3D Printing Webinar and Virtual Event Roundup, August 2, 2020

It’s another busy week in the 3D printing industry that’s packed full of webinars and virtual events, ranging in topics from medical materials and flexible electronics to polypropylene and market costs. There are four on Tuesday, August 4th, two on Wednesday, August 5th, and the week will end with the last KEX webinar on Thursday, August 6th.

ASTM’s AM General Personnel Certificate Program

Last week, the ASTM International Additive Manufacturing Center of Excellence (AM CoE) training course all about additive manufacturing safety.  Now, the AM CoE is starting its AM General Personnel Certificate course, which will begin August 4th and run through the 27th. One of its key focus areas is promoting AM adoption, and helping to fill the knowledge gap with training for the future AM workforce is a major way that the AM CoE is doing this. The online course is made up of eight modules covering all the general concepts of the AM process chain, and attendees will learn important technical knowledge that will allow them to earn a General AM Certificate after completing a multiple-choice exam.

“This course will feature 17 experts across the field of additive manufacturing to provide a comprehensive course covering all of the general concepts of the AM process chain to its attendees. The course will occur over the month of August consisting of two modules per week for four weeks. More information can be found in the course flyer.”

Online registration will open soon. This is not a free course—you can learn about the fees here.

Nexa3D & Henkel: Medical Materials Webinar

Nasal swabs

Recently, SLA 3D printer manufacturer Nexa3D and functional additive materials supplier Henkel announced that they were partnering up to commercialize the polypropylene-like xMED412, a durable, high-impact material that can be used to 3D print biocompatible medical and wearable devices; in fact, it’s already been cleared to print nasal swabs. Now, the two are holding a virtual leadership forum on “Advances and Breakthroughs in 3D Printed Medical Equipment and Device Materials,” like xMED412. Topics to be discussed will include new possibilities for 3D printing medical equipment and devices, the benefits of using AM to fabricate these products, and the advantages additive manufacturing has over medical materials made with traditional manufacturing. Panelists will engage with attendees after the discussion in a live Q&A session.

“3D printing has introduced all kinds of new possibilities for developing stronger and lightweighted equipment but we’ve only scratched the surface of what’s possible. These past few months have driven the industry to new realms of creativity with the need to quickly deliver medical supplies, devices and materials. With new lightweight, sturdy materials designed to withstand impact, moisture and vibration, access to lower cost medical equipment is becoming more widely available thanks to 3D printing.”

Register here for the 45-minute virtual forum, which will take place on Tuesday, August 4th, at 1:30 pm EST.

SOLIDWORKS Design Solution Demonstration

Also on August 4th, at 11 am EST, Dassault Systèmes will be holding a brief demonstration of its 3DEXPERIENCE SOLIDWORKS design solution. This demonstration of the platform’s capabilities will last just 22 minutes, and will teach attendees how to collaborate and stay connected to data while creating new designs with SOLIDWORKS when connected to the 3DEXPERIENCE platform, exploring the latest tools available on the platform, and design a model using both parametric (3D Creator) and Sub-D modeling (3D Sculptor) tools with the help of complementary workflows.

“SOLIDWORKS is the design tool that has been trusted by engineers and designers around the world for decades. Part of the 3DEXPERIENCE WORKS portfolio, SOLIDWORKS is now connected to the 3DEXPERIENCE platform with cloud-based tools that enable everyone involved in product development to collaborate on real-time data. Doing so enables you to efficiently gain the insight needed to create revolutionary new products.”

You can register for the demonstration here.

NextFlex Innovation Days

The last August 4th event in this week’s roundup is NextFlex Innovation Days, the flagship showcase event for the consortium of academic institutions, companies, non-profits, and local and federal governments that make up NextFlex and are working to advance US manufacturing of flexible hybrid electronics (FHE). The event will run through Thursday, August 6th, and will include panel discussions on how FHEs are continuing to transform the world, including a panel featuring a special guest speaker from the US Senate. FHE innovations that will be highlighted during the event include a wearable biometrics monitor from Stretch Med, Inc., flexible skin-like sensors from Georgia Tech, a flexible UV sensor out of the NASA Ames Research Center, miniaturized gas sensors that GE Research integrated into wearables and drone formats, and Brewer Science’s integrated FHE solutions in a brewery application.

