospace 3D Printing

Air pipe prototype printed using the Kimya PLA HI (Photo: ProtoSpace Airbus)

Continuing with news from the Paris Air Show, ARMOR Group – a French multinational company – was also at the event, exhibiting its Kimya materials and a miniFactory printer, as well as its new aeronautics filament, PEI-9085. While there, ARMOR also met up with Airbus, which has frequently used 3D printing to create parts and prototypes, such as an air nozzle for the climate control system of its 330neo passenger cabin. The company has now requested ARMOR’s expertise in better qualifying its materials in order to standardize its own AM process.

“We have qualified the PLA-HI and PETG-S. We are currently testing more technical materials, such as the PETG Carbon before moving on to the PEI and PEEK. We have requested a specific preparation to make it easier to use them in our machines,” Marc Carré, who is responsible for innovation at Airbus ProtoSpace in Saint-Nazaire,

“We expect to be able to make prototypes quickly and of high quality in terms of tolerances, aesthetics and resistance.

“Thanks to ARMOR and its Kimya range and services, we have found a partner we can share our issues with and jointly find solutions. It is very important for us to be able to rely on a competent and responsive supplier.”

Webinars by Formlabs: Product Demo and Advanced Hybrid Workflows

Recently, Formlabs hosted a couple of informative webinars, and the first was a live product demonstration of its Form 3. 3D printing expert Faris Sheikh explained the technology behind the company’s Low Force Stereolithography (LFS) 3D printing, walked through the Form 3’s step-by-step-workflow, and participated in a live Q&A session with attendees. Speaking of workflows, Formlabs also held a webinar titled “Metal, Ceramic, and Silicone: Using 3D Printed Molds in Advanced Hybrid Workflows” that was led by Applications Engineering Lead Jennifer Milne.

“Hybrid workflows can help you reduce cost per part and scale to meet demand, while taking advantage of a wider range of materials in the production of end-use parts,” Formlabs wrote. “Tune in for some inspiration on new ways of working to advance your own process or to stay on top of trends and capabilities across the ever-growing range of printable materials.”

PostProcess Whitepaper on 3D Print Surface Finishing

PostProcess Technologies has released its new whitepaper, titled “Considerations for Optimizing Surface Finishing of 3D Printed Inconel 718.” The paper discusses a novel approach to help improve surface finish results by combining a patent-pending chemistry solution and software-driven automation. Using this new approach, PostProcess reports increased consistency and productivity, as well as decreased technician touch time. The whitepaper focuses on surface finishing 3D prints made with alloys and metals, but especially zeroes in on nickel superalloy Inconel 718, 3D printed with DMLS technology.

“With current surface finishing techniques used that are largely expensive, can require significant manual labor, or require the use of hazardous chemicals, this paper analyzes the benefits of a novel alternative method for post-printing the part’s surface,” PostProcess wrote. “Key considerations are reviewed including part density and hardness, corrosion (chemical) resistance, grain structure, as well as manufacturing factors including the impact of print technology and print orientation on the surface profile.”

You can download the new whitepaper here.

Modix Announces New 3D Printers, Reseller Program, and Executive

Israel-based Modix, which develops large-format 3D printers, has plenty of news to share – first, the company has come out with four new 3D printer models based on its modular design. The new models, which should be available as soon as Q3 2019, are the 1000 x 1000 x 600 mm Big-1000, the 600 x 600 x 1200 mm Big-120Z, the 1800 x 600 x 600 mm Big-180X, and the 400 x 400 x 600 mm Big-40. Additionally, the company has launched a reseller program, where resellers can offer Modix printers to current customers of smaller printers as the “best next 3D printer.” Finally, Modix has appointed 3D printing veteran John Van El as its new Chief Commercial Officer; he will help build up the company’s partner program.

“We are proud to have John with us,” said Modix CEO Shachar Gafni. “John brings aboard unique capabilities and experiences strengthening Modix’s current momentum on the path to become a global leader in the large scale 3D printing market.”

