University of Pittsburgh Develops Depowdering Machine for Metal Printing

The University of Pittsburgh has developed a depowdering solution for metal 3D printers that could significantly reduce the cost of 3D printed metal parts. Lead by Professor Albert To, a team of undergraduates has made a gyroscope-based depowdering machine. Professor To is the leader of the AMRL, or ANSYS Additive Manufacturing Research Laboratory, at Pitt and also runs the MOST AM lab, which is a cutting edge lab that develops 3D printing simulation tools. To’s ANSYS AMRL teams decided to attempt a much more hands-on project, however, with this depowdering machine, the Pitt Depowdering Machine.

Why is depowdering important?

Post-processing accounts from anywhere from 30 to 60% of the cost of a metal 3D printed part. Far from a machine driven push-button process metal printing technologies such as Powder Bed Fusion require a high degree of manual labor. Files have to be prepared by hand, support strategies have to be thought up builds have to be nested and material has to be loaded. Once the build is done the parts have to be depowdered. This usually involves a brush and vacuum cleaner. Then parts will also have to be destressed, sawed off, tumbled and may require EDM, CNC, precipitation hardening, shot peening etc. All the while a human operator will be carrying the parts around a factory. The actual 3D printing metal process is still rather artisan even though we’re promising the world that we will make millions of car parts cost-effectively. To bridge this gulf automation will be necessary. Additive Industries is including post-processing steps in the machine others are making lines of machines aimed to reduce the cost. The cool thing about adding automated conveying, destressing, EDM wire, and other systems to an existing line is that these add ons can be used to reduce costs in existing lines and be used with machines from several vendors. All of metal 3D printing’s promises and promise will have to be fulfilled through the nuts and bolts of improving and creating industrial processes. Automated post-processing is a key element of that so Pitt’s machine is very timely to say the least.

Pitt Depowdering Machine

To tells 3DPrint.com,

“The depowdering machine employs a gyroscope design that can rotate the AM build 360 degrees in two orthogonal directions. There is a vibrator that is attached to the build and vibrates the build at a high frequency so that the powders are loosened up and come out from the build as the gyroscope is rotating through different angles. There is a funnel below the gyroscope that is used to collect all the powders coming out from the build. The machine is equipped with two sieves at the bottom of the funnel to sieve the powders to the right size for re-use.”

Such a device has the power to reduce a lot of carrying around and operator time. The speed at which one could depowder a build varies enormously but as per the team’s data they should have a huge productivity increase in terms of time over existing users.

“Typically, we put an AM build on the machine for 15-30 minutes depending on the size of the parts,” To said.

That’s not all, however: the machine may also be more efficient than existing processes.

“In one test, the machine shook out 5 more grams of powders after the technician did his best to depowder manually with the aid of a vibrator.”

A vibrator in a metal 3D printing context is a rotary or tub vibrator or a vibratory finisher which is a machine where parts are mixed in with media and then vibrated to de-clog and remove powder.

If the Pitt machine performs like this in continuous operation the savings could be significant.

To says,  “We are still evaluating whether to commercialize the machine and talking to other people about it at the moment.”

We would strongly encourage them to commercialize this machine. Any in line device that could really reduce the costs of 3D printed parts would make many more metal 3D printing applications possible.

 

Interview with Ken Burns of Forecast3D on Manufacturing as a Service

I was very impressed with Ken Burns’ presentation at Additive Manufacturing Strategies in Boston. Ken is the technical sales director of the 3D printing services and manufacturing company Forecast3D. Originally set up to do urethane casting, the company now deploys HP MJF, FDM, DMLS, SLA, and Polyjet 3D printing technologies as well as casting. Focusing on bridge manufacturing and short-run production the company recently has bet big on MJF as a manufacturing technology. Many bureaus are continually under threat and expanding because of renewed interest in 3D printing. On the one hand, 3D printing news brings in new customers but some of these then switch to desktop and in house 3D printing. Can service bureaus cross the chasm and play a role in manufacturing millions of products with 3D printing? Or will they succumb to pressures from much larger firms? In different verticals we see that companies are taking very different approaches to adopt 3D Printing while in some industries there is a sharp division between the outsourcers and companies that do in house 3D printing. In medical device, for example, some companies are making huge investments in doing in house production while others immediately outsource. Millions of hearing aids are made in house while only car companies have significantly invested in taking prototyping in house. It is a very exciting time to be a pioneering 3D printing service so we asked Ken to tell us more.

How did Forecast3D get started?

Forecast 3D started with two brothers: Corey & Donovan Weber when they were in their early 20’s. They started in their garage and eventually purchased a single SLA machine (with the help of a loan from their grandfather). Corey developed an innovative method for urethane casting, which helped establish them and differentiate them from other service providers.

How did you go from a regional player to a national one?

Having a strong, reliable, and passionate team that gave our early customer base a unique customer experience and dedicated customer service – this helped us to grow our technology offerings and be able to afford to adopt the latest equipment. It sounds cliché but we listened to what customers needed and answered by creating a national team. Whether it is a phone call or a face-to-face meeting we were committed to the resources to engage with our customers however the needed us. We have also never been complacent with our technology, processes and business systems.

You seem to have always been at the forefront of adopting new technologies. In hindsight, it all looks beautiful but surely you’ve also gotten bitten by adopting new technologies?

We wouldn’t say any of the technologies “bit us” but we have certainly had more success with some over others. The technologies all promise something “ground-breaking”; which is true to an extent, but it doesn’t mean they are the right fit for our business model. We have target customers and industries so we focus on technologies that can help us be successful with that lens. So if we miss the mark, it is usually a small miss.

Do you still do a lot of casting?

Absolutely. Like most traditional processes, they are not going away. In fact, 3D printing has helped improve some of these services like casting. We can do hybrid processes with casting and 3D printing. Casting is and remains a long term focus for us.

What do your customers use Polyjet for?

Fast prototypes – attractive show models. When they want full color parts, or parts with multiple materials and durometers in a single piece. Often used in the entertainment industry.

And FDM?

Robust parts – used in aerospace and automotive mostly, often when demanding environments (high heat resistance, chemical resistance, UV stability) are present. When part strength (and not so much aesthetics) is a priority.

What do you use DMLS for?

Prototype and end-use parts. Often times when a smaller quantity of metal parts is needed, and the geometry would be impossible or too difficult to machine.

SLA Chrome plated award part.

What was it like buying an SLA machine in 1996?

Exciting. It is still exciting to buy new 3D printing equipment in 2019. To be on the forefront of the 3D printing industry in the 90s was an incredible opportunity.

A ProCast Part.

What is ProCast?

Our proprietary urethane casting process, used for producing a short-run (4 to 400) quantity of parts. Often times the next step after a single prototype, and used when only low volume production is needed (product lines that don’t require thousands of parts). We typically start by 3D printing a master model using SLA, FDM, or PolyJet. Then the master model is sanded and finished to the customer’s desired surface finish/texture, and then that part is encapsulated into a silicone mold (which is the soft tool). And from that mold, we produce 20-30 parts at a time. We can cast in any color or texture.

What new technologies are you excited about?

There is a lot to be excited about these days. On the metals side you have a lot of movement with HP’s Metal Jet, DesktopMetal’s Production System, GE Additive and a few others. In the plastics space we are watching a lot of the OEMs looking at solving new problems…HP MJF’s color printer, Carbon, Evolve and Titan Robotics are a few that seem to be doing something different. We are also looking at a lot of technologies surrounding the printer ecosystem from software to automation equipment.

