HP and Dyndrite Partner to Create Next Generation 3D Printing Solutions

Seattle startup Dyndrite announced a strategic new partnership with Hewlett Packard (HP) to license Dyndrite’s geometric kernel technology and power the next generation cloud and edge-based digital manufacturing solutions. By combining HP’s end-to-end manufacturing management expertise with Dyndrite’s cutting edge additive technology, HP is hoping to deliver a software platform capable of powering the additive manufacturing (AM) factories of the future.

In 2019, 26-year old Harshil Goel’s company Dyndrite emerged out of stealth mode to reveal the world’s first GPU-native geometry engine, the Dyndrite Accelerated Geometry Kernel (AGK). Since geometry kernels were first introduced decades ago, they have been a crucial component in advancing 3D CAD/CAM/CAx software. Still, the company claimed this software have not kept pace with changing computational architectures, modern manufacturing technologies, and modern design needs. In order to address this challenge, Goel teamed up with veteran mathematicians, computer scientists, and mechanical engineers to develop a new solution that could level the playing field so that the manufacturing hardware no longer surpassed the software, facilitating the AM industry to reach its potential.

“The promise of 3D printing is to deliver unique parts and tools not possible through traditional methods, and do so on an industrial and global scale. For this to happen the industry must evolve and Dyndrite’s mission is to accelerate this change,” said Goel, now CEO of Dyndrite. “HP is a clear leader in industrial 3D printing and this collaboration speeds the game-changing impact our technology brings to the AM community at large. We applaud HP’s vision and look forward to a long and fruitful partnership for years to come.”

The new alliance builds on HP’s focus on expanding its software and data platform to help customers fully realize the transformative power of 3D printing technology. Through the development of new solutions that leverage the Dyndrite kernel, HP expects to improve efficiency, enhance performance and quality, enable mass-personalization, automate complex workflows, and create scalability and extensibility for continued partner and customer innovation. The ultimate goal for both companies is to change how the software works in the AM industries, driving new performance and functionality.

In that sense, Dyndrite claims that its fully native GPU Kernel easily handles additive specific computations such as lattice, support, and slice generation, in some cases reducing compute times from hours or days to minutes or seconds. For heavy use cases, the Dyndrite kernel is naturally scalable with access to additional GPU nodes, whether locally or in the cloud and provides both C++ and English-readable Python APIs, making application development accessible to a wide variety of users, including non-programmers such as students, mathematicians, and mechanical engineers. Probably what most interests HP is providing developers and original equipment manufacturer (OEM)s with a tool capable of representing all current geometry types, including higher-order geometries such as splines (NURBs), surface tessellations, volumetric data, tetrahedra, and voxels, allowing the development of next-generation applications and devices.

Using Dyndrite solution for additive manufacturing (Image courtesy of Dyndrite Corporation)

“Innovations in software, data intelligence, and workflow automation are key to unlocking the full potential of additive manufacturing,” said Ryan Palmer, Global Head of Software, Data and Automation of HP 3D Printing and Digital Manufacturing. “We are committed to advancing our digital manufacturing platform capabilities and this strategic collaboration with Dyndrite is an exciting next step on the journey.”

Building upon HP’s leading position as a behemoth technology firm, the company has acquired and partnered with dozens of companies to broaden its ecosystem and accelerate innovation and speed product development and supply chain efficiencies. HP also supports numerous 3D printing and digital manufacturing open standards to ensure data interoperability and choice for customers.

As a global provider of industrial-grade 3D printing and digital manufacturing solutions, HP offers systems, software, services, and materials science innovation to its customers. These solutions already include numerous software and data innovations, like its HP 3D Process Control and HP 3D Center software offerings.

Dyndrite’s new GPU-powered, python-scriptable, additive manufacturing build processor at work (Image courtesy of Dyndrite Corporation)

The new HP and Dyndrite partnership builds on a relationship that first began when HP became one of the inaugural members of the Dyndrite Developer Council, a group of leading 3D printing systems, software, and solutions providers. Along with Aconity3D, EOS, NVIDIA, Plural Additive Manufacturing, and Renishaw, HP was chartered with steering the future direction of the company’s roadmap. The driving force behind Goel’s venture is advancing the design and manufacturing software tools used today, which he said were built more than 30 years ago and are becoming bottlenecks to today’s creativity and productivity. Especially when compared to the manufacturing hardware that over the past few years has given rise to new design philosophies and a whole new paradigm of manufacturing production.

In this sense, Dyndrite is creating next-generation software for the design, manufacturing and additive marketplace, with the goal to dramatically increase the workflow and efficiency of AM technologies. With Dyndrite joining HP’s global ecosystem, HP advances 3D printing and digital manufacturing solutions, improving the overall experience for its customers and moving the industry forward.

The post HP and Dyndrite Partner to Create Next Generation 3D Printing Solutions appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3DEXPERIENCE: A Virtual Journey, Part 1

Due to the ongoing COVID-19 crisis, this year’s 3DEXPERIENCE Forum by Dassault Systèmes had to be re-imagined as a virtual event, just like so many other conferences. At 1 pm EDT on July 29th, nearly two months after the in-person event was meant to have taken place in Florida, the company began the live stream of the Plenary Session for “3DEXPERIENCE: A Virtual Journey,” a series of digital programming that replaced the annual North America customer event.

Unfortunately, the webinar seemed to be having issues, which continued on and off over the next two hours of the live stream, so I missed pieces here and there. Technical difficulties happen all the time at live events, too, so the only real difference here was that I couldn’t raise my hand and say, “I’m sorry, the audio and picture cut out, could you repeat that please?” Luckily, Dassault had the webinar up to view on-demand the very next day, so I was able to go back and check out the parts that I had missed.

Erik Swedberg, Managing Director, North America, Dassault Systèmes, got things started with his segment on “Business in the Age of Experience: Challenges and Opportunities for North America,” which focused on manufacturing and supply chains, and why companies looking to transform, some sooner than they’d hoped due to the pandemic, should “invent the industry of tomorrow,” rather than trying to digitize the past or the present.

“Yesterday, businesses focused on automation of the manufacturing system; this is Industry 4.0. Today, many industrials are digitizing the enterprise system. It’s not enough. You need to create experiences. Tomorrow, the game changers will be those with the best developed knowledge and know-how assets. Why? Simple. Because the Industry Renaissance is about new categories of new industrials creating new categories of solutions for new categories of consumers,” Swedberg said.

He mentioned Tesla and Amazon, companies in Silicon Valley working to create autonomous vehicles, and fab labs creating and printing smart, connected objects.

“The 3DEXPERIENCE platform is a platform for knowledge and know-how—a game changer, collaborative environment that empowers businesses and people to innovate in an entirely new way,” he continued. “Digital experience platforms for industry, urban development, and healthcare will become the infrastructure for the 21st century.”

Swedberg explained how 3DEXPERIENCE can allow any business to become social, by connecting employee innovation into the system where the company’s products are designed. This was a common theme today, which you’ll be able to see later.

He also explained that, with Dassault’s 13 brand applications—such as SIMULIA, CATIA, and SOLIDWORKS—the company can serve a wide variety of industries, helping its customers on their journey to invent tomorrow’s industry.

“In summation, we are in the experience economy, the Industry Renaissance is here, and world events are accelerating the need for digital transformation. As the world changes, we will partner with you for success,” Swedberg concluded. “We have the people and the insights to help you on your journey.”

Dassault’s Vice Chairman & CEO Bernard Charlès was up next, speaking about “From Things to Life.” He first said that he hoped no one on the live stream, or their loved ones and colleagues, had been impacted by the COVID-19 crisis.

“We’ve gone through a tough time, all of us. And we are with you, and we are learning a lot also from the crisis,” Charlès said.

Even though I’ve worked from home for nearly four years now, other aspects of my life have been turned upside down in the last few months, and I felt a kind of solidarity whenever the session’s speakers brought up how all of our lives, and our industry, have changed. Charlès also congratulated everyone signed into the live stream on working together, and continuing to innovate, during the pandemic; the continuing health crisis was another theme that threaded throughout the plenary session.

He said that the 3DEXPERIENCE platform is about inclusiveness, “because it means ideas and people connecting.” He shared some of the work that 3DEXPERIENCE users had accomplished during the recent and varied quarantines, such as creating respirators, improving logistics, and working to make the quality of airflow in hospitals better. He said that all of these projects were done on the 3DEXPERIENCE cloud.

“So many of you accelerated the cloud implementation, to be able to work from anywhere, especially from home, during confinement time.”

He mentioned that we are moving from a product economy to an experience economy, and that, in the long run, companies will continue to produce, and maintain ownership of, products and services throughout the life cycle, while their customers will get to enjoy the experience.

“That will accelerate innovation for a sustainable world,” Charlès said.

Next, he talked about a few companies that have been using the 3DEXPERIENCE platform for interesting projects, like California-based Canoo, which dreams about refining urban mobility with an electric vehicle that can be used as a service or subscription, rather than being owned by individuals.

In order to create innovation, Charlès said, you need to be sure that your digital platform will work, and Canoo stated that 3DEXPERIENCE hit the mark here, helping to speed things up in the product development process.

He then talked about Arup, a company that’s using the 3DEXPERIENCE platform to create a virtual Hong Kong for city planning purposes. Arup is working to make Hong Kong a smart city, and the platform is helping the company in this endeavor; for example, Arup and Dassault just completed a project called the Common Spatial Data Infrastructure Built Environment Application platform…say that three times fast.