FormFutura Presents Recyclable Cardboard Packaging

Dutch filament supplier FormFutura wants to set an example for the rest of the industry by not only raising awareness about sustainability, but also by stepping up its own efforts. That’s why the company has moved completely to cardboard packaging – all of its filaments up to one kilogram will now be spooled onto fully recyclable cardboard spools, which will also come in cardboard boxes. All of FormFutura’s cardboard spools and boxes are manufactured in its home country of the Netherlands, which helps reduce its carbon footprint in terms of travel distance, and the material is also a natural drying agent, so it will better protect filament against humidity.

“Over the past couple of months we’ve been brainstorming a lot on how we can make FormFutura more sustainable and help renew our branding. As over this period we have received feedback from the market about helping to find a viable solution to the empty plastic spools, we started setting up a plan to reduce our carbon footprint through cardboard spools,” said Arnold Medenblik, the CEO of FormFutura. “But as we got to working on realizing rolling out cardboard spools, we’ve also expanded the scope of the project to include boxes and logistics.”

Because the company still has some warehoused stock on plastic spools, customers may receive both types of packaging during the transition.

Discuss these stories and other 3D printing topics at or share your thoughts in the Facebook comments below.

Protolabs launches production ready metal 3D printing service

Leading digital manufacturing company Protolabs has launched a production service for metal 3D printing. Termed high requirements direct metal laser sintering (DMLS) the new offering has been developed to help customers produce high performance metal 3D printed parts and integrate industry-appropriate quality inspection procedures in line with the client. “The designers and engineers we work with […]

University of Pittsburgh Develops Depowdering Machine for Metal Printing

The University of Pittsburgh has developed a depowdering solution for metal 3D printers that could significantly reduce the cost of 3D printed metal parts. Lead by Professor Albert To, a team of undergraduates has made a gyroscope-based depowdering machine. Professor To is the leader of the AMRL, or ANSYS Additive Manufacturing Research Laboratory, at Pitt and also runs the MOST AM lab, which is a cutting edge lab that develops 3D printing simulation tools. To’s ANSYS AMRL teams decided to attempt a much more hands-on project, however, with this depowdering machine, the Pitt Depowdering Machine.

Why is depowdering important?

Post-processing accounts from anywhere from 30 to 60% of the cost of a metal 3D printed part. Far from a machine driven push-button process metal printing technologies such as Powder Bed Fusion require a high degree of manual labor. Files have to be prepared by hand, support strategies have to be thought up builds have to be nested and material has to be loaded. Once the build is done the parts have to be depowdered. This usually involves a brush and vacuum cleaner. Then parts will also have to be destressed, sawed off, tumbled and may require EDM, CNC, precipitation hardening, shot peening etc. All the while a human operator will be carrying the parts around a factory. The actual 3D printing metal process is still rather artisan even though we’re promising the world that we will make millions of car parts cost-effectively. To bridge this gulf automation will be necessary. Additive Industries is including post-processing steps in the machine others are making lines of machines aimed to reduce the cost. The cool thing about adding automated conveying, destressing, EDM wire, and other systems to an existing line is that these add ons can be used to reduce costs in existing lines and be used with machines from several vendors. All of metal 3D printing’s promises and promise will have to be fulfilled through the nuts and bolts of improving and creating industrial processes. Automated post-processing is a key element of that so Pitt’s machine is very timely to say the least.

Pitt Depowdering Machine

To tells,

“The depowdering machine employs a gyroscope design that can rotate the AM build 360 degrees in two orthogonal directions. There is a vibrator that is attached to the build and vibrates the build at a high frequency so that the powders are loosened up and come out from the build as the gyroscope is rotating through different angles. There is a funnel below the gyroscope that is used to collect all the powders coming out from the build. The machine is equipped with two sieves at the bottom of the funnel to sieve the powders to the right size for re-use.”