What advice would you give me if I were a company new to 3D printing?

Be realistic with what you are going to do with 3D printing. It’s not the silver bullet that solves all problems. It can be an amazing tool for prototyping or production if you have a good approach. Working with a service provider to test and qualify which technology is always a great start as you can assess lots of technologies.

What about if my firm wanted to use 3D printing for manufacturing?

Yes, there are several technologies now capable of manufacturing. We primarily use the HP’s Multi Jet Fusion (MJF), Stratasys Fused Deposition Modeling (FDM) and SLM (metals) technologies for manufacturing. Our 3D Manufacturing center has 24 of the HP MJF systems so we have the capacity to print tens of thousands of production parts a day. Industries like Aerospace and Healthcare have been taken advantage of FDM and SLM processes in production.

Is lack of automation in post processing holding 3D printing back?

Yes. Until recently there wasn’t a big demand for this type of equipment because there wasn’t a lot of production in high volumes happening in 3D printing; outside of a few niche applications. We have surveyed the market and while some equipment works we have spent a lot of our time developing these tools.

You seem to have taken a big bet on MJF?

Oh yes. We believe in the technology, and its ability to take 3D printing to the next level (beyond being used primarily for prototyping).

Why?

One word. Production. We want to go after high volume production opportunities in manufacturing. We firmly believe this technology is solving new problems and creating new opportunities for our customers. We have already seen it utilized in many great applications and expect that it grows exponentially over the next several years.

What do you use the MJF machines for?

Production. We also do a lot of prototyping with them. There are certainly applications and industries it is better suited for as we are limited by materials, part size, surface finish and a few other constraints.

What is the market like now for a service bureau?

The service bureau market has certainly changed over the last few years. There are several companies focusing on the software component and it some ways attempting to commoditize the space while others have differentiated with specific technologies. We have been position Forecast 3D as a Digital Manufacturing company. Going beyond typical service bureau capabilities to meet the requirements for production. With so many service bureaus we think it is important to focus on what you do best and execute that with laser focus.

Researchers Design Fully Articulated 3D Printed Finger Prosthesis

Silicone cosmetic restoration of middle and ring finger with skin tone match to subject.

Despite the wide range of prosthetics available today, those with partial hand loss are often left out in the cold—and with a disability that often proves to be extremely challenging due to a significant loss of dexterity. Researchers from University of Colorado and Rice University aim to change that with a new design for a finger prosthesis that is fully articulated, featuring a self-contained actuator. The project and subsequent testing are detailed in their recently published paper, ‘Design and evaluation of a distally actuated powered finger prosthesis with self-contained transmission for individuals with partial hand loss.’

Using direct laser metal sintering (DMLS), the research team created a gear transmission for the medial phalanx portion of the finger. The transmission then connects with the DC motor, allowing torque transmission across the PIP joint. This new design features an automated device that is like the index finger size of a female in the 25-50th percentile. While this is an average size, in the future sizing may be possible for other amputees. For proper balance and ‘perception of the prosthesis as an external load worn on the residual limb,’ the scientists designed it with a weight like a human finger.

“The finger phalanges and underactuation mechanism form a six-bar linkage and is essentially a superposition of two four-bar linkages commonly used to underactuate two-phalanx commercial and research devices,” state the researchers. “The linkage system couples the motion of each IP joint to provide a flexion trajectory suitable for a variety of grasps used in ADL.

Testing was centered around evaluating force and flexion of the fingertips, using an Escon 24/2 controller from Maxon Motors powered at 12 V, and a Futek LSB200 load cell powered at 24 V for connecting with the fingertip at varying angles. The researchers also used a Quanser Q8-USB data acquisition board using MATLAB/Simulink to collect the following:

  • Collected load cell force
  • Motor current draw
  • Voltage

In evaluating force of the prosthetic finger, the researchers position the load cell within contact of the fingertip, while the controller powered the motor—driving the finger to the load cell. After that the researchers set up the following steps:

  1. The motor was powered for .5 seconds after detecting the impulse load.
  2. The holding force was recorded.
  3. The load cell was moved to contact the fingertip to measure the flexion speed.
  4. Flexion speed was determined by ‘dividing the time the finger took to contact the load cell from its fully extended position by the angular displacement of the finger.’

The researchers repeated the trials 15 times. As they began evaluating individual gear stages, the team realized further examination would be needed to assess contributions of the face gear pair to transmission efficiency. Mechanics of the fingers will require more validation too, along with further fatigue testing.

Fitting of Vincent finger onto patient. Note location of battery and electrodes on forearm.

 “Ongoing work on the powered finger has resulted in a more compact and higher reduction power transmission and future work will include a closer evaluation of the transmission efficiencies to determine the benefit of using face gears and the changes made to the structure of planetary gear stages,” concluded the researchers. “Alternative gearings that increase the overall reduction of the transmission while decreasing the number of gear stages necessary is of interest, in addition to a more thorough examination of the gear polishing process.

“Work will also include refinements to the residual limb attachment that better accommodates individuals with amputations distal to the MCP, as well as improvements to the robustness and anatomical motion of the kinematic link bar system. Upcoming iterations of the finger will also include improvements to its performance in opposition and safety mechanisms to protect the components in extreme or unexpected loading cases.”

3D printing has earned an honorable niche in the world of prosthetics, undeniably changing the lives of many, from prosthetics that help veterans, to amphibious limbs, to prosthetic breasts for mastectomy patients. What do you think of this news? Let us know your thoughts; join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Exploded view of medial phalanx gear transmission. Parts outlined in rectangles are the different lamina. Left and right inner laminae contain planetary stages and enclose spur/bevel gear stages housed in the central lamina. Outer laminae connect to proximal phalanx and enclose carrier pieces. Output of gear transmission connects to distal phalanx.

Rendering of the steel components of the powered finger with kinematic link bar system outlined. Dashed lines indicate that the bracket containing the links has been raised to show orientation. Bracket is grounded to proximal phalanx with two set screws at locations indicated by arrows. The hollowed plastic shells that enclose the entire finger mechanism are not shown for clarity.

[Source / Images: Design and evaluation of a distally actuated powered finger prosthesis with self-contained transmission for individuals with partial hand loss]

Participate in SmarTech’s Metal Additive Manufacturing Survey

Industry analyst firm SmarTech has launched a market survey of the metal additive manufacturing supplier market in advance of its May release of its industry-leading report on metal powder-based additive manufacturing.  The purpose of the survey is to add background information to the firm’s reporting and analysis as well as provide basis for content that will be made available to readers.

The survey is broken out into four segments to account for the issues particular to materials, machines, software and service bureaus.  The questions for each survey take approximately 10 minutes to complete depending on the depth the respondents which to offer. All respondents will receive a formatted and cleaned version of the data output.

SmarTech’s report on metal additive manufacturing with metal powders is the industry standard for research reports of this nature.  Packed with forecasts and analytical insights the report is purchased by a who’s who of industry leaders, contenders and up and coming firms.