Finally, Charlès explained that the role of life sciences is to “protect what we care about,” and said that industry pioneers are coming up with new and different ways to diagnose and care for people. He stated that creating new healthcare experiences is a complex project, because it means converting big data into smart data and simulating real world situations in a virtual world. Luckily, 3DEXPERIENCE can help with this.

“3DEXPERIENCE…is a system of operation, because the platform can help you run your business, and the platform should also help you invent a new business model,” Charlès concluded. “The common values across all the industries we serve is putting the human at the center of everything we do.”

Next, Renee Pasman, Director of Integrated Systems at Skunk Works for Lockheed Martin, provided an overview of using the digital thread, and the 3DEXPERIENCE platform, for the product lifecycle, “and how Lockheed Martin is leveraging it to drive increased affordability, efficiency and collaboration throughout the lifecycle.”

“…Our projects cover the entire product life cycle that you might imagine from an aerospace and defense type of program, all the way from conceptual design through modeling and simulation, manufacturing, to sustainment and end of life,” she explained. “And one key part of the Skunk Works culture in the last 75 years has been very close collaboration across all of those areas. What we’ve learned as we have started this digital thread initiative is that by giving our workforce these latest tools, we’ve been able to make that collaboration easier, to be able to make it go faster, to be able to bring data in sooner, make better decisions, see what the impacts are of those decisions, and use that to guide where we are going.”

She explained that the product lifecycle “really starts with design,” and said that by starting this new Near Term Digital Thread/Affordability initiative and giving its workforce the 3DEXPERIENCE tools, Skunk Works has learned that collaboration is faster and stronger, and that we “make better decisions to guide where we’re going.”

We’ve all heard about this issue before—there are two versions of an important product document, and some people update one, while others update the other, and no one has a clear idea of which version is correct and most up-to-date. It’s frustrating to say the least. But Pasman noted that by using the 3DEXPERIENCE product lifecycle management platform, “we’re starting to see efficiency benefits now.”

Pasman also said that the Skunk Works team has learned something “unexpected” with the platform, and that’s the social collaboration it provides, which allows users to “make changes with a level of certainty.”

“We hadn’t necessarily focused on this area, but our teams really used this environment to collaborate better, and found it to be very useful to have all information in that single source of truth.”

Pasman also noted the usefulness of having a life cycle digital twin, as it “allows us to tie it all the way back not just to manufacturing but actually back into design, and making sure the data flows in the digital twin seamlessly.”

“I think if you talk to maintainers or sustainment and users, there’s a lot of time spent putting data into different systems. By making it easier to do that, it allows people to focus on the hard parts of their job, and not just the data entry parts,” she explained. “Collaboration between different areas and getting data flowing is where we see a lot of the benefit from 3DEXPERIENCE, from affordability and product quality perspectives. We’re focused now on how to take the next step in this journey and improve schedule and affordability to fit into the market space that we are working in today. That’s where a lot of the work from our digital thread initiatives have been focused.”

Next up, Craig Maxwell, the Vice President and Chief Technology and Innovation Officer for Ohio-based motion and control technologies leader Parker Hannifin, spoke about “Simple By Design.” The multinational company has been integrating some of the tools that Dassault has been developing over the past few years, which has been valuable to the company.

“When we look at any enterprise or business, we saw these as opportunities that would manifest themselves as complexity,” he said in reference to the image below. “An average customer experience, which might be the ability to ship on time, with high and consistent quality. Of course, inconsistent delivery would manifest itself as complexity. High cost would be complexity…and then all of this would beget complexity in its many forms.”

GIPI = Global Industrial Performance Index

He said that all of these complexities can add up to new opportunities to take the company on the path to high performance. Maxwell also explained that the company’s traditional simplification efforts had revolved around design and organizational structure, explaining that 80% of any business’s profits and sales come from 20% of its portfolio.

“So by slicing and dicing that, could we eliminate complexity? The answer is a resounding yes,” Maxwell said.

He explained that 70% of a product’s cost is design, while 30% is labor and overhead, like lean manufacturing and the supply chain. The key is to spend less time on L&O, or conventional simplification, and work harder to reduce business complexity in that 70% design range. He said there are hundreds and thousands of decisions made on the L&O side, which, while easier to change, had a more limited impact on the long life cycles of their products.

“There were processes in place that we felt could address that reactively, not proactively,” he said.

With design, the decisions made were “relatively few and quick,” even though they could make a significant impact, because they would be difficult to change, mainly due to expensive tooling.

“We believe that if we can address design complexity, it would enable us to move faster and to grow by taking market share,” Maxwell said.

He explained that the cross-functional team Parker Hannifin set up to address “new” product complexity in a proactive way knew early on that there are two different value streams of Simple by Design.

“New products, for sure, but also core products,” he said. “If you look at where the money is, new products get a lot of attention, but our business is core products…they’re undergoing revisions constantly because our customers are asking for things that are different.”

The team decided to tackle new products first, and spent a lot of time working on design-related objectives, which is where they thought “a lot of the complexity and cost was being created.” He explained that the team wanted to keep the customer at the center of their attention, figure out what their pain points were and what they wanted, and get rid of the things that didn’t add value.

“The first principle of Simple by Design is design with Forward Thinking. With that deep customer engagement, anticipate what your customers are going to ask for in the future,” he explained. “Are there things we can do to the design of the product that, without increasing cost, that will allow us to make changes to it at a later date? The second principle is Design to Reduce, so to reduce complexity, can we reduce the number of new parts that we have, can we reduce the number of new suppliers we have? Can we eliminate proprietary materials that might be hard to come by?

“Design to Reuse – can we reuse parts that already exist? Why do we need to invent new when we’ve already got very similar or exactly what we need released into the system…and then finally, if we do the first three, we should see flow in the factory. We should not see the kind of bottlenecks that we experience today.”

Maxwell said that Dassault comes in with software tools that provide access to data, which “is the big game changer.” He talked about all of the many books and catalogs that were in his office at the beginning of his career, noting that engineers today just can look at all of this information online, because they have access to data. Parker Hannifin estimates that it has about 26 million active part numbers, which is a lot to keep track of, and Maxwell said that roughly 45% of a typical design engineer’s time is spent searching for information.

“So if I had access to the data behind that 26 million part numbers, what would happen? And today, I’m not embarrassed to say that generally we don’t. There’s a lot of things that we do many many times, we’re a very diversified company, we’re global, ” Maxwell said. “It’s not unusual for people to spend their entire career here in the company and not talk to a lot of other operating divisions…outside of the one they work in. So what if I could connect them and give them access to information, what kind of leverage might I enjoy?”

He brought up the company’s usage of Dassault’s EXALEAD OnePart, which can give multiple division access to this kind of information. Maxwell said that this software was used “early on in testing and in value creation,” which was very helpful in finding duplicate parts or component-level parts that already exist in the system, so no one had to create a new part.

Below is a test case he showed of Parker successfully using Dassault tools. FET is an industry-standard 6000 PSI thread to connect couplings, and there are a lot of competitors for parts like this. The company was working to design a new series that was more of a premium product than the original FET.

“We applied simplified design principles,” he explained. “There’s four different sizes, it was bespoke, very distinct from the FET series that was standard. It was fully validated and ready for launch. But it added 147 component parts to the value stream.”

The team focused here, and used the simplified design principles to make the decision to recycle the validated part, and go back to the drawing board.

“Is there an opportunity for us to reuse some of the parts that already exist in the FET series in the new 59 series, but still maintaining the 59 series’ premium features and benefits?”

You can see the results of keeping things simplified above—123 parts were eliminated, while keeping the series at 100% function. The new 59 series shares 90% of its components with the original FET series, and no additional capital was spent on equipment. Costs and inventory went down, and delivery went up, which Maxwell called a “great example of flow.”

Swedberg then introduced Florence Verzelen, Executive Vice President, Industry, Marketing, Global Affairs and Workforce of the Future for Dassault Systèmes, who would discuss “How to Transform the New Normal into an Opportunity.”

She opened by discussing how the COVID-19 crisis has changed everything, such as having to stay home and social distancing, and I’m sure we all agreed with this statement. But now we’re entering a new phase of building back after the pandemic, and building back better, as businesses reopen.

“How do you think you managed during COVID?” she asked. “Are you ready to transform, to perform better in the new normal world? Do you know how to become more resilient and therefore be prepared for the next crisis?”

Verzelen discussed some of the stark numbers coming out of the pandemic, such as 53 million—the number of jobs considered to be “at risk” during confinement and quarantine.

“In the 21st century, we have never seen a crisis of this amplitude,” she said. “And when it happens, as industry leaders, there are really two things, two imperatives, we should consider. Ensure the survival of our company, and contribute to the safeguard of the economy.”

There are five actions to take here, and the first priority is to protect employees and make sure they can safely do their jobs.

Verzelen explained that the 3DEXPERIENCE tool SIMULIA can help with this in many ways, such as simulating the airflow in a building’s corridors. She also said that companies can “implore their employees to work from home” without disruption, which is possible thanks to Dassault’s cloud solution.

The second thing necessary to keep your company surviving is maintaining its financial health.

“COVID-19 has affected the liquidity of many companies,” she said. “Less revenue, more costs…and in order to make decisions, you need to be able to build a scenario.”

Online sales can help keep companies afloat during a crisis, and also help maintain the connection to customers. Dassault can help with these as well through its data analytics solutions and digital tools. Adapting your company’s marketing and sales for an online experience is the third way to ensure its survival.