Such a device has the power to reduce a lot of carrying around and operator time. The speed at which one could depowder a build varies enormously but as per the team’s data they should have a huge productivity increase in terms of time over existing users.

“Typically, we put an AM build on the machine for 15-30 minutes depending on the size of the parts,” To said.

That’s not all, however: the machine may also be more efficient than existing processes.

“In one test, the machine shook out 5 more grams of powders after the technician did his best to depowder manually with the aid of a vibrator.”

A vibrator in a metal 3D printing context is a rotary or tub vibrator or a vibratory finisher which is a machine where parts are mixed in with media and then vibrated to de-clog and remove powder.

If the Pitt machine performs like this in continuous operation the savings could be significant.

To says,  “We are still evaluating whether to commercialize the machine and talking to other people about it at the moment.”

We would strongly encourage them to commercialize this machine. Any in line device that could really reduce the costs of 3D printed parts would make many more metal 3D printing applications possible.


Interview with Ken Burns of Forecast3D on Manufacturing as a Service

I was very impressed with Ken Burns’ presentation at Additive Manufacturing Strategies in Boston. Ken is the technical sales director of the 3D printing services and manufacturing company Forecast3D. Originally set up to do urethane casting, the company now deploys HP MJF, FDM, DMLS, SLA, and Polyjet 3D printing technologies as well as casting. Focusing on bridge manufacturing and short-run production the company recently has bet big on MJF as a manufacturing technology. Many bureaus are continually under threat and expanding because of renewed interest in 3D printing. On the one hand, 3D printing news brings in new customers but some of these then switch to desktop and in house 3D printing. Can service bureaus cross the chasm and play a role in manufacturing millions of products with 3D printing? Or will they succumb to pressures from much larger firms? In different verticals we see that companies are taking very different approaches to adopt 3D Printing while in some industries there is a sharp division between the outsourcers and companies that do in house 3D printing. In medical device, for example, some companies are making huge investments in doing in house production while others immediately outsource. Millions of hearing aids are made in house while only car companies have significantly invested in taking prototyping in house. It is a very exciting time to be a pioneering 3D printing service so we asked Ken to tell us more.

How did Forecast3D get started?

Forecast 3D started with two brothers: Corey & Donovan Weber when they were in their early 20’s. They started in their garage and eventually purchased a single SLA machine (with the help of a loan from their grandfather). Corey developed an innovative method for urethane casting, which helped establish them and differentiate them from other service providers.

How did you go from a regional player to a national one?

Having a strong, reliable, and passionate team that gave our early customer base a unique customer experience and dedicated customer service – this helped us to grow our technology offerings and be able to afford to adopt the latest equipment. It sounds cliché but we listened to what customers needed and answered by creating a national team. Whether it is a phone call or a face-to-face meeting we were committed to the resources to engage with our customers however the needed us. We have also never been complacent with our technology, processes and business systems.

You seem to have always been at the forefront of adopting new technologies. In hindsight, it all looks beautiful but surely you’ve also gotten bitten by adopting new technologies?

We wouldn’t say any of the technologies “bit us” but we have certainly had more success with some over others. The technologies all promise something “ground-breaking”; which is true to an extent, but it doesn’t mean they are the right fit for our business model. We have target customers and industries so we focus on technologies that can help us be successful with that lens. So if we miss the mark, it is usually a small miss.

Do you still do a lot of casting?

Absolutely. Like most traditional processes, they are not going away. In fact, 3D printing has helped improve some of these services like casting. We can do hybrid processes with casting and 3D printing. Casting is and remains a long term focus for us.

What do your customers use Polyjet for?

Fast prototypes – attractive show models. When they want full color parts, or parts with multiple materials and durometers in a single piece. Often used in the entertainment industry.

And FDM?