For companies looking to participate:

Hardware Suppliers Survey

Software Suppliers Survey

Materials Suppliers Survey

Service Bureaus Survey

Participants who complete the survey also receive a free copy of our Research Note,

Growing Pains: Will the Metal Additive Manufacturing Hardware Market Rebound in 2019? By Scott Dunham, Vice President of Research, SmarTech Analysis

“To use a poorly thought-out metaphor, a dark storm cloud rolled across the metal additive growth party during 2018’s fourth quarter. The result was the first quarterly decline in hardware revenues the market has seen since 2016, when GE Additive shook up the market with billion-dollar acquisitions, leaving customers waiting to see how the market would shake out. From SmarTech’s advisory market tracking services, the metal additive hardware market grew year over year in revenues generated from machine sales during the first three quarters of 2018 but contracted about 9 percent versus the prior year in the fourth quarter –typically the industry’s most important sales quarter. As a result, industry growth in hardware for the calendar year was just under 10 percent –an amount that almost seems paltry compared to the prior five years, and an amount that is likely to cause some executives, board members, and shareholders to raise questions…

3DPrint.com is an equity holder in SmarTech.

Interview With Honeywell’s Dave Dietrich on Implementing Additive Manufacturing for Businesses

Dave Dietrich is an Engineering Fellow at Honeywell Aerospace. There he was involved with the systems and defense firm’s 3D printing effort. His job is to guide, help and train his fellow engineers in adopting 3D printing for aerospace in the firm. He advocates for a DfAM approach whereby one identifies and designs for the advantages of Additive Manufacturing from the start of a design and development project and indeed this is also the approach that we favor. In previous roles he was an adjunct professor Engineering Management and worked at Boeing as a materials process and physics engineer and later as an Oak Ridge National Laboratory fellow on 3D printing metals. He was also the metal 3D printing technical lead at Boeing and initiated Boeing’s internal metal 3D printing training program.

Dave has now written a book, Additive Manufacturing Change Management: Best Practices. He told us that, “The target audience of this book would be managers/project managers/executives who may not know how or why their company should implement AM.” He also believes that “barriers holding AM back from becoming a widely adopted manufacturing technology within industry has just as much, if not more, to do with business and organizational challenges than technical challenges.” This is a very timely book that could help a lot of firms evaluate and adopt 3D printing in their organization. We asked Dave a number of questions to learn more.

Often there is a lot of institutional resistance to adopting AM in industry. How does one overcome this problem? 

As change agents for AM within industry, my co-authors and I have each had common experiences with respect to institutional resistance. From our experience, it seems that there are deeper underlying currents that have more to do with resistance to changing the company culture than AM technology itself. AM is disruptive. It challenges every notion of typical manufacturing practices, design practices, quality inspection practices, and generally accepted notions of supply chain behavior. As such, overcoming this resistance it has more to do with understanding change management philosophy than breaking through specific AM technical hurdles. Luckily, there’s lot of written documentation in the field of industrial change management, namely, Lean Manufacturing and Six Sigma quality systems. Our book adapts lessons learned from Lean and Six Sigma fields and uses some of those tools when installing AM cultural changes.

For some reason, if customers select a test part for 3D printing its always the wrong one, why is this? 

Often, it is a lack of understanding of the technology. Perhaps they didn’t select the correct process, material, or post-processing requirements for the part, or perhaps the engineer involved with the part didn’t think about the ramifications of poor surface finish. Alternatively, perhaps that specific test part was design for a conventional technology and not adapted to AM capabilities at all. There could be many reasons. About 5 years ago, someone once told me that AM is the wild west of manufacturing. I’d like to hope it is becoming a little more civilized (perhaps more Sheriffs now?), but there is still an enormous education gap regarding the technology capability. I also blame marketing pieces from competing companies designed to highlight the enormous benefits of AM. Of course, these media publications don’t highlight the many pitfalls the company went through to gain a good part. Based on this media blitz, competing companies will often head off to build their own AM test parts in an effort to stay competitive without management understanding the true pitfalls of the technology. Our book directly addresses these challenges.

Metal printing is touted as the future of manufacturing. Meanwhile, it consists of a guy with a brush and a vacuum cleaner cleaning off powder while another takes a circular saw to saw off parts. How do you reconcile that? 

Again, I think it gets down to the overmarketing of the technology. AM itself is not a product. AM itself is not an end to a solution. AM is a tool in the engineering toolbox to solve manufacturing problems. Albeit, an incredibly disruptive one. It also just so happens to be the “most shiny” tool right now. But beware, when the engineer reaches for that tool, they better know how to use it properly! There will always be heat treatments, cutters, hot isostatic pressing, and yes, even folks with brushes and vacuums. Pieces of this will evolve to automation over time, but often over marketing can lead to misperceptions of the technology, which leads to the confounding conclusions you point out in your question.

QA is still a huge problem in 3D Printing, what are some best practices for this?

Yes, there is an inherent conflict between highly optimized AM structures that are beautifully designed and practical inspection and machining of these parts. For metallic AM parts, CT inspection has always been an expensive, but not always a practical solution to this problem. White light scanning is also used to a semi-effective result. Dye penetrant inspection of machined surfaces, in-situ build process monitoring, and other traditional inspection techniques have been used somewhat effectively. There are also challenges on the software side comparing what has been printed, in terms of dimensional conformance, to true CAD definition. I think this is an area that needs more development in the future as AM becomes more production hardened.

What needs to be improved on the 3D printers themselves? 

Recently, I believe we are beginning to see a more hyper-competitive landscape for the metal AM powder bed fusion technology. At Formnext, each year, I see exponential growth in the number of new machine manufacturer entrants into AM. I think this hyper competition will create faster, larger machines with more lasers. This seems like an incremental step, not necessarily a leap frog type of improvement. I’d like to see the other technologies, like Directed Energy Deposition or Wire Fed AM technologies, become more flexible to adapt to geometries with higher complexity. Or, perhaps a completely different type of machine/feedstock/energy delivery system architecture? In other words, I’ve been waiting for that one technology to drop that will shatter AM machines as we know it.

What is one thing that we need to do that we as an industry are not doing? 

 We need to stop promoting the technology itself as the key to world peace, while at the same time, expecting it to exhibit repeated performance of manufacturing technologies that have been around for decades or hundreds of years (castings, machining, injection molding, etc). As discussed in the book, many things within industry and within individual companies needs to change for this to be production hardened. In other words, bridle the enthusiasm a bit.

If I’m a company wishing to manufacture using DMLS, what advice would you give me? 

I would start with a series of questions that gets back to my point earlier that the technology itself is not an end. Why did you pick DMLS specifically? Did you research alternative AM technologies? What is the product you are wanting to produce? Is DMLS the most effective way to produce it? Are you wanting your product to be competitive from a cost standpoint, performance standpoint, etc? What is the objective of this product? By focusing on the product that ultimately gets sold to a happy customer, then DMLS may be a solution, or may not. By asking these types of questions first, we are more likely to arrive at better solution for the company. If DMLS is indeed the right technology choice; then drawing from the book, I would go down a road of preparing the company for the cultural, certification, organizational, talent management hurdles they would face.

What are the biggest hurdles to adopting AM? 

  1. Organizational Culture and Executive Long Term Commitment
  2. Certification Adherence
  3. Lack of Training (technician, engineers, executives)

Whats a good war story? I twice had a machine catch fire. 