“This multi-day virtual event will feature over 50 customer, partner and member company presentations online available at no cost. If you watch live, you’ll have the chance to interact with presenters and flexible hybrid electronic (FHE) experts from the comfort of home via webinars and virtual labs, or you can watch video demonstrations at your availability.”

Register for NextFlex Innovation Days here.

Additive America & HP AM Webinar

HP is currently sponsoring a webinar series highlighting business in the AM industry that worked to transition their production processes in order to help fill the supply chain gap that’s been caused by the COVID-19 pandemic. This week’s episode, which will take place at 1:30 pm EST on Wednesday, August 5th, will feature a discussion with Additive America on “the lasting impact of COVID-19 on additive manufacturing.”

“Listen in on conversations with our customers to learn how they have adapted to the change in business climate, whether it be a shift in production workflow to address supply chain gaps, enabling a faster product development cycle to support changing customers’ needs, or bridge production.”

You can register for this webinar here.

Prodways, BASF, & Peridot Talk Polypropylene

Also on August 5th, Prodways, BASF, and full-service product development company Peridot Inc. will be holding a free webinar together called “Rethink Additive Manufacturing with Polypropylene.” Led by Lee Barbiasz from Prodways, Jeremy Vos from BASF, and Peridot owner Dave Hockemeyer, the webinar will focus on how PP 1200, a tough, chemically resistant, low density polypropylene enabled by BASF for selective laser sintering (SLS) 3D printing, is being used to bridge the gap between additive manufacturing and injection molding, as well as growing opportunities and applications in short run manufacturing. Hockemeyer was an early adopter of the material, and will share a variety of use cases for PP 1200. There will also be a chance for attendees to ask questions about the material.

“3D Printing with Polypropylene is here! After more than three decades, 3D printing technology has evolved the ability to 3D print polypropylene material. Polypropylene enables scalability in manufacturing, reduces barriers to entry in 3D printing and reduces manufacturing costs by 25-50%!”

You can register for the webinar, held on Wednesday, August 5th, from 1-1:45 pm EST, here.

KEX Knowledge Exchange on Market, Costs & Innovation

The last entry in this week’s roundup will take place on Thursday, August 6th. KEX Knowledge Exchange AG, a former spinoff of Fraunhofer IPT, held webinars in July about powder bed fusion technology and post-processing, and the last in its series will be an online seminar on Market, Costs & Innovation. Sebastian Pfestorf from KEX and Lea Eilert, the project and technology manager for the ACAM Aachen Center for Additive Manufacturing, will be the speakers for this webinar.

“In this online seminar, you will learn:

  • Current AM market and industrial trends

  • What markets the technology has penetrated the most and why

  • How to go about implementing AM, including risks and uncertainties

You can register for the hour-long webinar here. It will take place on Thursday, August 6th, at 8 am EST.

Will you attend any of these events and webinars, or have news to share about future ones? Let us know! 

The post 3D Printing Webinar and Virtual Event Roundup, August 2, 2020 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Electronics 3D Printing Part Three: Inkjet 3D Printing

In our previous articles in this series, we discussed the history leading up to the development of electronics 3D printing, as well as one of the two dominant methods for printing electronics, direct writing. The other leading method for 3D printing electronics is inkjetting.

Inkjetting processes deposit photopolymers similar to a printhead found in 2D printers before curing them using ultraviolet light. The most notable company working with this process is NanoDimension, an Israeli company that has developed the DragonFly series of PCB 3D printers.

The DragonFly series jets conductive inks alongside a photocurable, dielectric ink. The process by printing bottom solder masks and pads, then printing and sintering conductive layers and printing and curing the dielectric layers, and then ending with the top solder masks and pads. The dielectric ink is cured with an LED lamp, while the conductive ink is sintered by an internal energy source.