Robust parts – used in aerospace and automotive mostly, often when demanding environments (high heat resistance, chemical resistance, UV stability) are present. When part strength (and not so much aesthetics) is a priority.

What do you use DMLS for?

Prototype and end-use parts. Often times when a smaller quantity of metal parts is needed, and the geometry would be impossible or too difficult to machine.

SLA Chrome plated award part.

What was it like buying an SLA machine in 1996?

Exciting. It is still exciting to buy new 3D printing equipment in 2019. To be on the forefront of the 3D printing industry in the 90s was an incredible opportunity.

A ProCast Part.

What is ProCast?

Our proprietary urethane casting process, used for producing a short-run (4 to 400) quantity of parts. Often times the next step after a single prototype, and used when only low volume production is needed (product lines that don’t require thousands of parts). We typically start by 3D printing a master model using SLA, FDM, or PolyJet. Then the master model is sanded and finished to the customer’s desired surface finish/texture, and then that part is encapsulated into a silicone mold (which is the soft tool). And from that mold, we produce 20-30 parts at a time. We can cast in any color or texture.

What new technologies are you excited about?

There is a lot to be excited about these days. On the metals side you have a lot of movement with HP’s Metal Jet, DesktopMetal’s Production System, GE Additive and a few others. In the plastics space we are watching a lot of the OEMs looking at solving new problems…HP MJF’s color printer, Carbon, Evolve and Titan Robotics are a few that seem to be doing something different. We are also looking at a lot of technologies surrounding the printer ecosystem from software to automation equipment.

What advice would you give me if I were a company new to 3D printing?

Be realistic with what you are going to do with 3D printing. It’s not the silver bullet that solves all problems. It can be an amazing tool for prototyping or production if you have a good approach. Working with a service provider to test and qualify which technology is always a great start as you can assess lots of technologies.

What about if my firm wanted to use 3D printing for manufacturing?

Yes, there are several technologies now capable of manufacturing. We primarily use the HP’s Multi Jet Fusion (MJF), Stratasys Fused Deposition Modeling (FDM) and SLM (metals) technologies for manufacturing. Our 3D Manufacturing center has 24 of the HP MJF systems so we have the capacity to print tens of thousands of production parts a day. Industries like Aerospace and Healthcare have been taken advantage of FDM and SLM processes in production.

Is lack of automation in post processing holding 3D printing back?

Yes. Until recently there wasn’t a big demand for this type of equipment because there wasn’t a lot of production in high volumes happening in 3D printing; outside of a few niche applications. We have surveyed the market and while some equipment works we have spent a lot of our time developing these tools.

You seem to have taken a big bet on MJF?

Oh yes. We believe in the technology, and its ability to take 3D printing to the next level (beyond being used primarily for prototyping).


One word. Production. We want to go after high volume production opportunities in manufacturing. We firmly believe this technology is solving new problems and creating new opportunities for our customers. We have already seen it utilized in many great applications and expect that it grows exponentially over the next several years.

What do you use the MJF machines for?

Production. We also do a lot of prototyping with them. There are certainly applications and industries it is better suited for as we are limited by materials, part size, surface finish and a few other constraints.

What is the market like now for a service bureau?

The service bureau market has certainly changed over the last few years. There are several companies focusing on the software component and it some ways attempting to commoditize the space while others have differentiated with specific technologies. We have been position Forecast 3D as a Digital Manufacturing company. Going beyond typical service bureau capabilities to meet the requirements for production. With so many service bureaus we think it is important to focus on what you do best and execute that with laser focus.

Researchers Design Fully Articulated 3D Printed Finger Prosthesis

Silicone cosmetic restoration of middle and ring finger with skin tone match to subject.

Despite the wide range of prosthetics available today, those with partial hand loss are often left out in the cold—and with a disability that often proves to be extremely challenging due to a significant loss of dexterity. Researchers from University of Colorado and Rice University aim to change that with a new design for a finger prosthesis that is fully articulated, featuring a self-contained actuator. The project and subsequent testing are detailed in their recently published paper, ‘Design and evaluation of a distally actuated powered finger prosthesis with self-contained transmission for individuals with partial hand loss.’