That is interesting! Our AM war stories covered in the book are more aligned to cultural or organizational hurdles we’ve faced within companies. We had a lot of fun writing this section of the book and we enjoyed labeling each of the stories as they capture the essence of the challenges. For example, some stories are labeled, “Panning for Gold in Kansas”, “Pathfinder to Nowhere”, “Suckers for Sunk Costs”, “Who’s in Charge Here?”, “Engineering Rigor Mortis”, “Innovate NOW!” and many others. Each story is 100% true, company names were omitted and people’s names changed. They each are not only entertaining to read, but each has its own message relative as to what not to do when industrializing AM. For example, the “Panning for Gold in Kansas” story describes a company’s effort to scour existing products to convert to AM for cost savings potential only to discover later that the true value in AM in not directly building parts that were designed for conventional manufacturing, but rather re-designing the part for AM from the start to exploit AM design advantages, only then do cost savings occur.

Design Guidelines for Direct Metal Laser Sintering, Selective Laser Melting, Laser Powder Bed Fusion

Perchance I came across an excellent document on the design guidelines for  Direct Metal Laser Sintering, also called DMLS, Selective Laser Melting, SLM, Laser Powder Bed Fusion and referred to as metal 3D printing. This document was made by UK based design consultancy Crucible Design. Crucible Design was founded in 1990 by Hugh Raymond and Mike Ayre who for the past 28 years have been tackling tough, complex advanced engineering and design projects. Whether working on cost reduction projects or bringing completely new products to market Crucible Design has carefully built up its reputation over the decades. I was so impressed with Crucible’s design guidelines for metal printing document that I asked CEO Mike Ayre if we could republish it here. I also asked him how he came to make it.

The main reason behind my work with metal 3D printing was the SAVING project, which was run by a consortium in 2011 and 2012. The consortium consisted of Exeter University, ourselves, Plunkett Associates, Delcam, EOS and Simpleware. The point of the project was to find ways to use additive manufacturing to reduce energy use. As the processes themselves are so energy intensive, we soon concluded that the only way to achieve the objective was through the use of the parts, not their manufacture. This is where the airline buckle project came from – reducing the weight of the plane to minimise fuel wastage.

The main problem with metal 3D printing was the same as all design approaches to additive manufacture: early promoters pushed the idea that there were no design limitations, and we ‘were only limited by our imagination’. In fact, this proved to be completely wrong, with 3D printing just having different limitations to conventional methods. In terms of metal printing, the main one is the need to machine out the support structures that are required for any downward facing horizontal surface (the kind of thing that can be washed away using and FDM machine). This requires any efficient design to adopt almost medieval approaches to design, with pointed arches and sloping surfaces that can be built without supports.

Why did you make the guide?

The main reason for making the guide was to inform designers of some of the basic rules and encourage a more creative approach to the use of 3D metal printing and additive manufacture in general. It has been good to see that, since it was written, there is a lot more discussion about appropriate design methods for additive manufacture.

Now the guide was published in 2015 which is eons in 3D printing land. However, the same process limitations and design rules persist. I’ve made design guidelines and design rules documents before and was super impressed with how clear and concise this one was.  I think that this is a very valuable resource to people in metal printing today either to learn about designing for metal 3D printing or to use as a teaching aid to help others. If you’re in a design project with a customer then this is also super helpful in trying to let them see that “complexity is free only in dreams.” I am absolutely certain that these images will be spread far and wide, do please credit Crucible Design for their hard work, be mindful that these images are still their copyright and reach out to them should you need any 3D printing design services done. The images below are all Crucible’s the comments are mine.

Below we can see how DMLS works. A layer of metal powder around 40 micron in diameter and round but not too round is deposited on a build platform and spread out by a recoater. This may be a roller or a knife blade type of recoater. The laser fuses the powder that will make up your part leaving the other loose powder behind. To keep your part from ripping itself apart due to thermal stress supports are needed which will be removed later.

 

While the build plates below seem very full and indeed parts can be stacked efficiently often single parts are built at a time and parts are not stacked. This has to do with the fact that much of the industry is not yet optimized for production and worry that layer skips or recoater bumps and other errors will disrupt a week long build four days in. Note the high amount of manual labor required here. Every one of the bottom column steps will require a person lifting a few kilos at least to a new station or machine. Not shown here is the manual removal of loose powder. In addition to EDM CNC or tumbling (sometimes for a week or more) may be used as well. Depending on the needed Ra and finish of the part many steps will be required including quality control steps such as CT scanning the part to make sure that there are no internal tears or holes.

Parts built in such a way as to make it easy for the recoater to hit them with any force and its best to mitigate part strength in such a way that when that does happen your build doesn’t fail.

Overhanging surfaces in DMLS can be very rough indeed this may require a lot of post-processing. Occluded holes could trap material inside or require supports that can not be removed while large holes could cause parts to tear themselves asunder.

Another thing to consider below is, can the final part withstand the removal of the suports? 

Designing supports that are easy to remove saves a lot of labor. Often a staff member with a flex or circular saw will be cutting away supports. Making sure that this person could do this without damaging the part reduces time and the need to rebuild a part.

Below are some simple support strategies for DMLS. Often a person with decades of experience can do this in their head. While there are some tools that build supports, support strategies for parts still require a lot of experience and thought. Often it will take days for a build and post processing to complete. If you then after four days find out your part has failed then you have to do another iteration. When making completely new geometries several part failures are common. If you have a type of geometry understood (acetabular cups, teeth) then you can print millions of them in many variations.

 

RMIT: 3D Printed Milling Cutter That Cuts Titanium Alloys, Thanks to Jimmy Toton

3D printing is walking its path slowly but surely into the field of aerospace and defense manufacturing. Due to the demands of high performance and rigorous precision, every step given in this direction has to be crafted to the detail to achieve perfect execution.

Jimmy Tonton, a PhD candidate from RMIT University of Melbourne, Australia, has achieved important progress in this field by developing high-quality cutting tools than can now be 3D printed. For this research, Toton has partnered with the Australian Defence Materials Technology Centre (DMTC) and industry partner Sutton Tools. The outcome of this collaboration is a set of steel milling cutters able to cut through Titanium alloys with the same or at times better results than conventional steel tools.

Picture of the high performance milling cutter

This is the high-performance steel milling cutter 3D printed by RMIT researchers. Credit RMIT University

Because the high resistance of metals used for aerospace and defense, creating an efficient cutting tool is quite challenging and expensive. The strength and high-quality execution required to perform those cuts let us imagine the numerous difficulties that Toton had to overcome to achieve a successful design. The milling cutting tool has to be strong enough to cut through metal while keeping the layers resulted from 3D printing unified and all its parts built strong enough to avoid cracks. It also must be finished to a very smooth surface roughness in order to remain functional. 

The set of milling cutters represent the first convincing demonstration of 3D printed steel cutting tools that can cut strong metals. Toton’s work is a clear demonstration of the technology´s potential achievement for the development of 3D printing tools. Consequently Toton has been awarded the 2019 Young Defence Innovator Award and $15,000 prize at the Avalon International Airshow.

Jimmy Toton inspecting his tool

Jimmy Toton inspects a 3D printed steel milling cutter. Credit RMIT University

The technology used to make the milling tools is  Laser Powder Bed Fusion, also called Laser Metal Deposition, Selective Laser Melting  and Direct Metal Laser Sintering. Which is an additive manufacture process in which metal powder is fed onto a metal base and a laser beam melts the material added forming a metal pool that layer by layer forms the object. This technique lets the object to be built with complex internal structures and demanding external surfaces. Although as we know metal 3D printing processes require several finishing and post finishing steps in order to work well. These may include tumbling for several days, HIP, precipitation hardening, shot peening and other steps. These kinds of cutting tools do not magically appear out of the machine but are a result of a number of process steps. 