The fourth thing is to safeguard the supply chain. The disruption of one supplier can decimate production all the way down the whole chain, which can include suppliers in locations all over the world.

“During a crisis, it becomes essential to know where the weak points are,” Verzelen said. “This again we can do thanks to digitalization and thanks to data analytics.”

Finally, companies need to help the ecosystem, otherwise it will not survive. Dassault made sure that all of its solutions and tools were readily available on the cloud so that all customers could continue to work to keep the ecosystem going.

But, even though the world is slowly coming out of confinement, Verzelen warns that “it’s not over yet.” The use of automation will likely increase, and e-commerce is skyrocketing in Italy.

“It’s the beginning of a new phase. It’s the beginning of what we call the new normal.”

A lot of decisions need to be made when you’re restarting a business. Again, Dassault can help with this by building scenarios, so companies know the right steps to take, and in what order, to successfully reopen.

“We all have to change,” Verzelen said. “We’re developing new capabilities for employees, and making learning experiences available online to make sure your teams are ready. Returning to business probably means we need to rethink our supply chain, and we know that a contact-limited economy is here to stay. So you should push for e-commerce, and be prepared to work in contact-limited economy.”

She stated that the 3DEXPERIENCE allows companies to “unlock unlimited value,” and help us cope during this new normal.

“There are many ways to be resilient, and all of those ways are linked to innovation and sustainability.”

The paradigm has changed, and we need to be realistic going forward, and focus on sustainability in operations and business models, such as turning to additive manufacturing if your usual supplier can’t get you what you need in time.

“With the 3DEXPERIENCE platform you can create this kind of business model…create more efficiently, design more quickly,” she said.

“In a nutshell, we are going through very difficult times right now…But this crisis can also be seen as an opportunity to rethink what we do, and build back better.”

Finally, Swedberg introduced three additional Dassault panelists for the final discussion: Dr. Ales Alajbegovic, Vice President, SIMULIA Industry Process Success & Services; Garth Coleman, Vice President, ENOVIA Advocacy Marketing; and Eric Green, DELMIA’s Brand Marketing Vice President. These three are in charge of the content for the rest of 3DEXPERIENCE: A Virtual Journey, as it continues on:

  • “Fueling Innovation for the New Agile Enterprise,” August 26th
  • “Modeling & Simulation, Additive Manufacturing,” September 23rd
  • “Enabling Business Continuity Using the Cloud,” October 14th

L-R: Swedberg, Green, Coleman, Alajbegovic

Green said that three themes would be articulated in these upcoming sessions, all of which will fall under the “sustainable operations” umbrella: data-driven decision-making, leveraging agile success and being agile for success, and business resiliency. Coleman mentioned that the many customer references and testimonials found on the 3DEXPERIENCE site provide many examples of how the platform has helped customers innovate across every industry…even wine-making! Dr. Alajbegovic said that they are “very excited” about the upcoming modeling and simulation sessions and additive manufacturing panels.

“In our sessions, we will look at ways to enable the marriage between modeling and simulation, thus revolutionizing design,” Dr. Alajbegovic said.

It’s not too late to register for 3DEXPERIENCE: A Virtual Journey, so sign up today to enjoy access to further digital programming from Dassault Systèmes.

The post 3DEXPERIENCE: A Virtual Journey, Part 1 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

US Air Force 3D Prints Part for $2.2 Billion Stealth Bomber

The mission of the U.S. Air Force Life Cycle Management Center’s B-2 Program Office is to ensure the B-2 Spirit bomber jets stay relevant and in-flight through the early 2030s until replaced by its stealthier new version, the B-21s. To extend the life of the deadly aircraft and keep the existing B-2 bomber fleet ready and active for future missions, aerospace engineers at the B-2 Program Office turned to additive manufacturing. The technology was used to create a permanent protective cover that prevents the unintentional activation of the airframe mounted accessory drive (AMAD) decouple switch, which controls the connection of the engines to the hydraulic and generator power of the aircraft.

Each one of the 20 B-2 aircraft has a four-switch panel AMAD that sits on the left side of the two-person cockpit. When all switches are activated simultaneously, the crew has no choice but to eject as the aircraft will be without electrical and hydraulic power. In 2018, a B-2 jet was forced to make an emergency landing in Colorado Springs after the crew flipped one of the switches, forcing the B-2 Program Office to come up with an innovative solution to solve the critical issue.

At the time, B-2 pilot and commander of the 509th Bomb Wing at Whiteman Air Force Base in Missouri, John J. Nichols, turned to a team of students at Knob Noster High School, also in Missouri, that designed and 3D printed prototype AMAD panel covers in 72 hours at $1.25 a piece. Now, the B-2 Program Office has come up with 20 new additively manufactured covers that cost approximately $4,000 and will be delivered to the fleet in late 2020 or early 2021.

Students from the Knob Noster High School robotics team designed a protective panel that covers four switches in the cockpit of the B-2 Stealth Bomber (Image courtesy of US Air Force/ Sgt. Kayla White)

“Additive manufacturing is the way of the future,” said Roger Tyler, an aerospace engineer with the B-2 Program Office. “The B-2 is a low volume fleet. There’s only 20 of them, so anytime something needs to be done on the aircraft, cost can be an issue. But with additive manufacturing, we can design something and have it printed within a week and keep costs to a minimum.”

The development of the covers was aided by the Additive Manufacturing Design Rule Book, which was created by the Product Support Engineering Division, part of the U.S. Air Force Life Cycle Management Center (AFLCMC). According to Jason McDuffie, Chief of the Air Force Metals Technology Office (MTO), the rule book provides design guidelines and lessons learned in the additive manufacturing field, specifically the use of direct metal laser melting and fuse deposition modeling technologies, and has been applied to help create a variety of important parts for the Air Force.

3D printed protective cover for the airframe mounted accessory drive decouple switch in B-2 aircraft (Image courtesy of US Air Force Life Cycle Management Center)

“This part [AMAD cover] is unique, and there was never a commercial equivalent to it, so we had to develop it in-house,” Tyler added. “Additive manufacturing allowed us to rapidly prototype designs, and through multiple iterations, the optimum design for the pilots and maintainers were created. We have completed the airworthiness determination and are currently in the final stages to get the covers implemented on the B-2 fleet, which will be the first additively manufactured part to be approved and installed on the B-2.”

The B-2 stealth bomber (Image courtesy of Northrop Grumman/US Air Force)

Originally created to evade radar detection and attack without warning from the Soviet Union’s command and control centers during the Cold War, no B-2’s have ever actually flown over Russian aerospace. Even so, over its 31-year life span, the B-2 Spirit bomber has been a veteran of several conflict operations, from Iraq and Afghanistan to the war in Kosovo, where it took out 33 percent of the Serbian targets in eight weeks. Described by its manufacturer, Northrop Grumman, as “practically indestructible”, the B-2 can fly 6,000 miles without the need to refuel, and the capacity to haul in excess of 20 tons of weapons in any weather completely undetected.

At $2.2 billion per aircraft, it is one of the most expensive warplanes ever made, capable of delivering large and precision-guided weaponry, both conventional and nuclear. Yet, up until now, the B-2 has only been used to drop non-nuclear bombs. For decades, experts have warned against deploying mission bombers with nuclear weapons that might trigger an accidental nuclear war, and this comes as no surprise, with nine nuclear-armed states possessing an estimated 13,400 weapons, the risk always remains latent – even more so with sophisticated bombers like B-2 that cannot be detected.

The B-2 stealth bomber (Image courtesy of Northrop Grumman/US Air Force)

As the world’s only known stealth bomber, the aircraft continues to be a display of military force for the U.S., especially amid escalating tensions with countries like North Korea, China, and Russia. Recently, the B-2 Spirit bombers were deployed in the South China Sea amid a military exercise drill with troops practicing how to seize back the Andersen Air Force Base in Guam from an “invading” force; most likely as a response to China stepping up defensive military operations and exercises around Taiwan. In spite of its many years in the US Air Force fleet, the B-2 continues to be one of the most feared aircraft ever built, which is why sustainment modifications today remain an important aspect of the B-2 program, from coming up with cost-effective ways to repair and maintain the jets to teaming up with Northrop Grumman to ensure the units remain mission capable.

The U.S. Air Force often requires low-cost creative ways to replace parts on many of its aircraft. As such, it has already launched numerous research initiatives into additively manufacturing parts, from creating 3D printed replacement parts for F-35 fighter jets to saving thousands of dollars by using 3D printing to make cup handles and modify standard-issue gas masks. The latest 3D printed protective cover could become a great solution for an underlying problem that has already caused some havoc to B-2 pilots. For high operating cost aircraft like the B-2 (at a reported $122,000 per flight hour), repairs can be equally costly, but in-house production technologies like additive manufacturing can help aerospace engineers tasked with maintaining decades-old jets up to date and working as stealthily as they did 30 years ago.

The post US Air Force 3D Prints Part for $2.2 Billion Stealth Bomber appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

regenHU CEO: Bioprinting Will Strengthen OrganTrans Project to 3D Print Liver Organoid

The European consortium OrganTrans is preparing to develop a tissue engineering platform capable of generating liver tissue. The proposed automated and standardized disruptive alternative solution to organ donation for patients with liver disease will stand on 3D bioprinting know-how from Swiss biomedical firm regenHU. Coordinated by Swiss research and development center CSEM, the eight partners and two transplantation centers engaged in the consortium will be using regenHU’s 3D bioprinters to produce organoid-based liver constructs with organoid laden bioinks.