Using direct laser metal sintering (DMLS), the research team created a gear transmission for the medial phalanx portion of the finger. The transmission then connects with the DC motor, allowing torque transmission across the PIP joint. This new design features an automated device that is like the index finger size of a female in the 25-50th percentile. While this is an average size, in the future sizing may be possible for other amputees. For proper balance and ‘perception of the prosthesis as an external load worn on the residual limb,’ the scientists designed it with a weight like a human finger.

“The finger phalanges and underactuation mechanism form a six-bar linkage and is essentially a superposition of two four-bar linkages commonly used to underactuate two-phalanx commercial and research devices,” state the researchers. “The linkage system couples the motion of each IP joint to provide a flexion trajectory suitable for a variety of grasps used in ADL.

Testing was centered around evaluating force and flexion of the fingertips, using an Escon 24/2 controller from Maxon Motors powered at 12 V, and a Futek LSB200 load cell powered at 24 V for connecting with the fingertip at varying angles. The researchers also used a Quanser Q8-USB data acquisition board using MATLAB/Simulink to collect the following:

  • Collected load cell force
  • Motor current draw
  • Voltage

In evaluating force of the prosthetic finger, the researchers position the load cell within contact of the fingertip, while the controller powered the motor—driving the finger to the load cell. After that the researchers set up the following steps:

  1. The motor was powered for .5 seconds after detecting the impulse load.
  2. The holding force was recorded.
  3. The load cell was moved to contact the fingertip to measure the flexion speed.
  4. Flexion speed was determined by ‘dividing the time the finger took to contact the load cell from its fully extended position by the angular displacement of the finger.’

The researchers repeated the trials 15 times. As they began evaluating individual gear stages, the team realized further examination would be needed to assess contributions of the face gear pair to transmission efficiency. Mechanics of the fingers will require more validation too, along with further fatigue testing.

Fitting of Vincent finger onto patient. Note location of battery and electrodes on forearm.

 “Ongoing work on the powered finger has resulted in a more compact and higher reduction power transmission and future work will include a closer evaluation of the transmission efficiencies to determine the benefit of using face gears and the changes made to the structure of planetary gear stages,” concluded the researchers. “Alternative gearings that increase the overall reduction of the transmission while decreasing the number of gear stages necessary is of interest, in addition to a more thorough examination of the gear polishing process.

“Work will also include refinements to the residual limb attachment that better accommodates individuals with amputations distal to the MCP, as well as improvements to the robustness and anatomical motion of the kinematic link bar system. Upcoming iterations of the finger will also include improvements to its performance in opposition and safety mechanisms to protect the components in extreme or unexpected loading cases.”

3D printing has earned an honorable niche in the world of prosthetics, undeniably changing the lives of many, from prosthetics that help veterans, to amphibious limbs, to prosthetic breasts for mastectomy patients. What do you think of this news? Let us know your thoughts; join the discussion of this and other 3D printing topics at

Exploded view of medial phalanx gear transmission. Parts outlined in rectangles are the different lamina. Left and right inner laminae contain planetary stages and enclose spur/bevel gear stages housed in the central lamina. Outer laminae connect to proximal phalanx and enclose carrier pieces. Output of gear transmission connects to distal phalanx.

Rendering of the steel components of the powered finger with kinematic link bar system outlined. Dashed lines indicate that the bracket containing the links has been raised to show orientation. Bracket is grounded to proximal phalanx with two set screws at locations indicated by arrows. The hollowed plastic shells that enclose the entire finger mechanism are not shown for clarity.

[Source / Images: Design and evaluation of a distally actuated powered finger prosthesis with self-contained transmission for individuals with partial hand loss]