Some of the potential that this project holds are improvements in productivity, time-saving in tool making, costs savings, reduction of material waste and the possibility of creating tools that fit a very specific purpose and in so doing overcoming supply chain constraints. This is all good news for manufacturing. Toton is now working towards establishing a print-to-order capability for Australia’s advanced manufacturing supply chains.

In his own words:

Manufacturers need to take full advantage of these new opportunities to become or remain competitive, especially in cases where manufacturing costs are high,”

“There is real opportunity now to be leading with this technology.”

DMTC Chief Executive Officer, Dr Mark Hodge, said:

“Supply chain innovations and advances like improved tooling capability all add up to meeting performance benchmarks and positioning Australian companies to win work in local and global supply chains,” he said.

“The costs of drills, milling cutters and other tooling over the life of major Defence equipment contracts can run into the tens, if not hundreds, of millions of dollars. This project opens the way to making these high-performing tools cheaper and faster, here in Australia.”

Sutton Tools Technology Manager, Dr Steve Dowey, said:

“This project exemplifies the ethos of capability-building through industrial applied research, rather than just focusing on excellent research for its own sake,”

RMIT’s Advanced Manufacturing Precinct Director and Toton’s supervisor, Professor Milan Brandt, said:

“Additive technology is rising globally and Jimmy’s project highlights a market where it can be applied to precisely because of the benefits that this technology offers over conventional manufacturing methods,”

Tooling and cutting tools may not be the first thing that you think of when coming up with 3D printed products. This showcase of their use indicates just how versatile 3D printing can be. Toton has shown us that parts that are not traditionally thought of as high value are still mission critical enough to 3D print in costly metal printing processes. We expect many more people to apply metal 3D printing to metal and polymer consumables and tools in the coming years.

3D Printing News Briefs: January 26, 2019

We’re starting with business first in this edition of 3D Printing News Briefs, and then moving on to design software and 3D printing materials. Mimaki USA is getting ready for the grand opening of its LA Technology Center next month, and a Sartomer executive has been elected to the RadTech board of directors. A startup will soon be offering a new cryptotoken for additive manufacturing, and the 3D Printing Association will cease operations. A simplified Blender user interface will make 3D printing easier, and Protolabs is introducing some new materials for its DMLS 3D printing.

Mimaki USA Opening Los Angeles Technology Center

Not long after Japanese company Mimaki Engineering launched its first full-color inkjet printer in 1996, it established Mimaki USA, an operating entity that manufactures digital printing and cutting products around the world. Mimaki USA began preparing to enter the 3D printing market in 2015, and installed its first 3DUJ-553 3D printer in the Americas last winter. Now, it’s preparing for the grand opening of its Los Angeles Technology Center next month.

The event will take place on Friday, February 22nd from 10 am to 4 pm at the new technology center, located at 150 West Walnut Street, Suite 100, in Gardena, California. Attendees will have the chance to meet the company’s industry experts, along with Mimaki Engineering Chairman Akira Ikeda, Mimaki USA President Naoya Kawagoshi, and the regional sales managers from all seven technology centers. Live demonstrations of the company’s printers and cutters will commence after lunch, and attendees will also enjoy tours of the center and a traditional Japanese Kagami Biraki ceremony.

Sartomer’s Jeffrey Klang Elected to RadTech Board

Sartomer, an Arkema Inc. business unit and developer of UV/EB curing technology products, has announced that Jeffrey Klang, its global R&D Directer – 3D Printing for Sartomer, has been elected to the board of directors for RadTech, a nonprofit trade association that promotes the use and development of UV and EB processing technologies. Sartomer is part of Arkema’s commercial platform dedicated to additive manufacturing, and Klang, an inventor with over 20 US patents who was previously the manager for Sartomer’s Coatings Platform R&D, has played an important role in helping the company develop and commercialize many of its oligomers and monomers.

“Jeff’s strong leadership of Sartomer’s innovation and R&D initiatives supports the evolving needs of UV and EB processors in diverse industries, such as 3D printing, coatings, graphic arts, adhesives, sealants, elastomers and electronics. His deep understanding of UV/EB technologies, markets and regulatory requirements will make him an asset to RadTech’s board of directors,” said Kenny Messer, the President of Sartomer Americas.

erecoin Startup to Offer New Cryptocurrency for Additive Manufacturing

A startup called erecoin, which is a product of CAE lab GmbH, is on a mission to change the world of 3D printing by combining the benefits of blockchain with future demands of the ever expanding AM community. After a year of preparation, erecoin has completed the registration of its ICO (Initial Coin Offering), and people can begin purchasing its new cryptotoken on the Ethereum public trading infrastructure starting February 18, 2019.

“We are glad and proud that we, as a young startup, managed to master the necessary steps for a functioning utility token,” said erecoin Co-Founder Konstantin Steinmüller. “At the same time we are curious to see how the community supports our crowdfunding.”

Steinmüller told fellow co-founder Jürgen Kleinfelder about a concrete 3D prototype optimization project that CAE-lab was working on, which is how the idea to combine blockchain and 3D printing came about. The startup’s goal is to get rid of many of the uncertainties in the AM process chain, and blockchain can be used to conclude smart contracts to solve legal and technical questions in the industry. Because data exchange is integrated into the blockchain, a secure and efficient relationship of trust is created between the parties in the chain. Time will only tell if erecoin can achieve its goal and help accelerate additive manufacturing or if it is just hopeful hype or an inefficient way to do something no one needs.

3D Printing Association Closes

The 3D Printing Association (3DPA) is the member-funded, global trade association for the 3D printing industry in Europe. In 2015, the 3DPA moved its base of operations to The Hague in order to develop an independent professional B2B platform for European AM industries. As the 3D printing landscape continues to grow and mature, the association has decided to permanently terminate its operations beginning February 1st, 2019. But this isn’t necessarily bad news – in fact, 3DPA is glad that CECIMO, the European Association of the Machine Tool Industries and related Manufacturing Technologies, has been able to set itself up as a leading 3D printing advocate in Europe.

“3DPA’s goal, derived from an online survey and a business summit at the beginning of 2015, was to provide an independent B2B platform for standardisation, education and industry advocacy. Although there are still important steps to be taken to reaching full maturity, meanwhile the landscape has become less fragmented and volatile, and additive manufacturing has been embraced as strategic pillar by well-established umbrella organisations in sectors like manufacturing, automotive, aerospace and medical appliances,” said 3DPA’s Managing Director Jules Lejeune.

“CECIMO for example, is the long standing European Association of the Machine Tool Industries and related Manufacturing Technologies. It represents some 350 leading AM companies that play a significant role in a wide variety of critical sections of the AM value chain – from the supply of all different types of raw materials for additive manufacturing and the development of software, to machine manufacturing and post-processing. In recent years, it has successfully claimed a leading role in bringing relevant topics to the regulatory agenda in Brussels.”