In April 2020, we reported that OrganTrans would tackle the important healthcare challenge of end-stage liver disease (ESLD) by capitalizing on advancements in the regenerative medicine field, like using biofabricated liver tissue, to develop an entire value chain from the cell source to tissue engineering, biofabrication, post-processing and testing, and liver transplantation under the “compassionate use exemption” regulation (which provides an important pathway for patients with life-threatening conditions to gain access to unproven human cells and tissue products). To understand the key role of biofabrication in this innovative project, 3DPrint.com asked regenHU’s new CEO, Simon MacKenzie, to tell us more about the challenges that lie ahead for the European consortium and his company.

regenHU CEO Simon MacKenzie (Image courtesy of regenHU)

The project officially began in January 2020, what can we expect when it ends in December 2022?

The current goal of this project is to create a functional biofabricated liver construct that can be implanted into a mouse model. I consider that the OrganTrans team will accelerate new solutions for patients with liver failure. It is challenging, but we do envision successful in vivo trials. Of course, this major achievement will not be the end of the story; significant work and research will still be required to transfer these results to human clinical trials. The major remaining challenges will probably be the process scale-up to produce larger tissue and regulatory aspects.

Will this research be groundbreaking to treat liver disease in the future?

Demonstrating the feasibility of the approach in a mouse model will be groundbreaking for the disease because it will demonstrate its potential as an alternative to transplantation. Diseases like NASH [nonalcoholic steatohepatitis, an aggressive form of fatty liver disease] are increasing dramatically, and likely to be a leading cause of death within the next few years. Moreover, the difficulty of detecting the disease until it is potentially too late leads to significant challenges for therapeutic intervention, meaning transplantation will remain the main option for severely affected patients. This well-recognized need, along with the lack of donor organs will ensure bioprinted livers will continue to be well funded. But the value of the project goes beyond liver disease, as the new technologies developed in the frame of OrganTrans will not be limited to liver applications. They relate to the challenges of biofabrication of any organoid-based tissue, which can potentially be beneficial for a large variety of indications.

Can you tell me more about the role of regenHU within the OrganTrans consortium?

Such a complex and ambitious endeavor needs very different and complementary knowledge and competences. Teamwork will be a central element, first to enable, then to accelerate, these new solutions. With this in mind, we have been reorganizing regenHU to bring better project collaborative capabilities to this project, and others like it that we are engaged in. regenHU is a pioneer and global leader in tissue and organ printing technologies converging digital manufacturing, biomaterials, and biotechnology to lead transformational innovations in healthcare. We focus on delivering advancements in the instruments and software required for tissue engineering, and our technology evolving along with the biological research of our partners. We, therefore, consider these partnerships with the scientific community critical for our development.

An outline of the OrganTrans project (Image courtesy of OrganTrans)

regenHU is one of the largest contributors to this project, is this part of the company’s commitment to regenerative medicine?

We can see the need for biotechnology solutions for a wide range of disease states. Our strengths are in engineering the instruments and software necessary to allow the producers of biomaterials and the suppliers of cells to combine their products to achieve functional tissues and organs. Our commitment is to provide disruptive technologies that will enable the community to make regenerative medicine a reality, with precision and reproducibility in mind, for today’s researchers and tomorrow’s industrial biofabrication needs. One of the key challenges is the current limitation in the scale and volume of bioprinting which is linked to the reproducibility of the print. To progress into the manufacture of medical products, bioprinters will need to operate at a scale beyond current capabilities. We design our instruments with these goals in mind and have assembled a team to solve the many challenges to achieve this.

How advanced is the bioprinting community in Europe?

The 3D bioprinting field is several years behind mainstream 3D printing, with the industrialization of the instruments, biomaterials, and cells required before bioprinting can progress to commercial-scale biofabrication. However, as with continued development seen in 3D printing, the technology convergence required for tissue and organ printing that changes medical treatments will become a reality through the efforts of engineering companies like regenHU, biomaterial developers, and human cell expansion technologies, being combined in projects such as OrganTrans.

As the newly appointed CEO of the company, how do you feel taking on this project?

Successfully entering the OrganTrans consortium is just one part of the company. regenHU investors see my arrival as the catalyst to bring regenHU to the next stage in its evolution. Our goal remains the production of industrial biofabrication instruments capable of delivering the medical potential of bioprinting, novel bioinks, and stem cells. To achieve this, we are enhancing the team and structure of the company, bringing forward the development of new technologies and increasing our global footprint to better support our collaborative partners. I have spent many years in regenerative medicine and pharma and can see the potential of bioprinting to revolutionize many areas of medical science, so joining regenHU was an easy choice. As CEO, my main role is to provide the right support structure to enable our entrepreneurial engineering teams to thrive and be brave enough to push boundaries. Additionally, as we cannot achieve our end goal on our own, I am here to nurture the important connections with our user community. Only by listening to their valuable insights and solving problems with them, we will push the technology onward.

The post regenHU CEO: Bioprinting Will Strengthen OrganTrans Project to 3D Print Liver Organoid appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

MX3D Uses Robot Arm to 3D Print Robot Arm, Installs it on Robot

MX3D’s steel bridges are an inspiring sight to see, but, even if bridges are what the Dutch firm is known for, they are not the only thing the firm is capable of making. The company now has released a new 3D printed robot arm component made with its metal AM system, which relies on an industrial robotic arm of its own.

Made together with industrial automation company ABB and software simulation firm Altair, the new arm has been optimized by the Altair team working in conjunction with MX3D. Altair’s generative algorithms were not only used to cut part weight in half, but also to improve toolpath planning on the printer to increase the print speed. The total print time was four days and connecting surfaces were finished on a three-axis milling machine. The part has now been installed and is in use on an industrial robot.

It is a good week for 3D printing bridges since we recently wrote about DSM’s polymer bridges. MX3D has been making WAAM printers relying on industrial robotic arms since around 2014 and we’ve kept you in the loop on its progress, use of machine learning, and projects involving Digital Twins for bridges and other large steel structures. Coupling finite element analysis (FEA) and the Digital Twin to manufacturing large-scale 3D printed parts is a key component of the DSM polymer bridges, MX3D’s metal bridges, and BAM’s concrete bridges. Indeed BAM’s concrete bridge factory is around the corner from Olivier van Herpt’s Eindhoven ceramics 3D printing lab with its ceramics and porcelain. One does get the feeling that it would be great if these four firms spoke with each other at one point, given that so many similar 3D printing initiatives are ongoing in the Netherlands.

Are we seeing larger-scale 3D printing coming into its own? Firms are bridging the gap between the virtual and real-world through connecting data to optimized toolpaths, designs, and parts. Driven by resolution limitations, difficulties of working with industrial robots (lack of memory, proprietary syntax), and a strict regulatory environment large scale firms are turning to software to solve their problems.

We’re seeing a remarkable difference between the “house printing” companies—who seem, on the whole, to be rather optimistic and cavalier about their endeavors to print buildings—and the large scale part printing cohort of enterprises. The latter, which includes MX3D, seems much more in tune with regulatory requirements, certification, and software than the former. Perhaps, because you can’t really sell a bridge ex-works, while a demo house doesn’t have any regulatory requirements, so the parts builders have been put onto a more difficult digital path.

But, through controlling toolpaths, FEA, weight reduction, and using this as a tool to try to get parts built correctly, companies have been forced to deal with these things early on in their machine and process design stages. This, in turn, has led to them being better placed to build actual parts for the actual world. Meanwhile, the “housebuilders” are building much larger more media-savvy structures that have yet to be subject to many thoughts on how they will be built safely.

In 3D printing for construction, it would seem that the earlier on your business model encounters regulatory opposition, the earlier you will design safety, reliability, and repeatability into your process. Logical perhaps, but not something considered so far by the industry at large. One will expect however that the “go big or go home” crowd will seem to be ahead initially, but then take much longer to develop process control once they start building parts that will go on the open market and touch the realities of such arcane and frightening things, such as the law.

Whereas houses may be the best clickbait, there are myriad of other parts that can be built with robot arm construction systems through 3D printing. Generally, we can see that our market does nanoprinting on the submicron and micron-scale (femtoprint, nScrypt), microprinting on the mm to micron scale (3D Micro Print), regular 3D printing which starts from several mm parts to around 50 cm parts (RepRap, Ultimaker), medium format printing which is for parts of up to one cubic meter (BigRep, Builder), large format 3D printing for parts from one cubic meter to around ten cubic meters (CEAD, BAAM) and macro 3D printing which is parts that are larger than 10 cubic meters (3D Printhuset).

At each and every scale we can see a strange thing happening. Scale drives accuracy which drives value which, in turn, determines go-to market and that determines the level of quality leveled at the part. This is super logical in the sense that small things often have to be precise in order to exactly fit small assemblies, which in turn are likely to be a part of something complex that needs high tolerance—a watch, for example.

At the same time, if you can make things that are 1 mm x 1 mm or less, then a stent is something that you can do and you won’t think of car bumpers. Of the total set of things sold in the 1mm x 1mm x 1mm range, often a disproportionate number of these things actually have high value due to their precision manufacturing requirements.

This is, again, logical but could go against the conventional wisdom that more material equals more expensive production cost or the “rule of most things” that stipulates that larger things are typically bigger. In the mid-ranges, there also seems to be an ongoing effect whereby, if the things that you print are likely to be the same size as inexpensive manufactured goods but are more difficult to make, larger and smaller things can vary more widely in price. Production difficulty, in large or small structures, drives price and applications, as well. I’m not saying that size is solely deterministic, but we are seeing effects here.