Auxiliary electronics, including transistors and resistors, can then be added to prototype PCB designs, including multilayer PCBs. The company has demonstrated a number of applications, including embedded electronics, electromagnets, molded interconnect devices, antennas and sensors.

A 3D printed thermometer made using Nano Dimension technology. Image courtesy of Nano Dimension.

Like NanoDimension, ChemCubed inkjets dielectric photopolymer alongside conductive silver ink. The company’s flagship product is the ElectroJet, an LED flatbed 3D printer designed through a collaboration Direct Color Systems. Because Direct Color Systems offers UV printing machines—for Braille and textured signage, phone cases, acrylic awards and other applications— with build areas up to 600mm x 1,200mm in size, it’s possible that ChemCubed could scale up the size of its system to even enable batch additive production of PCBs.

A Boston startup with exciting potential is Inkbit, which is commercializing technology developed at MIT that combines inkjet technology with machine vision and learning to 3D print multi-component objects. The vision system scans each layer with micrometer resolution as the ink is deposited, registering any discrepancies between the print and the CAD geometry and compensating. This means that the internal roller required for evening layers in traditional inkjet systems, is unnecessary, allowing for the use of materials that would not jam these conventional types of systems. Meanwhile, the machine learning software behind Inkbit’s process is able to learn from errors that occur within prints and improve over time.

The machine vision system makes it possible to also incorporate additional parts into printed objects. To do this, the printer is paused and these items, such as metal reinforcement or electronics, can be manually inserted before the print begins and material is printed around them. At MIT’s Computer Science and Artificial Intelligence Laboratory, where the technology was developed, researchers demonstrated the ability to 3D print complex lenses, micro lens arrays, fiber-optic bundles, complex meta materials, an object with a built-in razor blade, lenses on top of LEDs, and even a plastic smartphone case around an existing smartphone. While the incorporation of these elements is currently performed manually, the company is hoping that, in the future, the Inkbit system can be brought into a production line where pick and place machines can add these components automatically.

Inkbit’s technology demonstrates the potential future of electronics 3D printing, having already tackled the ability to fabricate complete, functional objects with a single build process, though there is are a number of hurdles to overcome, not the least of which is automation. In our next post in the series, we will look at the myriad research endeavors currently being pursued to expand the capabilities of present electronics 3D printing technology.

The post Electronics 3D Printing Part Three: Inkjet 3D Printing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

nScrypt Demonstrates 3D Manufactured Printed Circuit Structure

Orlando, Florida-based nScrypt demonstrated a 3D manufactured printed circuit structure (PCS) at the recent IPC APEX show in San Diego, California.  The PCS was an inductor disc that, when held close to any show attendee‘s smart phone with an NFC Reader app, would open the nScrypt website on that person’s phone.

The discs were 3D manufactured using nScrypt’s Factory in a Tool (FiT).  According to nScrypt’s CEO, Ken Church:

“We distinguish between printed circuit boards, which are incorporated into finished products, and printed circuit structures, or PCS, where the electronics and the structure or housing of a device are essentially the same thing.

“We’re doing a free live webinar about state of the art PCS on April 28 with rockstars in this area from Army, Air Force, NASA, SI2, University of Delaware, and DeLux Advanced Manufacturing.”

Anyone interested in the free webinar can register here.

nScrypt also distinguishes between 3D printing, which is mostly making parts, and using its Factory in a Tool to 3D manufacture fully functioning finished products, like the inductor disc PCS.  As shown in the video, nScrypt’s FiT first 3D prints the disc’s ABS outer shell using its material extrusion tool head (also known as FFF or FDM), then uses its SmartPumpTM tool head to microdispense conductive lines, then uses its material extrusion tool head to print another ABS layer, then uses its milling tool head to mill the intermediate layer smooth, then uses its pick and place tool head to place a Near Field Communication (NFC) chip and the SmartPump tool head to dispense more conductive paste, then completes the structure of the disc, seals in the electronics, and prints the nScrypt logo with the material extrusion tool head, then uses its milling tool head to provide a fine surface finish for the finished PCS.