Simplified Blender User Interface

While the free 3D design and modeling software application Blender is very handy, it’s only helpful if you’re able to learn how to use it, and by some accounts, that is not an easy feat. But, now there’s a new version of Blender that includes a simplified user interface (UI) that’s so easy, even kids as young as 10 years old can figure out how to work it. FluidDesigner has used a new Blender 2.79 feature called Application Templates, which makes it possible to add a library of parametric smart objects and reduce the menu structure and interface.

“Application Templates allows for the simplification of the UI but with the whole power of Blender in the background. You can access nearly all of Blender commands from the Spacebar or by switching panels. Another way to look at it is that it is an Application Template is an almighty Add-On,” Paul Summers from FluidDesigner said in an email.

“All objects are either Nurbs or Bezier (2D) Curves for ease of editing. Nurbs objects in particular can be joined together to create personalised jewellery or artwork quickly and simply.

“There is no need to go to the trouble of joining objects using Boolean modifiers, instead you simply overlap Nurbs objects and then run the *.obj file through Netfabb Basic to repair any issues created with Blender objects. With its much simplified interface, created by Andrew Peel, FluidDesigner for 3D Printing with its parametric smart objects (Nurbs curves) is suitable for even the novice user. The current version runs under Blender 2.79 and can be accessed from the File menu.”

Protolabs Adds New DMLS Materials

Protolabs, a digital manufacturing source for custom prototypes and low-volume production parts, has announced that it is enhancing its direct metal laser sintering (DMLS) offering with two new materials. Nickel-based Inconel 718 is a heat- and corrosion-resistant alloy with high creep, fatigue, rupture, and tensile strength, is able to create a thick, stable, passivating oxide layer at high temperatures, which protects it from attack – making it an ideal material for aerospace and other heavy industries for manufacturing gas turbine parts, jet engines, and rocket engine components.

Maraging Steel 1.2709 is a pre-alloyed, ultra-high strength steel in the form of fine powder. It’s easy to heat treat with a simple thermal age-hardening process, and offers high hardness and high-temperature resistance, which makes it perfect for high performance industrial and engineering parts and tooling applications. These two new Protolabs materials additions help reinforce the company’s enduring reputation as one that can offer an impressive range of metals.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

Interview with Patrik Ohldin of Open Source Metal 3D Printing Company Freemelt

I’ve known Patrik Ohldin for a long time as a supremely knowledgeable metal printing guy. He’s been working in metal 3D printing for over 14 years, 12 of those as an Area Sales Manager for Swedish EBM metal printing company and now GE subsidiary Arcam. He really knows a tonne about EBM and electron beam powder bed fusion technologies. He is also a stand-up guy that knows how to explain, educate and understand business cases in a wide array of areas. Patrik was instrumental in introducing EBM to new areas such as aerospace and orthopedic implants and helped many firms industrialize metal 3D printing. After more than 12 years of selling EBM machines worldwide and being a key player in EBM’s conquest of foreign markets, Patrik co-founded open source electron beam powder bed fusion company Freemelt.

I was flabbergasted. With a war for talent going on for experienced metal 3D printing salespeople (a complex subject that you can’t really learn from a course or book at the moment no matter how much time you have), Patrik didn’t end up joining one of the multi-million dollar VC funded metal printing firms. Experienced metal printing sales are worth their weight in titanium powder (at 2008 prices) and along with application development engineers for powder bed the most sought-after people in 3D printing. I figured he was going to lean back with a big paycheck and equity somewhere. Instead, he wanted to make an open source electron beam powder bed fusion machine. As far as challenges go this was a stupidly complex one to want to undertake. I can not stress enough just how insanely challenging and complicated such a challenge is. Metal printing is a step change more complex than industrial polymer powder bed fusion. The investments, skills, and difficulty would more than eclipse just about any startup out there. Additionally, they were trying to do a 30 million startup on a shoestring. Patrik was a very experienced and very smart man and he surrounded himself with a supremely experienced metal printing team. I was also almost certain that he would fail. Resigned that he would become some kind of quixotic Don Quixote of metal printing I thought I’d at least get a good anecdote out of knowing him. Surprisingly though Freemelt was able to make an open source metal printing platform and what’s more, it started to have traction as well. People kept coming to me saying that they were evaluating their platform and technology. People were excited by Freemelt’s goals to make new alloys for 3D printing possible. Manufacturers liked the fact that there was no lock-in and they had access to all of the technology. Powder metallurgy companies were excited about being able to control and account for all of the variables and use this as a platform to develop materials. The Freemelt ecosystem was growing and the technology was actually viable. Blown away, and sheepishly feeling a bit apologetic, I decided that it was time to interview Patrik about Freemelt.

Freemelt’s Electron Beam Gun.

What is Freemelt? 

We provide the world’s first open source electron beam powder bed fusion (E-PBF) metal 3D printer, designed for materials R&D. The metal 3D printing industry’s growth has been tremendous, but its dirty little secret is that only a small number of materials are actually available to use. We are convinced that metal 3D printing’s future lies in (more) materials, and that this is what will drive new applications and sustained growth. But to develop new materials for metal 3D printing as quickly as possible you need many heads and hands with full access to the appropriate tools. We have therefore created Freemelt ONE, an open source development toolbox that gives you complete control of beam paths and hardware, lets you make tests with small amounts of powder, build in vacuum at high process temperatures and attach auxiliary equipment for in-situ process monitoring.

How can I contribute or work with you? 

We encourage all types of cooperation since we believe that collaboration is the way forward for metal 3D printing. The most straightforward way to contribute is of course to actually use Freemelt ONE to develop new materials for metal 3D printing. The fact that Freemelt ONE is open source also makes it possible for 3rdparty suppliers of software and hardware to interact with it. Our vision is the creation of a roadmap for metal 3D printing, with well-defined goals and roles that allow the participating companies and institutions to focus on their core competences, thereby moving the whole industry forward.

The powder distribution of the Freemelt One E-PBF 3D printer.

 What kind of companies do you wish to work with?

We wish to work with companies and institutions that are interested in developing new powders, new materials and new processing algorithms for metal 3D printing. Universities and research institutes will most likely make up the lion’s share of our customers, but we also see that corporate research centers and powder manufacturers want to use Freemelt ONE to perform their own materials research.

What has changed in 3D printing since you’ve been involved with it?

I would say that the most important change is the industry’s focus on production applications. Major suppliers of CAD software and metal powders have established themselves in metal 3D printing, often via acquisitions. Large industrial corporations develop products to be manufactured with 3D printing and make major investments in their own production capacity. It is also noteworthy that the number of 3rd party suppliers of software and hardware for pre- and post-processing keeps increasing.

What advice would you give to an industrial company that wants to use 3D printing to manufacture? 

That it doesn’t make sense to just try to produce existing products with metal 3D printing. The way to go is to use the technology to add product value, for example by redesigning the products to make them easier to produce or to give them increased functionality. The ability to produce parts in new advanced materials, including materials tailored for metal 3D printing with completely new chemical compositions, further increases the likelihood of success.

The Vacuum Chamber of the Freemelt System.

What are the advantages of E-PBF when compared to laser powder bed fusion (L-PBF)? 