On the micro- and nanoscale, quality systems are adopted rapidly by participants due to their adjacency to the medical business. If medical is the most profitable thing you can do and just about the only thing you can do, you’re going to end up having a cleanroom. Meanwhile, it took a long time for a lot of service bureaus to turn to ISO, and desktop machines are currently still sold with a warranty that scarcely lasts past the UPS carrier’s hands. Now increasingly, quality systems and certifications are being adopted by desktop companies and service bureaus. In larger-scale things, we’re seeing medium format start to look at quality now.

Many of us are familiar with the innovator’s dilemma, whereby a large volume good enough product displaces a better more expensive earlier one. Could we in 3D printing see a similar effect where higher quality systems engineered for smaller sizes could displace established entrants with larger sized parts? If Prusa and Ultimaker were good at precision in the 10-cm range, wouldn’t it be fairly easy for them to scale their systems on the back of their existing installed base?

Crucially, they wouldn’t have to adapt all systems completely, but just make some components stronger to reach the next size of medium-format machines. If they jumped to the Cincinnati BAAM category, of course then they’d have to completely re-engineer everything, but the adjacent category would be simple for them to do. But, for them to work at the microscale would mean a lot of adjustments to their current design and manufacturing of hardware components as well as working in a higher quality standards way.

This leap would be daunting, especially since the volume of products made with the smaller category would be less than with their own. Furthermore, they could expect to sell less material and fewer machines in the smaller size category, but more material and fewer machines in the one-size larger category. Especially consumables driven firms or companies such as polymer firms will benefit from more parts, faster print speeds and larger sized parts. The sum total of these effects could indicate pressure on firms to move into larger scaled manufacturing all the time, but ignore smaller scales.

If we look at MX3D for example, we may think of its bridges which it may sell in the hundreds if it got them right and could certify them. But, MX3D also can sell many more smaller components at larger volumes as well. Its Takenaka connector for example needs precision, but this component could sell in its thousands. Bike frames need to fit with precision components, such as derailleurs, and the precision and volume required for these components can drive its other businesses. Operational advantages gained here could be used to earn margin on larger components, such as bridges, that few can make. It seems blindingly obvious if we compare it to bicycle companies moving to passenger cars and then sometimes to vans and sometimes to trucks. This development seems to be a very similar one.

If this holds true, then for MX3D, the future could be in making many medium-sized parts for a larger scale future. In Dutch we have an expression, “wie het kleine niet eert, is het grote niet weed”, which means, “he who does not honor the small things does not deserve the large.” For 3D printing, this expression may hold very true indeed.

The post MX3D Uses Robot Arm to 3D Print Robot Arm, Installs it on Robot appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3DTrust Releases Intelligent Powder Management Solution for Quality Control

3DTrust is a five-year-old startup that began in Munich. In the beginning, the team was one of a crop of startups that wanted to secure the digital supply chain. Through encryption and software, companies could assure themselves that they were printing the right parts, according to the firm. Through product development and contact with the market, the startup has since evolved.

Now, 3DTrust has ten staff, offices in Toulouse and Munich, and a new focus on repeatability. The company saw that the real challenges in 3D printing were in “printing any part anywhere and making sure that quality is right every time” according to cofounder Antoine Jeol. Jeol has a venture capital (VC) background at 3M and learned an immense amount from 3DTrust being a part of Airbus’s startup accelerator. This knowledge led 3DTrust to pivot away from security and toward a more manufacturing-focused offering.

The 3DTrust team cofounders: (L-R) Andrei Mituca, Alexandre Guérin and Antoine Jeol.

When the team partially located to Toulouse for the accelerator program, they were confronted with the challenges that Airbus and its suppliers have. Of course, security is important in commercial aviation, but, other factors, such as traceability, are also of extreme concern. Aviation firms always need to know where parts come from, when they are made, by whom, in what orientation, with which batch of material, on which machine, etc. The team also saw just how many production steps 3D printing for manufacturing required.

Another 3DTrust cofounder I spoke to is Alexandre Guérin, who came from Siemens where he worked at that company’s VC arm. Guérin said that, at many manufacturing companies, the 3DTrust team saw challenges in the “scheduling of production, especially since scheduling and tracking was a manual step, often done with post-its or in Excel.”

The team had to first understand what it took to conduct day-to-day manufacturing with 3D printing. By working with manufacturers, they gained a more in-depth understanding that let them develop their software to work on and with the shop floor. They had to get their software to work with the most popular brands of industrial AM equipment to read and collate data from each of them.

“It could be much more efficient if this tracking was done in software and future job planning was done algorithmically…with reduced human error…resulting in more parts being delivered on time,” Guérin said. “[We had to connect] with EOS, Renishaw, SLM Systems, Stratasys, AddUp and 3D Systems machines… to monitor every machine. If a machine stops, the error notification will get tracked in the software, which can analyze historical trends, detect mistakes, monitor gas levels, get real-time temperatures, receive notifications for specific events, get utilization data and performance data as well.”

With 3DTrust, a user can subscribe to a single machine or multiple machines to only receive the data relevant to them.

Making accessible all of that manufacturing data, scheduling, optimizing, and ensuring traceability is really what the company does now. Jeol believes that every AM machine should be connected and that, while there is a lot of data, in order to achieve true Industry 4.0 process control, that data has to be extracted from all of the connected systems and well managed. Once this happens, 3DTrust can perform traceability, productivity optimization, and analyze entire fleets of additive systems producing parts on time, as well as the post-production steps, to decide what should be done.

In response to client needs, they developed two entirely different architectures. In one, all of their software can be deployed locally, through ethernet cables and customer servers. In the other, Hybrid system, all of the file data is stored locally, but information—such as sensor values—is shared in the company’s cloud. The former version would be especially useful for defense and aviation companies, a group that has traditionally been wi-fi adverse. 3DTrust offers these tools in the form of software-as-a-service, with the company charging $650 per month per machine, although university and large installation pricing are also available. The setup consists of one to three days, typically with 3DTrust often conducting an on-site training for staff of two days.

Users can view individual machine data, aggregate data or dive into individual build plates. They can upload STL or CAD files and queue jobs; files can also be downloaded and re-uploaded from Magics and Netfabb so it is possible to continue to use a preferred file-checking solution in tandem with the software. The output is a specific job file for a user’s particular machine. One could store files in the cloud and schedule or assign files or build platforms to machines or series of post-processing steps. Adjustments in print quality, results, machine utilization, status updates, and part traceability all happen in the software. Users can see delivery dates, materials, and add notes to files and jobs. It can be used in a service environment, in manufacturing or as an internal shared service for large firms.

Through drilling down into each process, machine, and job users can get very granular data, but they can also see performance across time series or analyze all of the alerts and events that delayed builds. One can interface with onboard cameras in printers to check errors and look at individual layers as they are being built, as well.

Jeol said that initially, “We focused on a few key customers in medical, automotive and aerospace to make those customers happy. Making [the software] in conjunction with the guys on the shop floor every day helped us bring value to customers.”

Guérin believes that their customers are using data to get parts made right the first time in AM.

Guérin said, “Optimizing planning saves costs, makes the machines and processes more efficient, faster and cheaper, letting customers industrialize their technology for true serial production.”

In addition to its flagship product, the 3DTrust team has just released a powder management solution. I was very excited about this since, for metals, powder management is key to getting good outcomes in prints, especially for manufacturing. Powder management is essential, but very tedious and time-consuming, especially in highly regulated environments. With the company’s new tool, users can track powder, do inventory management, and use a system that makes tracking easier and more robust as a process.

Meant mainly for large manufacturing companies, but also for universities, the software has some convenient tricks such as a QR print-and-read functionality that lets users stick their own labels on everything. I know from acquaintances that the profusion or lack of labels is often an annoyance. Now, handheld or phone-based scanners can read a production line or lab’s own QR barcodes to quickly tell them about a box, jar or pellet. The system lets users see quantities, dates, materials, storage conditions and availability.

Jeol mentioned that It also enables you to run a “genealogy, a family tree, to see, based on a part, where it came from, with which powder, where it was stored, where it was made, and in which boxes.” It can also be used to track samples or batch tests, with users then able to go back to identify parts or powders that failed tests. Users can also rely on scheduling tools to monitor how often a powder is recycled and combine it with job scheduling, so that a planned job is not able to use a powder recycled more than four times, for example. I’m very bullish on 3DTrust’s powder management tool and would recommend looking at it if you work in a production metal printing environment. It seems to be an intuitive, time-saving piece of technology.

The post 3DTrust Releases Intelligent Powder Management Solution for Quality Control appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Rice Researchers 3D Print with Lasers and Sugar to Build Complex Vascular Networks

A team of researchers from Rice University has uncovered a promising strategy to generate vascular networks, one of the most daunting structures in the human body. Using powdered sugar and selective laser sintering, the researchers were able to build large structures from complex, branching, and intricate sugar networks that dissolve to create pathways for blood in lab-grown tissue.

This is the team’s latest effort to build complex vascular networks for engineered tissues to show that they could keep densely packed cells alive for two weeks. The findings of their study—published in the Nature Biomedical Engineering journal—prove that developing new technologies and materials to mimic and recapitulate the complex hierarchical networks of vessels gets them closer to providing oxygen and nutrients to a sufficient number of cells to get a meaningful long-term therapeutic function.

