3D Printing Medical Products – Making The Impossible Possible

When it comes to application-specific 3D printing, the medical industry presents unique challenges and benefits. Few other areas of manufacturing touch human lives in quite the same way, as the production of medical products directly impacts the quality of life.

3D printing is increasingly coming into use as a valid — and, importantly, validated — solution for the production of medical products. What can be made today, and how are those whose lives could benefit from these products able to gain access to them?

Immediate-Need Medical Supplies

One of the most critical 3D printing applications of the moment is the production of urgently needed medical supplies including personal protective equipment (PPE). Supply shortages are impacting medical personnel on the front lines of the fight against the spread of novel coronavirus as COVID-19 cases pick up around the world. 3D printing is proving its value in immediate-need PPE such as face shields, able to provide a stop-gap solution as traditional supply chains pick up. Shapeways is among the manufacturing agencies qualifying as an “essential business” during this pandemic, and is working constantly to produce necessary equipment. Read more about Shapeways’ response to and resources for COVID-19 here.

Patient-Specific Orthoses & Prostheses

Products that assist in individual mobility are much more effective when they are made for that individual. 3D printing offers the ability for manufacturers to create orthoses and prostheses that are fully personalized to fit not only the needs, but the exact anatomy of each individual. Braces, orthotics, and prosthetic limbs can all be 3D printed in durable materials to perform in real-world day-to-day life. When created through a trustworthy supplier, such devices will have been optimized with functional integration and tested in simulations and mechanical methods. Shapeways, for example, offers a market-ready solution for these uses made using EOS 3D printing technology with Nylon PA11 material. This PA11 material offers key benefits such as high elongation at break, elasticity, and high impact resistance.

Medical Devices

Medical devices including eyewear, implants, hearing aids, and surgical instruments can be 3D printed for prototyping, modifying, and completely customizing products. Rapid prototyping is speeding the time-to-market process for new products, as the latest 3D printing technologies allow for different needs during different parts of the design process. When speed is of the essence during iterative design, 3D printing can quickly produce new prototypes to get a hands-on feel for new designs and measurements. Later in the design process, realistic full-color 3D printing can produce parts that look just like the final product will. These medical devices can also be modified to suit individual or rising needs, or fully customize parts for an individual. Hearing aids, for example, are nearly all 3D printed these days, as these small devices can be made to exactly fit the wearer’s unique ear anatomy.

Surgical Tools & Guides

3D printed surgical tools and guides can be made using sterilizable materials for use directly in the operating theatre. Surgical guides can be fully personalized to fit the exact anatomy of a patient, showing surgeons exactly where to focus during an operation, saving precious time and increasing accuracy during procedures. 3D printed tools also offer the capability for custom equipment to be used, with advanced materials such as ceramics coming increasingly into play. Advances in materials science have enabled the 3D printing of tools that can be fully sterilized and safe for human contact.

Educational, Training, & Surgical Planning Models

3D printed models aren’t just for show, as medical professionals can produce patient-specific anatomies for hands-on understanding. The human mind thinks best in three dimensions, and holding an exact replica of anatomy can help a patient understand exactly what will happen during a medical procedure. Surgeons and other medical professionals can use such models to practice ahead of complex procedures, reducing time needed in the operating room and so saving the patient procedure time — encouraging faster recovery — as well as reducing the expense of running an OR. New doctors can also train in new procedures using 3D printed models that look and feel just like the real thing. Full-color, multi-material 3D printing such as with the Stratasys J750 3D printer can produce results that are astonishingly close to real life.

Medical Models

3D printing can also scale up structures for hands-on understanding. 3D printed small molecules; proteins, macromolecules, and viruses; and bacteria, cells, tissues, and other organisms can be created from digital files for scaled-up, hands-on learning and training that could not be achieved on a screen. Students of many ages, from grade school to medical student and beyond, can gain better understanding of the world around us — and the pieces that comprise it.

Bioprinting

Perhaps the pinnacle of medical 3D printing is bioprinting. In this application, living cells and tissues are 3D printed to create new structures capable of life. Often created with cellular scaffolds, tissues of organs such as the skin, liver, and kidney have been successfully 3D printed for research, drug and cosmetic testing, and even early transplant efforts. The ultimate — and still years-ahead — goal for bioprinting is to provide lab-made organs for people waiting on the organ transplant list, helping to save lives.

Offering end-to-end 3D printing manufacturing and fulfillment services to 130 countries, Shapeways offers a base to start the medical 3D printing journey. Find out more about Shapeways’ medical 3D printing offerings here.