I would say that E-PBF’s main advantages are the high output power (currently up to 6 kW) that gives high productivity and enables high process temperatures (>1.000 ˚C), and the extremely clean process environment (equivalent to the parts per billion range for oxygen) that the high vacuum provides. Hot processing has proven successful to eliminate internal stresses and deformation of built parts, and also helps prevent crack formation. Furthermore, the electron beam’s high translation speed gives you excellent process temperature control and an unrivaled opportunity to tailor microstructures and material properties. It has for example been demonstrated that single crystal materials can be made with E-PBF. Yet another potential of E-PBF is the multitude of process monitoring technologies that require high vacuum to work. I am convinced that we will see new advanced solutions for E-PBF process monitoring in the future.

Do you see a less expensive generation of E-PBF machines emerging?

As the metal 3D printing industry matures and more companies enter the arena it will undoubtedly lead to increasing price pressure and demand for less expensive machines, both for E-PBF and L-PBF. But ultimately it is the cost and value of the produced parts that drive the decision to invest in and manufacture with metal 3D printing.

Can we do gradient materials with E-PBF? What’s so exciting about that? 

Gradient materials are exciting because sometimes it is advantageous to have different material properties in the same part. One such example is turbine blades, where you want different mechanical properties at the root and at the tip. Gradient materials have been attempted with powder bed fusion by gradually mixing different metal powders as the build progresses. Meanwhile, with E-PBF it is possible to obtain gradient material properties with only one metal powder, by using the technology’s precise beam and temperature control to create different microstructures within one single component.

Side view of the Freemelt One vacuum chamber.

What kind of materials are you excited about? 

You can use Freemelt ONE’s combination of open source software, high process temperature and high vacuum to develop a wide range of materials for metal 3D printing, for example non-weldable Ni-based superalloys, intermetallics such as titanium aluminide, high-alloyed steels, refractory metals and oxygen-free high-conductivity (OFHC) copper. But at the end of the day, it is our customers who themselves decide which materials to develop with their Freemelt ONE printers.

 Recently I’ve seen a lot of excitement about BMG’s (bulk metallic glasses) and intermetallics? 

Intermetallics such as titanium aluminides have good material properties in high operating temperatures and weigh only about half as much as superalloys do. They are therefore of great interest to for example manufacturers of aero engines. At the same time intermetallics are challenging since they are generally brittle at room temperature, which makes them difficult and expensive to manufacture with conventional methods. But turbine blades in titanium aluminide are now being manufactured with E-PBF, by taking advantage of the technology’s high process temperature and excellent temperature control. These titanium aluminide turbine blades have already been flight-tested.

BMG’s or amorphous metals are basically alloys with a disordered, non-crystalline microstructure. BMG’s have many interesting applications, but to obtain the glassy state rapid cooling is required in the manufacturing process. L-PBF and E-PBF offer very high cooling rates as compared to traditional manufacturing methods, which is the reason for the recent excitement. BMG manufacturing with E-PBF has indeed been demonstrated. Just keep in mind that the build temperature must be kept well below the “glass transition temperature” to prevent crystallization.

R&D Manager and E-PBF veteran Ulric Ljungblad.

 What’s so special about superalloys?

Superalloys retain strength also in very high operating temperatures and are therefore used in, for example, aero engine turbines, where higher temperatures translate to improved fuel efficiency. However, with increasing temperature capability these alloys become more challenging to manufacture as they require high process temperatures and precise temperature control. This makes the E-PBF technology a suitable choice to produce parts in such superalloys. 

Two Freemelt Team Members Robin Stephansen Systems Designer (left) and Martin Wildheim Senior Mechanical Designer

What was it like working at Arcam for such a long time? 

It was a great experience and a privilege to contribute to the E-PBF journey, and gave us a thorough understanding of the technology’s capabilities and potential. We also took part in successful industrial applications of the technology, such as orthopaedic implants in titanium and turbine blades in titanium aluminide. Going forward, Freemelt’s mission is to continue to develop the E-PBF technology and enable our customers to launch additional successful industrial applications in new materials.

Why is E-PBF such a good technology for space vehicles and rocket engines?

Space vehicles operate under extreme conditions and the space industry, therefore, uses many advanced materials, for example, different high-temperature materials in the rocket engines, and lightweight materials in structural components. There are also many new space companies that manufacture smaller rockets, where the components are small enough to fit nicely inside the build envelope of PBF systems.

 Do you see E-PBF being used as the main technology for space vehicles? Or along with L-PBF?

E-PBF and L-PBF are complementary technologies which means that E-PBF will be the technology of choice for some space applications and L-PBF for others. I would say that E-PBF will be used predominantly for high-temperature applications such as rocket engines.

Interview with 3D Print Pioneer Kevin McAlea EVP Healthcare and Metals 3D Systems on Industrializing 3D Printing

There are not a lot of people out there with over 25 years of experience in 3D Printing. One of those people is Kevin McAlea. He is currently an EVP at 3D Systems and in charge of the company’s Healthcare and Metal Printing Business Units. In Healthcare 3D Systems is deploying 3D printing and 3D scanning into various medical markets from medical models to patient-specific implants and surgical planning. The company has software for doctors and hospitals, can also sell 3D printing as a service or can sell machines. In metal printing 3D Systems’ sells specialized metal printers for dental as well as larger production systems for industry such as its DMP Flex 350 and DMP Factory 500 systems. Previously Kevin worked as VP for Europe, VP Marketing, SVP for Production Printers at 3D Systems. Before this Kevin was the Vice President of Marketing and Business Development at venerable laser sintering company DTM which was acquired by 3D Systems. Kevin started at DTM in 3D printing in 1993. Not only are there few people with this much experience there are very few people that have fullfilled so many different operational roles in 3D printing businesses and barely any people that additionally have as deep an experience with polymer sintering, metal sintering, inkjet and stereolithography. It’s a real treat to be able to interview a true pioneer and veteran such as Kevin.

What have you learned in your 25 years in 3D printing?

Over the course of my career in 3D printing, what I find most interesting has always been the potential applications. In the early years of 3D printing, it was about prototyping. But the realization has existed for quite some time that at some point manufacturers would be able to migrate from prototyping to production. The transformative potential of the technology enables compelling use cases and applications. The industry has gone through several hype cycles, but if you’ve been in industry long enough, you’ve seen steady growth in use for production manufacturing such as for hearing aids and dental aligners. Manufacturing with additive is real today, and will drive this industry beyond what we’ve seen in last 25-30 years – that’s what makes this so exciting.

What have been some of the biggest changes?

For more than 15 years, 3D printing was largely a hidden cottage industry – no one knew anything about it. Today, everyone has heard of it, but with this broad awareness, there have also been some misconceptions about how it can be used and its maturity. In the last 10 years, we’ve seen quite a shift. When 3D printing began, it was initially an industry with a small number of players and limited investment. Today, we’re seeing lots of investment money coming in to the industry. Along with additional money, we’re seeing a lot of new players and technologies. While these will not all prove to be long-term winners, it creates churn in the market – pushing all the technology providers to grow and push the boundaries of what is possible. And this is what helps drive growth and innovation.

What has it been like working in this industry?

In a macro sense, it’s been something of a roller coaster ride. In the history of 3D printing, some have seen its potential as poised for huge success but then they’ve written it off. It’s very cyclical. If you’re fortunate enough to be on the inside of this industry, what makes it so compelling is all the new applications being developed and taking off. Not many people in their careers get the opportunity to work on transformational applications.

Where is our industry now?