“One of the biggest hurdles to engineering clinically relevant tissues is packing a large tissue structure with hundreds of millions of living cells,” said study lead author Ian Kinstlinger, a bioengineering graduate student at Rice’s Brown School of Engineering. “Delivering enough oxygen and nutrients to all the cells across that large volume of tissue becomes a monumental challenge. Nature solved this problem through the evolution of complex vascular networks, which weave through our tissues and organs in patterns reminiscent of tree limbs. The vessels simultaneously become smaller in thickness but greater in number as they branch away from a central trunk, allowing oxygen and nutrients to be efficiently delivered to cells throughout the body.”

Overcoming the complications of 3D printing vascularization has remained a critical challenge in tissue engineering for decades, as only a handful of 3D printing processes have come close to mimic the in vivo conditions needed to generate blood vessels. Without them, the future of bioprinted organs and tissues for transplantation will remain elusive. Many organs have uniquely intricate vessels, like the kidney, which is highly vascularized and normally receives a fifth of the cardiac output, or the liver, in charge of receiving over 30% of the blood flow from the heart. By far, kidney transplantation is the most common type of organ transplantation worldwide, followed by transplants of the liver, making it crucial for regenerative medicine experts to tackle vascularization.

Ian Kinstlinger with a blood vessel template he 3D printed from powdered sugar (Credit: Jeff Fitlow/Rice University)

In the last few years, extrusion-based 3D printing techniques have been developed for vascular tissue engineering, however, the authors of this study considered that the method presented certain challenges, which led them to use a customized open-source, modified laser cutter to 3D print the sugar templates in the lab of study co-author Jordan Miller, an assistant professor of bioengineering at Rice.

Miller began work on the laser-sintering approach shortly after joining Rice in 2013. The 3D printing process fuses minute grains of powder into solid 3D objects, making possible some complex and detailed structures. In contrast to more common extrusion 3D printing, where melted strands of material are deposited through a nozzle, laser sintering works by gently melting and fusing small regions in a packed bed of dry powder. According to Miller, “both extrusion and laser sintering build 3D shapes one 2D layer at a time, but the laser method enables the generation of structures that would otherwise be prone to collapse if extruded.”

“There are certain architectures—such as overhanging structures, branched networks and multivascular networks—which you really can’t do well with extrusion printing,” said Miller, who demonstrated the concept of sugar templating with a 3D extrusion printer during his postdoctoral studies at the University of Pennsylvania. “Selective laser sintering gives us far more control in all three dimensions, allowing us to easily access complex topologies while still preserving the utility of the sugar material.”

Assistant professor of bioengineering at Rice University, Jordan Miller (Credit: Jeff Fitlow/Rice University)

Generating new 3D printing processes and biomaterials for vascularization is among the top priorities for the researchers at Miller’s Bioengineering Lab at Rice. The lab has a rich history of using sugar to construct vascular network templates. Miller has described in the past how sugar is biocompatible with the human body, structurally strong, and overall, a great material that could be 3D printed in the shape of blood vessel networks. His original inspiration for the project was an intricate dessert, even going as far as suggesting that “the 3D printing process we developed here is like making a very precise creme brulee.”

To make tissues, Kinstlinger chose a special blend of sugars to print the templates and then filled the volume around the printed sugar network with a mixture of cells in a liquid gel. Within minutes, the gel became semisolid and the sugar dissolved and flushed away to leave an open passageway for nutrients and oxygen. Clearly, sugar was a great choice for the team, providing an opportunity to create blood vessel templates because it is durable when dry, and it rapidly dissolves in water without damaging nearby cells.

A sample of blood vessel templates that Rice University bioengineers 3D printed using a special blend of powdered sugars. (Credit: B. Martin/Rice University)

In order to create the treelike vascular architectures in the study, the researchers developed a computational algorithm in collaboration with Nervous System, a design studio that uses computer simulation to make unique art, jewelry, and housewares that are inspired by patterns found in nature. After creating tissues patterned with these computationally generated vascular architectures, the team demonstrated the seeding of endothelial cells inside the channels and focused on studying the survival and function of cells grown in the surrounding tissue, which included rodent liver cells called hepatocytes.

The hepatocyte experiments were conducted in collaboration with the University of Washington (UW)’s bioengineer and study co-author Kelly Stevens, whose research group specializes in studying these delicate cells, which are notoriously difficult to maintain outside the body.

“This method could be used with a much wider range of material cocktails than many other bioprinting technologies. This makes it incredibly versatile,” explained Stevens, an assistant professor of bioengineering in the UW College of Engineering, assistant professor of pathology in the UW School of Medicine and an investigator at the UW Medicine Institute for Stem Cell and Regenerative Medicine.

The results from the study allowed the team to continue their work towards creating translationally relevant engineered tissue. Using sugar as a special ingredient and selective laser sintering techniques could help advance the field towards mimicking the function of vascular networks in the body, to finally deliver enough oxygen and nutrients to all the cells across a large volume of tissue.

Miller considered that along with the team they were able to prove that “perfusion through 3D vascular networks allows us to sustain these large liverlike tissues. While there are still long-standing challenges associated with maintaining hepatocyte function, the ability to both generate large volumes of tissue and sustain the cells in those volumes for sufficient time to assess their function is an exciting step forward.”

The post Rice Researchers 3D Print with Lasers and Sugar to Build Complex Vascular Networks appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Additive Manufacturing: The Ongoing Uncertainties and Market Shares

SmarTech Analysis has recently published its Q1 2020 additive manufacturing market guidance for the metal additive manufacturing industry, highlighting the first quarter in an economic universe gripped by effects of coronavirus. The question on everyone’s minds these days is, “just what will the bottom line impact be with regards to COVID 19?”

Most in the AM industry still don’t know. No AM company is able to provide firm expectations for 2020, and certainly not into 2021. And it is this lack of expectations, or at least the continual presence of uncertainty, which may end up being the key market driver for additive manufacturing in the near future.

During the first quarter of the year, the metal additive hardware market was hit hard, down about 33 percent year over year compared to 2019. It’s worth noting however that Q1 2019 was the best first quarter in terms of metal AM hardware revenue in history.

To add a little more context for Q1. Revenues were down about 28 percent versus the average quarterly market revenue from the last twelve consecutive quarters. While that paints a grim picture, during the first three months of the year, revenues from material sales of metal powders and sales of metal AM services were much less dire. Metal powder sales increased slightly year over year, though they declined compared to the previous consecutive quarter for the first time in recent history. Services revenues for metals declined just 3 percent.  In this article we examine the state of play of the AM industry as it starts its planning for 2021, along with the market shares of its leading players.

The post Additive Manufacturing: The Ongoing Uncertainties and Market Shares appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D-Printed Respirator Masks Below N95 Standards, Says Virginia Tech Team

We’ve been cautious and careful about promoting 3D-printed COVID safety equipment here at 3DPrint.com. We talked about a general principle of first doing no harm and also discussed safety recommendations for 3D-printed medical devices. Specifically, we addressed safety concerns related to 3D printing masks and provided some recommendations.

It was notable that, in this current crisis, the U.S. Food and Drug Administration (FDA) and other authorities relaxed their existing standards for face shields but did not do so for respirators. A respirator is a close-to-the-skin device that is worn over one’s mouth for hours per day and can impede breathing or could lead to foreign particles in the wearer’s lungs. Even at their most inventive and creative, health authorities would not budge from keeping it a Class II medical device that would have to be made in a good manufacturing practice environment and subject to strict FDA regulation.

Initial findings point to the regulator’s findings being borne out by research. A paper by a team at Virginia Polytechnic Institute and State University (Virginia Tech) points to a decided lack of effectiveness on the part of 3D-printed respirators. We must point out that the paper itself is in the preprint stage. Preprint means that it has not yet been peer reviewed. This means that we are now forming our opinion about a hasty engineering effort to make life-saving devices through a paper that itself has been presented to us earlier (and one would expect more error-prone) than usual.

Just to be clear, we celebrate everyone’s engineering and maker efforts to make COVID devices of all kinds. We think this is truly one of the brightest and best moments in our industry’s history. We have an important role to play in making spare parts, new solutions, and unavailable items in this current crisis. Furthermore, it is becoming clear to us and many more people that 3D printing has a real role to play in many supply chains and in future crises, whatever they may be. We are now much more relevant than at the start of the year to any further breakdown of the very fabric of the global supply chain or as some kind of magical duck tape solution to a shortage.

This expectation and interest is, of course, a double-edged sword and we could squander it by over-claiming and underdelivering. Or we could meet the challenges of the future with forthrightness and honesty. Yes, we are an interesting shape-making technology. This does not mean that all of our shapes are functional for all of the applications now, in all materials.

The paper is by Bezek, L.B.; Pan, J.; Harb, C.; Zawaski, C.E.; Molla, B.; Kubalak, J.R.; Marr, L.C.; Williams, C.B.  and is titled “Particle Transmission through Respirators Fabricated with Fused Filament Fabrication and Powder Bed Fusion Additive Manufacturing“. The summary is as follows (the text is quoted but formatted by me for readability):

  • “Results from this study show that respirators printed using desktop/industrial-scale fused filament fabrication [FFF] processes and industrial-scale powder bed fusion [PBF] processes have insufficient filtration efficiency at the size of the SARS-CoV-2 virus, even while assuming a perfect seal between the respirator and the user’s face.

  • Almost all printed respirators provided <60% filtration efficiency at the 100-300 nm particle range.