Ken Church said:

“This is a cool little demonstration of a simple printed circuit structure with fine surface finish, where the electronics are embedded in the housing of the device with our Factory in a Tool.  This disc happens to be flat but the FiT can 3D manufacture virtually any shape, conformally printing the electronics into or on device’s structure.  The sky is the limit for 3D manufacturing PCS with our Factory in a Tool.  Or maybe the sky isn’t the limit because a ruggedized version of our bioprinter, which has basically the same capability as our FiT, is on the International Space Station.”

The FiT system can be equipped with nVision cameras that monitor the tool heads for automated in-process inspection and computer vision routines, surface mapping for Z-tracking and conformal printing onto objects of any surface shape, UV LED curing light, and a HEPA filter.

The post nScrypt Demonstrates 3D Manufactured Printed Circuit Structure appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Voxel8 Lands New CEO to Lead Multi-Material 3D Printing

After its co-founder, Harvard professor Jennifer Lewis, moved to a supervisory role, Voxel8 has found a new CEO. Friedrich von Gottberg will lead the Boston startup as President and CEO. 

Uppers 3D-printed by Voxel8’s Active Lab solution.

Voxel8 first made a splash at CES in 2015 with a desktop electronics 3D printer, dubbed the Developer’s Kit, capable of both printing plastic and depositing conductive inks. The company wowed attendees with the ability to 3D print a complete, functioning quad copter that could fly right off the print bed. 

The printer was meant to aid Voxel8 in discovering a killer app for the multi-material printing technology being developed in the lab of Jennifer Lewis. The lab has been involved in research that has included lightweight composites, stretchable sensors, solar panels and organic matter. Much of these achievements are dependent on a unique pneumatic printhead that lays at the heart of Voxel8’s printing process. 

Between then and now, the startup sold its desktop electronics 3D printer to the likes of Google ATAP, worked with such partners as the MITRE Corporation, and took on investors that included the CIA, via In-Q-Tel. In the process, the company switched gears, discontinuing the Developer’s Kit and launching the Active Lab, which deploys the material dispensing technology to 3D print plastic onto fabric, along with an inkjet head that provides a full range of color. The killer app, Voxel8 hopes, is athletic wear, specifically shoe uppers. To drive these efforts, the startup received funding from DSM and HP Tech Ventures, as well as existing investors ARCH Venture Partners and Braemar Energy Ventures.

Along the way, Jennifer Lewis shifted from her CEO role to an advisory position so that she could focus on her work at Harvard. Meanwhile, her co-founder, Travis Busbee, took over as CEO as the firm looked for Lewis’s replacement. 

Friedrich von Gottberg, President & CEO at Voxel8, Inc.

Prior to joining Voxel8, von Gottberg was with Cabot Corporation, where worked for 20 years. His last positions at Cabot were as senior vice president and president of Purification Solutions, before which he served as vice president and general manager of New Business Segments, as well as vice president and global director of R&D. Cabot is a large, publicly traded chemicals company known for its work with carbon and aerogel, among other materials. While its environmental record has not always been so hot (though it has made progress on this front), it manufactures activated carbon, used to remove pollutants from water, air and more.

The chemical company also makes elastomeric composites, colorants, and inks, fumed metal oxides and other materials, meaning that von Gottberg’s experience with these chemistries, along with his contacts in the industry, will serve Voxel8 in its mission to deliver mass production multi-material 3D printing. Meanwhile, Travis Busbee will return to his position as Chief Technology Officer. 