With the sheer amount of investment going into the industry right now, new technologies are being developed and existing technologies are expanding. We’re seeing manufacturers implementing new applications and setting up factories. And many large companies are embarking on research and exploration to determine how they can integrate 3D printing into their business. Over the next decade, there will be a big sorting out that will take place as many of these pieces fall into place.

What are some things that need to change?

While the industry has made tremendous strides over the past 30 years, the technology is still relatively immature. And we also see many manufacturers out there that still don’t fully understand where to apply 3D printing, where it makes sense, what parts can benefit from 3D printing and the resulting cost benefit, as well as truly embracing the capital required to set up their factory. There is still quite a bit to be done in terms of educating the market, and providing partnership and counsel to help manufacturers.

What are some of the biggest challenges?

In addition to what I just mentioned, we need to take stock of what is available in the industry with regard to technology, materials and how they can be applied to parts selection and cost. We also need a broader portfolio of materials to expand the range of applications which can be addressed through enhanced speed and parts cost reduction.

A 3D Systems DMP Factory 500 Metal 3D Printing System

What have been some key developments in metal printing?

The fact that we can produce 3D printed parts with excellent properties from traditional metal alloys has been major part of the success story for metal 3D printing. This allows us to create 3D printed parts for aerospace and medical with limited risk that are better or as good as conventionally manufactured parts.

We’ve also seen Increases in print speed which is driving down parts cost, and the ability to make parts in larger sizes that customers like aerospace require.

I believe the third key development to be the ability to certify and validate parts and printers in regulated industries. This is a major breakthrough allowing us to enter advanced manufacturing segments and be successful.

How do you see the future of Direct Metal Printing?

To date, we’ve seen on-going, increased adoption in advanced manufacturing segments such as aerospace, power generation, and medical devices. This is all still in the early stages, but we’ve seen enough demonstrated success that it will drive advancements in next 5-10 years. I believe the technology will also continue to improve – for example, process control, QA, several-fold increase in speed, and the holes in materials portfolio will close – driving increased adoption.

A DMP Factory 350

What have been some of the key advancements in healthcare?

Healthcare like aerospace is a heavily regulated industry. To be successful, a technology partner must demonstrate they can print a part and meet all the requirements for its use in a very rigorous way. It’s also imperative to demonstrate you can install and validate this (3D printing) equipment for a medical environment. The FDA is very transparent in how they operate and their regulatory requirements. Multiple OEMS and service providers have been able to show they can validate use of the printers to make these parts to meet regulatory approval coupled with quality work in factory environment. Huge breakthroughs have been made in this area which have resulted from lots of work by lots of people. You can talk ad nauseam about parts that could be designed by 3D printing, but without validation and approval, there’s no forward movement.

How difficult is it to manufacture medical devices with 3D printing?

It depends. This is a tough question to answer. It’s important for the manufacturer to understand how to apply 3D printing and what parts to select to print. Right now, this is still very much in its infancy. People are still sorting out the range of potential medical devices (i.e., implants and instrumentation) that make good sense for 3D printing. Before production can even take place, a manufacturer must ensure they can operate correctly in a factory environment and validate the printers for production. Many medical device companies can validate traditional factory equipment, but 3D printers are a whole different animal. Today, this is still not a common practice, nor well-understood.

What advice would you give a company interested in manufacturing medical devices?

If a company wants to manufacture medical devices they need to find the right partner with the know-how to set up and validate these environments. And currently, the know-how exists in pockets. 3D Systems has it with experience in our facilities in Denver, CO and Leuven, Belgium,, and the expertise of application teams that understand how to optimize processes, and validate those processes in-house. When a manufacturer works with the right partner, it reduces the time it takes to get from “want to do this” to actually executing.

· Do you see printing medical devices as something that will be done in-house, by specialized manufacturers, by services?

There are two primary routes for medical device manufacturing. Of course, there is in-house production and all large medical device companies will do some amount of in-house manufacturing. However, even for these large manufacturers, there will still be certain classes or types of parts they choose to outsource. Mid-size manufacturers, on the other hand, will primarily outsource the production based on the segment they’re addressing and how large a percentage of their business it is.

The supply chain will be comprised of large OEMs producing some of the parts complemented by traditional contract manufacturers who already supply these device manufacturers who are considering 3D printing as a new option to deliver those parts. Again, the important piece to keep in mind is selecting a well-trusted vendor partner that has the experience, certifications, and post-processing capabilities required. 3D Systems has an objective to enable this. We’re setting up a certified partner network and acting as the trusted vendor.

In metal printing for dental, what are some interesting recent developments?

There is an on-going good opportunity in dental for direct production of crowns & bridges as well as implants. And, specifically for implants, there are some opportunities for hybrid manufacturing – that is, blending additive manufacturing with traditional manufacturing. There is also a small but interesting opportunity to produce crowns from precious metals.

A 3D printed exhaust made on 3D Systems Equipment is on the right while the conventionally made exhaust on the left would have a much higher part count. 

What is needed to truly industrialize metal printing?

First and foremost, we need strong tools for process control and QA. In situ QA tools are pretty essential to fully industrializing a technology. With these tools we are able to reliably predict the output – or final part – based on inputs. Tools for both are in the early stages right now, but we currently have more and more tools to understand what’s going on in-process. These tools help us learn something about the quality of parts produced prior to inspecting them.

To industrialize metal printing, we also need a closer integration of additive and subtractive manufacturing. In almost all cases we don’t simply take 3D printed parts out of the machine and use them as-is. Typically, there is fairly significant post-processing involving multiple steps to get to the final part including machining and wire EDM. Today, that transition is fairly awkward and not very smooth.

It will also be imperative for manufacturers to have a deeper understanding of parts selection and cost prediction. What parts make the most sense to 3D print? How can we predict the cost to produce them? And then how do we select the right projects to start and ensure a profitable outcome?

In medical printing I see a lot of consumers thinking that they’ll get a heart printed a few years from now. Meanwhile, on the research side, people tell me that it will take 20 years for us to print complex organs. What’s your view?

I believe it’s important to separate the potential proof of concepts and all the fascinating work currently ongoing from all the steps needed to actually put this inside a person. As discussed previously, healthcare is a highly regulated industry. So while there are lots of interesting demonstrations of what’s possible, there is a pretty significant gap to actually going through regulatory steps to get these into a person.

You’ve worked in inkjet for a long time. Binder jetting metal is all the rage. Is this something for 3D Systems to consider?

We track all new technologies, including non-laser powder bed processes. There could be opportunities for two-stage processes, where a green part is created in a printer and then solidified in a high-temperature furnace. This might be suitable for parts that would normally made by MIM (Metal Injection Molding). With no tooling required and the ability to use lower-cost powders, there might be some very interesting opportunities for this approach. However, I have some doubts as to whether the properties are sufficient to target the applications we address today.

What advice would you give firms that wish to industrialize 3D printing for manufacturing?

In my years in the industry, I’ve seen many companies attempt to truly industrialize additive. The ones who are the most successful are the manufacturers that partner with a company that has the expertise and experience to guide them to successful implementation. The biggest obstacle we see is companies that don’t understand the technology well enough to select the right parts to 3D print. If the wrong part is selected for the process, you run the risk of tainting everyone’s view of 3D printing. The right partner can help not only select the right part, but then help design it in a way that is appropriate for AM. Additionally, and perhaps even more fundamentally, is putting together a business plan and developing the case for how AM can positively impact overall operations.