  • Only one respirator, printed on an industrial-scale fused filament fabrication system provided >90% efficiency as-printed.

  • Post-processing procedures including cleaning, sealing surfaces, and reinforcing the filter cap seal generally improved performance, but no respirator sustained the filtration efficiency of an N95 respirator, which filters 95% of SARS-CoV-2 virus particles.

  • Instead, the printed respirators showed similar performance to various cloth masks.

  • While continued optimization of printing process parameters and design tolerances could be implemented to directly print respirators that provide the requisite 95% filtration efficiency, AM processes are not sufficiently reliable for widespread distribution and local production of N95-type respiratory protection without commensurate quality assurance processes in place.

  • Certain design/printer/material combinations may provide sufficient protection for specific users, but the respirators should not be trusted without quantitative filtration efficiency testing. It is currently not advised to expect printed respirators originating from distributed designs to replicate performance across different printers and materials.”

Generally, a lot of the conclusions that the paper has made are what we have previously pointed out and what many in the industry were saying, as well. It seems that, once again, we’re shadowboxing overinflated claims that the media (and some of us) have made.

The paper points out that

  • “One concern about the efficacy of using AM to produce direct replacements for N95 respirators is the intrinsic porosity in FFF and PBF-produced parts, which can affect filtration efficiency, accuracy, and reliability of the printed respirators. In FFF processes, porosity can result from adjacent layers not fully fusing, gaps left from changing direction and stopping/starting melt extrusion, and/or gaps left from adjacent extruded paths failing to fuse together”
  • “Such inherent, process-induced defects have been shown to cause up to 32% porosity in FFF parts, with 200-800 Mu diameter pores , which could render them ineffective in protecting against 0.3 mu virus particles.”
  • “Similarly, parts produced via PBF can be up to 30% porous [16] due to insufficient delivery of energy, recoating defects, and/or the use of heavily recycled powder.”
  • One solution to mitigate porosity in printed polymer parts is to seal them in a post-processing step.
  • “Another anticipated challenge in the use of AM to directly fabricate PPE through shared digital designs is the inherent variability between AM machines, materials, and build parameters, which can affect the mechanical properties of the printed materials and the accuracy of the printed geometries.”

That final issue is also a potential limitation to testing how effective these masks are, since individual machine settings, materials, material handling, toolpaths and local variables could have interfered with the test parts themselves. The paper goes on to look at the parts where the mask could fail through insufficiently covering the face or through gaps.

The masks chosen were the Montana mask by Make the Masks, the Factoria mask, and the Stopgap Surgical Face Mask. They printed these masks on a Sinterstation (polymer powder bed fusion), Fortus 400mc (industrial FFF) and an Afinia (desktop FDM). We have made some progress since the venerable Sinterstation and porosity has been reduced in current generation sintering machines with better software and processing so that we would expect less porosity than with a machine that was released in 1998. On the one hand, it’s amazing that these machines last so long, but it is perhaps slightly unfair to use a 22-year-old 3D printer as the industrial sintering system for this important test.

The paper states that, “the PBF models were de-powdered and bead blasted to remove adhered powder and improve surface finish,” but, crucially, it is unclear if “rinse parts with water to remove remaining media and dry parts using compressed air” was done as per the general instruction attached to the file. Also, they state that the powder used was “Nylon-12 (Factoria: 100% recycled; Montana/Stopgap: 50% recycled / 50% virgin).” It’s unclear whose powder it was. Now, its not apparent why they would use different mixes between virgin and recycled powder for different masks but a 100 percent recycled material is not really something I’d recommend. I think it’s also unfair to compare a 100 percent recycled mask to anything.

I also have concerns about the filament materials printed. I also thought that ULTEM 9085 printed at 350°C? I’m confused about the ABS print that has 15-20% infill. To me, for a day-to-day use part, I’d use a much higher infill percentage of 30 percent at least. I also don’t understand why the PLA part has 15 percent infill either. I couldn’t find the machine settings or the name of the filament supplier either. There could be a lot of variability in their nozzle temperature as per indicated and actual also. We all know that we can get a lot of layer adhesion differences in prints from speed, material, temperature. So this is one caveat. I’d really like for the Cura profile and the machine settings to be included in this kind of research. If we’re going to be testing parts then we should know how they were made.

This isn’t a gripe specific to this paper however; no papers have this. I personally can’t really get ABS to work at all below a 100°C bed temperature and most recommend 110°C, so that seems low, while 260°C sounds like it could be rather too fume-y. I’d never recommend that you print ABS above 250°C and, most of the time, I’d expect the right temperature to be far lower than that, much lower than 260°C anyway. Also, each test part was only printed once (apart from the stopgap that they tried in two orientations). That to me is putting rather a lot of stock in the five-year-old Afinia’s accuracy and I would have much rather seen a number of parts printed and tested.

The team then shows us that they had visible defects in the prints.

“(a) The Stopgap respirator in ABS oriented with the filter cap face down on the build plane has a few mislaid layers; (b) The Stopgap respirator in ABS in an alternate orientation also suffers from periodic sparsity; (c) The Stopgap respirator in PLA is visibly thin across most surfaces; (d) The Stopgap respirator in ULTEM shows porosity on the surface parallel to the filter.”

“Figure 4c shows the Stopgap respirator fabricated with PLA held up to a light to enable observation of several regions of thin material along the shell (as in Figure 4a and b), along the seal to the face, and on the surface flush with the filter cap. Figure 4d displays the Stopgap respirator fabricated with ULTEM held up to a light. Macroscale pores across the entire surface flush on the build plane are observed despite this part being printed in 100% infill on an industrial-scale FFF system,” the authors write. The team does say that the Stopgap respirator was made for powder bed fusion ,so that it was not meant to be printed with FFF/FDM. They go on to test the Stopgap FFF/FDM prints and I think that this is rather unfair.

I have a real issue with the authors changing the roll of filament for build orientation prints “a” and “b” and not mentioning that this is a different material. Even if it was from the same vendor and the handling was the same, then the different colorants mean that there is a different optimal print temperature there. It’s strange to me to both change print orientation and material and then compare those prints. Also, the authors say that this is an adhesion issue, but is it? Is it digging by the nozzle? The “c” part is a great example why you should not have letters on your part. The hatched pattern on the “d” print made from ULTEM is very strange. Is that the Sparse Double Density infill pattern? Did it not print because they didn’t support the part well?

The team went on to test the results of the different filter designs:

“The particle analyzer simply counts the frequency of detected nanoparticles; it does not distinguish between nanoparticles resulting from the generated aerosol and residual nanoparticles resulting from stray particulates shed from the shell,”  was an issue that they identified.

They go on to treat the masks, saying that the “FFF respirators were rinsed thoroughly with tap water and dried with compressed air. Since water could cause aggregation among dry powder, the cleaning step for PBF respirators involved additional compressed air followed by the application of two coats of acrylic paint to form a sealant.”

I’m confused about this since I know that water can have effects on porous sintered parts long-term, but am not sure why the researchers didn’t just wash them in water, which would be fine short-term. Also, painting it changes the part and makes it less flexible. I don’t understand the “aggregation among dry powder” part at all really and am not sure why they’d need to paint the model. I especially worry that the coats of paint will effect how the different parts of the mask fit together. I may have read it wrong but why then in the table above do they say that they rinse and dry the PBF parts? Also I’m pretty sure that the PLA models were made more brittle by the water, but perhaps that’s a limitation of the mask that’s good to include.

The paper goes on to show that, “none of the printed respirators provided the requisite 95% filtration efficiency.”

“Montana respirator results (Figure 5a) show filtration efficiency consistently under 60% for the ABS, PLA, and nylon materials, which is far from the baseline performance of the ULPA filter medium. The ULTEM variant of the Montana respirator could not be tested as printed because the filter cap was too loose to adequately secure the filter.”

The team makes the following determination:

“The Factoria respirator results are provided in Figure 5b. The PLA and ABS respirators filter out more particles than in the Montana respirator design, but both still only protect against ~75% of particles. The ULTEM Factoria respirator provides the highest observed performance, with a filtration efficiency between 90-95%, depending on particle diameter; however, it falls slightly less than the tested ULPA filter (99% efficiency). Similar to the Montana respirator results, the PBF-printed respirator presents the lowest filtration efficiency (~45%).”

“Montana and Factoria respirators are nearly identical in shell design, it is expected that the difference in filter cap design is the cause for the consistently worse performance of the Montana respirator compared to the Factoria respirator. The press-fit cap of the Montana respirator may have allowed particles around the filter (which correlates to the loose-fitting filter cap printed in ULTEM), whereas the larger cap of the Factoria respirator completely encloses the filter.”

Another thing that I don’t get is this: “It is observed in Figure 6a that cleaning the ABS Montana respirator increases the filtration efficiency measurement by ~20%, but the ABS Factoria measurement decreases in efficiency by ~10%. The ABS Stopgap efficiency measurements significantly improve, with both print orientations offering similar performance once cleaned. In Figure 6b, it is seen that the ULTEM Factoria respirator decreases by ~15% efficiency following cleaning.”

I’m quite surprised that there would be such a huge difference in filtration efficiency just from cleaning the parts? To me, this points to the fact that the testing apparatus is picking up loose powder and particles on the masks themselves from before, or that they are created or released through cleaning. But, I don’t know enough about the filtration side of things to know.