The post Voxel8 Lands New CEO to Lead Multi-Material 3D Printing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: September 18, 2018

We’re starting with a bit of business news in today’s 3D Printing News Briefs, then a story about metal 3D printing, and then moving along with examples of some of the amazing and innovative things people have been making with this technology. Sigma Labs has issued a letter to shareholders about some company changes, and a YouTube video introduces some new hard tool steels for 3D printing. WASP is carrying on with a major project by its Crane construction 3D printer, and a University of Minnesota professors talks about 3D printing electronics directly on skin. BMW Motorrad created 3D printed motorcycle components, and a Wisconsin sign company is using 3D printing for its products. Finally, Wrights Robotics made a full-sized, 3D printed, talking robot from a little 1980s movie called Short Circuit, and a low poly artist made some neat 3D printed chain mail.

Sigma Labs Says Goodbye to Mark Cola

Mark Cola

This past Friday, September 14th, Sigma Labs, Inc., which provides quality assurance software under the PrintRite3D brand, announced that its President, Co-Founder, and CTO Mark Cola would be retiring next month. After the news had time to settle over the weekend, the company announced the release of a letter to its shareholders from CEO and Chairman John Rice. In the letter, Rice paid tribute to everything Cola had done for the company over the years, and also assured shareholders “that the succession taking place is smooth and secure,” noting that Cola’s internal management responsibilities will be covered by Sigma’s Vice President of Engineering Darren Beckett, while Dr. Martin Piltch will take over his role on the company’s outside team of technology consultants.

“We thank Mark as founder and a leader of Sigma Labs, for creating and driving a vision of advancing the Additive Manufacturing Industry’s ‘good’ 3D manufacturing technology to become a ‘great’ high-quality manufacturing technology assured by Sigma’s IPQA,” the letter reads. “We shareholders can thank Mark for building and leading the multi-discipline technology team that is commercializing our robust data-rich analytical and interactive software – hardware tools that promise to add real value to an industry that needs such a tool. Yes, Mark now surely has the right to step back. Thank you and well done, Mark Cola!”

Here at 3DPrint.com we’ve met with Mark and have been very impressed with his deep 3D Printing knowledge and his vision on 3D printing for manufacturing and know he’ll be sorely missed at Sigma Labs.

Hard Tool Steels for SLM 3D Printing

Formetrix Metals, a brand new company I’d not heard of before today, recently posted its first video about its use of BLDRmetal steel alloys for laser powder bed fusion 3D printing. The 3D printable hard tool steel was used to make industrial dies for rolling bolt threads, after the dies made with CNC machining had failed.

After designing the dies, new BLDRmetal tool steel was used to 3D print prototypes. Once the surface finish was complete on the prototype dies, they were able to achieve high toughness and a high case hardness of up to 74 HRC.

WASP Crane Construction 3D Printing

WASP (World’s Advanced Saving Project) is well-known for its large-scale construction 3D printers, and for the last two years has been working to develop a new one, called the Crane or “the infinity 3D printer.” Evolved from the BigDelta 12M, the Crane is a modular 3D printing system with different configurations to choose from. Next month in Italy, WASP plans to present the Crane to the public in Massa Lombarda, which is where the village of Shamballa is being 3D printed.

On October 6th and 7th, a program will be held surrounding the introduction of both the WASP Crane 3D printer and the Gaia Module, a 3D printed earth house. According to WASP, Gaia is “the first module in soil ever realized with the 3d print- technology.” For more information on the event, visit the WASP website. You can see the new Crane 3D printer in action below:

3D Printing Electronics on Skin

While augmenting humans with electronics that can monitor our vitals, enhance our senses, and provide us with real-time information may sound like just an episode out of new science fiction series Glimpse, from Futurism Studios and DUST, the idea of advanced wearable electronics is not so far-fetched. Researchers like Michael McAlpine, a 3D printed electronics expert and mechanical engineering professor at the University of Minnesota, are working to improve upon existing technologies to make this fantasy a reality. This spring, McAlpine published a study that demonstrated how to 3D print electronics directly onto skin with an inexpensive, self-made 3D printer and ink made from silver flakes. Recently, Futurism interviewed McAlpine about his research, and his thoughts on the future of 3D printable electronics.