The post 3D Printing Medical Products – Making The Impossible Possible appeared first on Shapeways Blog.

3D Printing News Briefs: September 21, 2019

We’re talking about an event, some 3D printing education news, and racing applications in today’s 3D Printing News Briefs. Russia’s top 3D printing festival is returning for a second year, 3D Universe is introducing its Educators Exchange Community, and SUNY New Paltz is opening a 3D printing/business incubator. Scheurer Swiss GmbH supplied Toyota Gazoo Racing New Zealand with 3D printed parts, and Cincinnati Inc. is now an official sponsor of Hendrick Motorsports.

3D Today Festival in Russia

Russian 3D printing media outlet 3Dtoday will soon hold 3Dtoday Fest, the country’s top national 3D printing event. The festival premiered last year in St. Petersburg, but is moving to Moscow this time. Top local 3D technology manufacturers and distributors, such as iGo3D Russia and Picaso 3D, will attend the event, and many amateur 3D printer designers will showcase their work as well. Industry professionals and popular 3Dtoday bloggers will speak at the festival, and makers will have the chance to take complimentary workshops on topics ranging from post processing and painting 3D printed models to drawing with a 3D pen.

The goal of 3Dtoday Fest, which is working to expand the reach of 3D printing on a prosumer level, is to unite the community in order to help new and established manufacturers promote their materials and equipment, help beginners enter the world of 3D printing, and give artists and designers a place to display their work to a larger audience. 3Dtoday Fest will take place in Pavilion 5 of Moscow’s Expocentre on November 29 and 30 from 10 am to 6 pm.

3D Universe Introduces Educators Exchange Community

For a teacher who’s long wanted a classroom 3D printer, confusion may set in once the dream becomes a reality – what to have the students do with it now that it’s here? That’s why  3D Universe, a retailer and founding member of the e-NABLE community, has launched its new Educators Exchange community group on Facebook. The page is for educators who want to share their classroom’s digital fabrication projects, which is easy to do with the group’s spreadsheet.

“Our hope is that teachers from all over the world will share their curriculums with each other as open-source resources. We would love to see classrooms create collaborative projects that can connect students from different demographics together in a global 3D Universe Educational Maker Movement!”

Simply request to join, answer a few questions, and agree to the group rules, and then you can start sharing what your students are working on. You can browse the spreadsheet to find open source educational project files and resources, and even find helpful links to websites, articles, and machine-specific tutorials.

SUNY New Paltz Opens New Engineering Innovation Hub

The State University of New York (SUNY) at New Paltz has just opened its $13.5 million Engineering Innovation Hub (EIH) building, built by Urbahn Architects and general contractor PC Construction. The 19,500 square foot facility, designed to meet LEED Silver environmental and sustainability standards, includes teaching and research lab spaces, the school’s Hudson Valley Additive Manufacturing Center (HVAMC), a popular bachelor’s degree program in mechanical engineering, and 3D print prototyping labs to support the program. It was designed in such a way that an expansion could be supported in the future if necessary.

“The bright, open, 661-square foot entrance lobby is intended as a collaborative space for students,” explained Urbahn Architects’ Construction Administrator Manuel Mateus. “It features cabinets for the display of 3D-printed artifacts. Counters with computer charging and data outlets, lounge-style seating, and whiteboards that allow students to study, work, and collaborate. The lobby also features a textured art wall invoking 3D-printed panels. The flooring consists of textured porcelain ceramic tile and the ceiling is gypsum board. The space features ring-like curvilinear LED ceiling light fixtures.”

3D Printed Toyota Race Car Parts by Scheurer Swiss

Scheurer Swiss GmbH was commissioned to create carbon-reinforced 3D printed engine components for the well-known Castrol Toyota Racing Series (TRS). With the company’s help, Toyota GAZOO Racing New Zealand has created the more powerful Toyota FT-60 for the TRS 2020. The engine can produce 285 hp – far more than its predecessor – and the car itself was tested on the track in Italy this summer. The material was able to stand up under the enormous heat and speed, in addition to the race track’s compressive forces.

“We are planning to go into series production soon with the 3D-printed carbon-reinforced engine components from Scheurer Swiss. We are very satisfied with the advice and service provided by Scheurer Swiss, in particular the flawless and fast delivery of the urgently needed carbon-reinforced components for the Toyota FT-60 test series,” said David Gouk, the owner of David Gouk Race Engines.

The Castrol Toyota Racing Series’ 2020 racing season starts in January at the Highlands Motorsport Park in New Zealand.