The team concedes, “These results highlight the inherent variability in results due to the testing method and testing conditions, which is why it was critical to use the same respirators for repeat tests. The testing environment was kept as close to the same conditions each time, yet the Factoria respirators somehow declined in filtration efficiency. It is believed that a coupling of the failure modes identified in Section 1.2 could be contributing to the erratic trends.”

They go on to look deeper, “Application of the epoxy sealant to the shell increases efficiency to peak at ~75%. This indicates that the porosity of the PLA material drops filtration efficiency by ~20%.” And “Residual powders from printing, post-process, or handling are likely to blame for the poor performance of the respirators as-printed. This also corroborates the reason why the as-printed nylon Montana and Factoria respirators had such low filtration efficiency. While testing some intermediate modifications were forgone, it is evident that the dominant failure mode is the filter cap/shell interface.”

Their conclusions are the following:

“As printed, most of the respirators performed poorly, with almost all providing less than 60% filtration efficiency (significantly below the requisite 95% efficiency of a N95 respirator). This result is especially discouraging when considering that the testing was done with the approximation of a perfect seal between the respirator and user’s face (a common failure mode for standard N95 textile respirators, and likely a significant failure mode for the rigid printed polymers). When printed in ULTEM on an industrial-scale FFF system, the Factoria respirator provided the best filtration efficiency of those evaluated, consistently exceeding 90% efficiency for all particle sizes.”

They also say that, “For example, while the Factoria respirator in ULTEM reached >90% filtration efficiency in the as-printed state, its measured efficiency was reduced to ~80% following cleaning. No tested design with modifications was able to consistently attain 95% filtration efficiency, although the nylon Stopgap respirator with modifications was able to filter ~85% of particles at the size of 300 nm.”

“The results from this study do not completely discount AM from being appropriate for making an effective N95 respirator,” the authors write. “The ULTEM Factoria’s performance suggests that (i) high quality, repeatable printing technology with (ii) proper process settings, and (iii) tolerancing of the filter cap/shell interface that is aligned with a specific machine/material combination could provide an effective solution.”

Further on they, say, “In the case of the Montana and Stopgap respirators, the as-printed performance falls below that of many simple textile materials. The as-printed Factoria respirators and post-process modified Stopgap respirators provide equivalent protection to these textile materials and surgical masks, with the ULTEM Factoria and modified PBF Stopgap respirators providing slightly enhanced performance to these materials.” This was a result that many of us would actually have been happy with, I believe.

Also, “The modified PBF Stopgap respirators can perform better than the surgical mask, high-threaded cotton, and N95 respirator from the study by Konda [33]. This study shows AM respirators are capable of achieving competitively high filtration efficiency on par with non-medical use masks only when assuming a perfect seal to the face.” This is a very good result however and one that we’d be very happy with. But, as the paper rightfully states, this perfect seal is illusory and is probably not the case for these relatively rigid parts. The inability to make a good seal, especially when compared to a home-sewn mask has always to me been the Achilles heel of 3D-printed respirators.

On the whole, it is very good that this kind of research is being done. I’m a little confused by some of the printing and parameters involved. I would have liked to have seen more consistency there. But assembly and print-related issues in experiments only cause me to consider how such variability precludes us from making respirators. On the whole, we can conclude that it will be difficult to make a respirator that works well with 3D printing. This does not mean that we should be dissuaded from trying to improve these designs but rather that we should welcome scientific rigor and analysis to our endeavors.

The post 3D-Printed Respirator Masks Below N95 Standards, Says Virginia Tech Team appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

6K Partners with Relativity Space, Commissions UniMelt to Transform Sustainability in Metal 3D Printing

On the heels of their recent announcement of commissioning the first two commercial UniMelt systems for sustainable production of additive manufacturing (AM) powders, 6K has now partnered with Relativity Space to explore sustainability in AM production for rocket manufacturing and space travel.

Relativity’s Terran 1 – rocket parts will be built in a reportedly sustainable manner using 6K’s proprietary technology, image courtesy of Relativity Space.

The partnership with Relativity Space expands on the sustainability focus in metal AM, reimagining the aerospace supply chain. Relativity will look to provide 6K with certified scrap materials, used powder or parts, which can be recycled into premium powder that will then be reprinted by Relativity for final production parts suitable for rocket launch and space travel applications. The pioneering aerospace manufacturer is not only creating an autonomous factory to additively manufacture an entire rocket, from raw material to launch-ready, in just 60 days, but is also looking to do it by reusing materials. 6K will bring sustainability to Relativity’s unique supply chain, and ensure closed loop traceability in production.

Commenting on the landmark partnership, Dr.Aaron Bent, CEO of 6K, said:

“Relativity is pushing the boundaries of additive manufacturing by 3D printing a complete rocket and we see this partnership as a natural extension of their forward thinking practice. Our ability to turn their used powder and parts into premium powder through the UniMelt process provides them with a sustainable source for AM powder. We are proud to be partnering with Relativity to explore ways to increase sustainability, recycling and environmentally responsible manufacturing processes, which the entire AM industry is uniquely posed to be able to integrate into standard practices.”

Relativity is continuing to build key partnerships as it prepares to launch the world’s first entirely 3D printed rocket, Terran 1, in 2021, and recently signed a public-private infrastructure partnership with the US Airforce to use the latter’s launch site facility in Southern California.

Customers from key industries of automotive, manufacturing, aerospace and more, are increasingly looking to improve their supply chain efficiencies and shift towards more sustainable production. In shifting towards ‘green’ manufacturing, AM material suppliers are looking for ways to use domestic, reusable sources for AM powder production. While AM itself is often seen as a sustainable manufacturing method, the production of AM powders hasn’t been near sustainable, generating large amounts of waste to produce a small quantity of much-needed premium quality AM powders.

6K, a developer and supplier of advanced materials, is transforming the production of AM powders with its UniMelt system, which is the world’s only microwave plasma system for production. The system, which produces three to four times the yield of gas atomization, not only allows 6K to create highly uniform powders with the requisite properties, but also to tailor the powder to the specific AM process it will be used for.

Outlining the range of materials the system can produce, 6K stated that UniMelt is capable of producing:

“a highly uniform and precise plasma zone with zero contamination, and capable of high throughput production of advanced materials including Onyx In718 and Onyx Ti64 AM powders. 6K’s UniMelt technology can also spheroidize ferrous alloys like SS17-4PH, SS316, other nickel superalloys including Inconel 625, HX, cobalt-base alloys like CoCr, refractory metals like Mo, W, Re, reactive alloys such as Ti-6-4, TiAl, Al alloys as well as high-temperature ceramics such as MY and YSZ.”

6K’s proprietary UniMelt system that produces premium metal AM powders at 100% yield, image courtesy 6K

The company recently commissioned two commercial UniMelt production lines at its 40,000 square foot plant in Pennsylvania, USA, with each to produce 100 tones per year of nickel super alloys and titanium powders. This could represent a significant milestone in AM sustainability, in both its processes and applications for existing and new metal powders.

At Formnext 2019, 6K launched its Onyx In718 and Onyx Ti64 materials which, after internal product qualification and 3rd party printing, will begin customer sampling in the latter half of this year. Additional UniMelt systems will be commissioned throughout 2021 to meet anticipated demand for premium metal AM powders. The company is also looking to certify its plant as a sustainable manufacturing factory, as a recent member of MESA’s association for sustainable manufacturing.

“The commissioning of the first commercial UniMelt systems is the culmination of terrific work by experts in manufacturing, process and materials at both 6K Additive and our parent company 6K,” said Frank Roberts, President of 6K Additive. “Customers and strategic partners have been eager to sample and use our Onyx powders and we’re ready to deliver. Accompanying the new UniMelt systems, the new facility encompasses automated manufacturing equipment and industry leading safety and health systems that confirm our organization is hitting our production goals while ensuring the utmost in safety for our employees.”

UniMelt’s high frequency microwave plasma, image courtesy 6K

Through 6K Additive, its division focused on AM material solutions, the company aims at the production of ultra-high quality metal powders, at scale, at low cost with more than nine times the efficiency of existing plasma processes, the company claims. 6K (which stands for 6000K, the approximate temperature of the UniMelt plasma system and the temperature of the Sun) also enables the development of alloy powders with unusual properties, combining different types of metals that could not be mixed before, and producing previously thought “impossible” materials for 3D printing production. ‘Unobtainium’, is an alloy made by 6K which was previously considered impossible to obtain or produce, that combines six different metals including copper, iron, nickel, titanium among others.

This is because 6K’s microwave plasma process is the only process that can achieve the combination of high entropy metals, enabling the production of rare, unexpected alloy powders for metal AM. What’s most interesting though is that 6K’s microwave plasma platform converts certified chemistry machine millings, turnings, previously used powders, discarded parts, and other recyclable feedstock into high-quality AM powders. This means that any machined alloy could potentially be processed into reusable premium metal AM powder with specific properties.

6K’s unique technology could accelerate the trend towards a circular economy in metal AM, image courtesy 6K

6K may be transforming the business case for powder-bed and sintering applications in critical areas of cost, efficiency, sustainability and capabilities. This could accelerate the shift towards a circular economy in metal AM, despite greater short-term impacts in metal AM markets (as compared to polymer) this year due to COVID-19, and could also strengthen mid to long-term demand for metal AM solutions – perhaps growing the market beyond a projected $11 billion by 2024 (as per SmarTech’s latest AM Metal Powders 2019 report).

The post 6K Partners with Relativity Space, Commissions UniMelt to Transform Sustainability in Metal 3D Printing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.