“All of these technologies we’re developing will lead to the post-computer era. You’re basically going from 2D to 3D [microchips to integrated circutry], which is essentially what biology is. So, that’s where the merger of electronics and biology is going to happen. Any privacy or ethical issues that spring from that aren’t going to be much different from the ones that we have with current electronics,” McAlpine said.

3D Printed Motorcycle Components 

The motorcycle brand of German automotive company BMW, called BMW Motorrad, recently developed a new motorcycle that’s full of 3D printed components and parts. This is not surprising, considering the parent company’s love for and use of 3D printing for both its regular and concept automobiles – BMW has been using 3D printing to build its cars for nearly 28 years.

3D printing can achieve parts with complex geometries, which is why it’s a perfect technology for the automotive industry. BMW Motorrad’s special concept motorcycle, called the S1000RR, demonstrates how the company can build new components using rapid prototyping technologies, as it is made of many 3D printed parts, such as a swingarm and an aluminum chassis. Take a look for yourself in the video below:

3D Printing Signs: Beneficial or Not?

Adam Brown in the shop at Sign Effectz.

Four years ago, a sign making company called Fastsigns decided to adopt 3D printing in three of its major markets – Chicago, Milwaukee, and San Diego. Fastsigns isn’t the only company to use 3D printing to make signage – a Milwaukee business called Sign Effectz, which was first founded in the company president’s garage in 1996 and now resides in a 17,000-square-foot facility, decided to explore 3D printing a few years ago, because it could open new ways of customizing signs and make it simpler and less expensive to produce small batches of custom products. But, workers in skilled trades may not appreciate the technology quite as much.

Your fabricators on the floor now turn into (computer-aided design) modelers. I did. I love it. I came from busting my knuckles and dropping stuff on my toes and wasting material to problem solve and figure out how to build something… to getting to the 3D CAD modeling world where you can do all of that stuff in a virtual world and make sure 1,000 pieces all match and align and run it through animation to see if it works,” said Adam Brown, the President of Sign Effectz, before noting the potential downside of the technology.

I wonder if you’ll be able to maintain the level of interest and passion in 3D CAD modeling because there’s little pain associated with it all of the sudden. It’s just a mental math problem and you hit print.”

In my opinion, products like custom signage are one of the many applications for which 3D printing is perfect. Using 3D design and CAD software to create signs is still a creative way to build something, even if you’re not manufacturing every bit of the sign by hand.

Full-Size 3D Printed Johnny 5 Robot

If you’re a fan of 80s movies, then you surely know of Short Circuit, starring such well-known actors of the decade like Steve Guttenberg and Ally Sheedy. With the tagline “Life is not a malfunction,” the movie tells the story of Number 5, one of a group of experimental military robots. When the robot is struck by lightning and electrocuted, he suddenly gains self-awareness and intelligence, and flees the laboratory, as he is afraid of being reprogrammed. He is later rechristened as Johnny 5.

Wrights Robotics recently completed its own life-size, 3D printed version of the Johnny 5 robot, and published a YouTube video showing its audio, neck motor, and lip light tests. Just like the real Johnny 5, this 3D printed robot moves, lights up, and talks, even uttering the movie phrase “Don’t disassemble Number 5!”

3D Printed Chain Mail 

If you’re a frequent visitor to Renaissance festivals, then you’ve no doubt seen plenty of chain mail in your day. But Agustin Flowalistik, a low poly 3D printing artist based in Madrid and the Fablab manager of Tecnolab, decided to create his own chain mail – of the 3D printed variety, of course. If you want to make your own, Flowalistik has made the files available for download at Cults3D, Thingiverse, and MyMiniFactory.

“The chainmail size is 195x195mm. A 60x60mm sample is available to test and find the right settings before printing the big chainmail. Print the model with a 0.4mm nozzle and 0% infill,” Flowalistik wrote in the Thingiverse description for the 3D printable chainmail.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.