Cincinnati Inc. Sponsoring Hendricks Motorsports starting in 2019

In a record 10-year agreement beginning this year, machine tool manufacturer Cincinnati Inc. has joined Hendrick Motorsports – a 12-time NASCAR Cup Series champion – as an official sponsor through the 2028 racing season. The company will be a primary sponsor of Alex Bowman’s No. 88 Chevrolet Camaro ZL1 in the October 6th Cup Series playoff race, in addition to two 2020 events. Cincinnati Inc. is also a full-season associate sponsor of the team’s entire stable for ten years, and was named Hendrick Motorsports’ Official Metal Fabrication and Additive Equipment Provider. Hendrick will use the company’s 3D printing, laser cutting, and press brake machinery to help develop and construct its race car fleet.

“Ten years is quite a statement. It demonstrates how the Cincinnati team feels about NASCAR and the opportunities the sport presents for their business,” said Rick Hendrick, owner of Hendrick Motorsports. “From the perspective of our team, it’s a major endorsement of how fantastic the Cincinnati products are and the confidence we have that the relationship will help provide a competitive advantage on the racetrack. We look forward to a lot of trips to Victory Lane together over the next decade.”

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

The post 3D Printing News Briefs: September 21, 2019 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing Industry Review of the Year August 2018

The month of August welcomed various medical innovations within the 3D printing industry. The automotive and aerospace sector also further integrated additive manufacturing through Bugatti’s latest supercar, the Divo, and NASA’s cube satellite set for space from the Hindustan Institute of Technology and Sciences. Moreover, Reebok and BASF  began production of its 3D printed sneaker, […]

Facebook bans 3D printed guns in news feed, messenger and Instagram

Despite Cody Wilson’s assertions, the debate over 3D printed guns is not over yet. Last week, social media giant Facebook became the latest organization to weigh-in on the discussion in an update to its Community Guidelines. According to numerous sources, Facebook released a statement saying: “Sharing instructions on how to print firearms using 3D printers […]

3D Printing News Briefs: August 10, 2018

We’ve got some business news to start things off with in today’s 3D Printing News Briefs, followed by a little research and a really cool 3D printed costume. The Department of Defense has awarded a contract to Contour Crafting, and Sutrue is celebrating its tenth anniversary. Facebook has made the decision to ban blueprints for 3D printed guns, and a Siggraph paper takes an in-depth look into near-eye displays. Finally, several companies helped the non-profit organization Magic Wheelchair make a really cool 3D printed wheelchair costume for a big Star Wars fan.

Contour Crafting Receives Department of Defense Contract

One of the first methods of large-scale 3D printing, Contour Crafting, uses large but lightweight robotic 3D printers, which can quickly put down layers of building material to rapidly create entire buildings onsite in just days. The California-based corporation itself is on a mission to commercialize disruptive construction technologies, and we recently learned that the US Department of Defense (DoD) has awarded Contour Crafting a $3 million research and development contract to build a concrete 3D printer for the purposes of building construction for disaster relief.

According to the company’s website , “Effective 25 JUL 2018, the Department of Defense has awarded Contour Crafting Corporation with a Rapid Innovation Fund contract in the domain of large and construction scale 3D printing. The outcome of this funded R&D program is expected to be a technology which, among other applications, will effectively respond to disaster relief situations with expedient, safe and sustainable structures and buildings.”

This information confirms that the DoD is not putting all of its eggs into one basket, so to speak, and is seeking outside help for its construction 3D printing goals.

Sutrue Celebrates Ten Years

Medical device startup Sutrue first started working on a 3D printed suture stitching device to help prevent needle stick injuries back in 2014, and became the first company to successfully 3D print a suture device. But Sutrue’s story actually began back in August of 2008, when its founder Alex Berry was stuck at home with a broken ankle and watched a documentary that provided some insight into robotic suturing. In an effort to keep busy during his recovery, Berry, who had some basic CAD knowledge, got to work.

After moving to the UK, Berry officially started Sutrue in 2012, meeting some influential people along the way who helped him get closer to achieving his goal of creating a 3D printed suture device. The startup completed a £30,000 crowdfunding campaign in 2014, submitted another patent, developed a few mutually beneficial relationships with other companies, and secured further funding for continued device development. Now, Sutrue is celebrating the 10th anniversary of Berry’s initial idea.

The startup wrote in a post, “It’s been ten years of ups and downs, filled with much uncertainty particularly in the first five years in which Berry didn’t even know for sure that the device would work. He has maintained the progression of the device through having a healthy dose of insanity, extreme resourcefulness, and an inquiring and problem-solving mind. He’s gone against many societal norms to have created two working prototypes of his automated suturing device – the robotic and the handheld, but as the route to market becomes closer and closer, he’s glad to have fought against the odds to see the project through to completion.”

Facebook Bans 3D Printed Gun Blueprints

Gun with 3D printed parts. [Image: CNET]

There’s been an increased amount of conversation on the topic of 3D printed guns recently, after news broke of a settlement between the US State Department and Texas open source 3D printed gun designer Defense Distributed, run by Cody Wilson. The settlement states that Wilson and his non-profit organization can publish files, plans, and 3D drawings of guns in any form, and are also exempted from export restrictions; additionally, the government will be paying nearly $40,000 of Wilson’s legal fees. This means that people who weren’t legally able to purchase firearms before, such as felons and domestic abusers, can 3D print their own guns without serial numbers. As you can imagine, many are not happy with this decision. This week, Facebook, the world’s largest social network, said that it will ban any websites that host and share blueprints of 3D printed guns, though the designs have already been available online for years.

According to BuzzFeed News, a Facebook spokesperson said, “Sharing instructions on how to print firearms using 3D printers is not allowed under our Community Standards. In line with our policies, we are removing this content from Facebook.”

MSN reports that Facebook did not “immediately respond to a request for comment regarding the Ghost Gunner” 3D printed gun.

Siggraph Paper on Optical Design for Augmented Reality Near Eye Displays

This year’s annual conference on computer graphics, SIGGRAPH 2018, starts this Sunday, August 12th, in Vancouver. One of the papers published for the conference, titled “Steerable application-adaptive near eye displays,” discusses see-through near eye displays (NED), which are currently being used in the Hololens, among other things. According to the Stanford Computational Imaging Lab, most NEDs work by using a stereoscopic image pair to optically drive the visual system’s vergence state to “arbitrary distances,” but drives the focus (accommodation) state towards a fixed distance.

The technology is a bit of a long shot, due to people getting motion sickness or their eyes getting tired, but if we can get it to work, I bet every movie theatre in the world will employ it.

The abstract of the paper reads, “The design challenges of see-through near-eye displays can be mitigated by specializing an augmented reality device for a particular application. We present a novel optical design for augmented reality near-eye displays exploiting 3D stereolithography printing techniques to achieve similar characteristics to progressive prescription binoculars. We propose to manufacture inter-changeable optical components using 3D printing, leading to arbitrary shaped static projection screen surfaces that are adaptive to the targeted applications. We identify a computational optical design methodology to generate various optical components accordingly, leading to small compute and power demands. To this end, we introduce our augmented reality prototype with a moderate form-factor, large field of view. We have also presented that our prototype is promising high resolutions for a foveation technique using a moving lens in front of a projection system. We believe our display technique provides a gate-way to application-adaptive, easily replicable, customizable, and cost-effective near-eye display designs.”

Co-authors of the paper are NVIDIA Corporation‘s Kishore Rathinavel, Praneeth Chakravarthula, Kaan Akşit, Josef Spjut, Ben Boudaoud, Turner Whitted, David Luebke, and Henry Fuchs from UNC Chapel Hill.

3D Printed Star Wars Wheelchair Costume

Here’s something fun and heartwarming to kick off your weekend – non-profit organization Magic Wheelchair, which makes free, bespoke wheelchair costumes for kids, created a 3D printed Poe Dameron X-Wing Fighter wheelchair costume for a 13-year-old, wheelchair-bound Star Wars fan named Vedant Singhania to wear at last month’s Comic-Con International. Project partners included Pixologic, which used its ZBrush digital sculpting software to provide the design and modeling work, and Dangling Carrot Creative, which used the high print speeds of the Massivit 1800 3D printer to make 50 separate costume pieces in a little over two weeks. Massivit also donated 3D printing materials, and Monster City Studios assembled the large wheelchair costume.

“We connected with Magic Wheelchair because we knew our technology and modelling expertise could assist them with the fantastic work they are doing for children in wheelchairs,” said Pixologic’s 3D Product Development Manager Paul Gaboury. “After we designed the costume, Dangling Carrot Creative was the final piece to the puzzle. The company allowed us to 3D print life-size to help remove the need for molds or casting which saves substantial time and money.”

Discuss these stories, and other 3D printing topics, at 3DPrintBoard.com or share your thoughts in the Facebook comments below.