Omid Afarinan is Bioprinting in Iran

When we were assembling our bioprinting world map, we omitted some companies. We are adding to that map and will continue to do so until we have everyone. One of the firms that we did not initially find is Omid Afarinan, also known as 3D Bio. This is an Iranian firm that makes bioprinters and bioinks. We have thus far seen comparatively little 3D printing and bioprinting activity in Iran, so we were more than happy to do an interview with the firm to find out more (as well as apologies for forgetting them in the world map!).

What does your company do?

Our company works on the whole bioprinting chain from tissue design to application stage. The focal point of our efforts in this chain is design, fabrication and development of commercial bioprinters. All research and development attempts are defined based on the targeted tissue or in other words the tissue need and market trend. Based on this fact, the target tissue determines the customization of the bioprinters, the choice of living cells and bioinks creating a multi-disciplinary ecosystem of scientific fields.

Where do you hope to be in five years?

Our mid-term goal in the next five years is turning into a leading company in bioprinting research and development with several specialized laboratories and the sole bioprinting service hub. Achieving the first transplantable living tissue would be the ultimate goal in this period.

Why should someone choose to work with you?

Our team has the capability of creating a wide range of customizations in bioprinter design both on the hardware systems and software. This capability leads to customer-made versions and tissue-specific printers. Our bioprinters are of high quality and competitive to its foreign counterparts from the accuracy and cost point of view. Our exemplary teamwork among various experts and the existence of a multi-profession environment led to current achievements and also resulted in training talented trainees. Our team welcomes specialized groups and eager students especially in the field of molecular and cellular biology to strengthen its abilities.

What are the differences between the Biofab and the Pioneer series?

The main difference between these series is their printing mechanism. The Pioneer bioprinter is extrusion-based using screws while Biofab utilizes pneumatic actuators for printing. This, in turn, makes Biofab more capable especially in the case of accuracy. The Pioneer version possesses the ability of unparalleled control over print heads and can print a variety of hydrogels. Moreover, the Biofab version supports a wide range of biomaterials and viscous cell suspensions for printing.

Both series provided in two versions, with 2 or 4 printing heads.

What kind of bioinks have you developed?

Omid Afarinan, as the first national company in Iran, has gathered experts from different fields of science with the aim of producing novel bioinks. Omid Afarinan bioinks are cost-effective, have high printability, mimic extracellular matrix (ECM) and provide a suitable environment for cell proliferation, growth, and differentiation. Some of the new unique bioinks of the 3D-Bio Team are PCL, PCL/Starch, Alginate and Alginate/Gelatin bioinks. Soft-Ink is the newest bioink of the company; a biodegradable bioink based on pure Alginate and Gelatin which can support growth and proliferation of any cell type of soft tissues. One of the main features of this bioink is high printability and uniformity with the ability to adjust the stiffness of its printed matrix.

In addition to a variety of bioinks from thermoplastic materials to hydrogels, the company also produces custom-made bioinks for specific applications.

What are customers doing with your printers?

The customers mainly use the printer for conducting state-of-the-art researches especially on creating regenerative tissues for transplantation and studying the behavior of living tissues. In particular, our current customers work on hard tissue as bone scaffold especially maxillofacial and soft tissue including cartilage, skin, cornea and heart. The study on drug delivery, cosmetic research and cancer treatment are other aspects of what our customers do with bioprinters.

What short term successes do you see occurring in bioprinting?

Successes in bone and cartilage tissues are promising in recent years. This is due to the fact that such tissues have low cell densities. This is more pronounced in the bone tissue where acellular scaffolds can be used. Skin printing comes next in the list on the soft tissue side, for being a flat and multi-layered tissue. Also, Bioinks are being developed in parallel but at a slower pace. These short-term successes would pave the path for tissues with more complex geometries.

Where is bioprinting challenging?

The challenges exist in both pre- and post-printing stages of bioprinting. At pre-printing stage, the challenge is on the printability of biomaterials and Bioinks. In other words, making the materials printable and the suitability of the printing is of prime importance. Overcoming this challenge leads to printed functional tissues that could mimic real ones. On the post-printing stage, the challenges mainly arise from the complexity in living tissues especially vascularization and post-printing processes such as cell culture and migration that makes the printed tissues ready for their applications. These challenges and issues need close collaborations between different experts to resolve in short and long-term periods.


What advice would you have for a researcher wanting to get into bioprinting?

The first advice is that the researcher should wear iron shoes. In other words, facing many difficulties is unavoidable and gaining achievements may take time. So, patience and being hopeful is the key point. Furthermore, bioprinting requires a multi-disciplinary group including engineers, biologist and doctors and no one can individually succeed in this path. Finally, utilizing a standard and reliable bioprinter could be beneficial and time-saving for any researcher. 

The post Omid Afarinan is Bioprinting in Iran appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Colombian Researchers Study Potential for SIS-Based Photocrosslinking in Bioinks

(a) Preparation of the 0.5% (w/v) riboflavin (RF) bioink and (b) its successful extrusion through a 21 G needle. (c) Filament formation during extrusion of the bioink through a 21 G needle. (d) Presumed photo-mediated crosslinking reaction thought to be occurring in the proposed bioinks.

Colombian researchers performed a recent study, outlined in ‘Formulation and Characterization of a SIS-Based Photocrosslinkable Bioink,’ explaining the possible value in crosslinking to create better materials for 3D printing cells. Here, they are using small intestinal submucosa (SIS) with photocrosslinked reactions to manipulate the gelation process, despite some expected challenges.

While the use of natural materials is always preferable, the researchers point out that they can also be difficult to work with due to lack of strength and stability. In the end that leads to inferior printability and further challenge.

“An avenue through which to overcome these issues is to mix them with synthetic polymers such as polyethylene glycol (PEG), polylactic acid (PLA), and polycaprolactone (PCL), which have demonstrated their ability to alter the mechanical response upon blending,” state the researchers. “Additionally, they have been proven able to shorten degradation rates, though at the expense of decreasing their biocompatibility.”

The authors also began to study decellularized extracellular matrices (dECMs) further, as they have the potential to copy the natural cellular environment. dECMs include the following proteins:

  • Collagen
  • Elastin
  • Laminin
  • Glycosaminoglycans
  • Proteoglycans
  • Growth factors

dECMs are not always stable though, and that presents challenges in bioprinting:

“Despite these obstacles, several research groups worldwide have attempted the development of bioinks based on dECMs,” state the researchers. “For inducing gelation, these studies have incorporated thermally-induced or photocrosslinking mechanisms, as well as a combination of the two.”

“Despite the crosslinking strategy implemented, the achieved mechanical stability has been observed to still not be sufficient, thereby requiring the use of synthetic materials as structural improvement supports.”

Shear stress profiles of the bioinks at different nozzle diameters and extrusion pressures: (a) 10 kPa, (b) 20 kPa, and (c) 60 kPa.

UV light has been used previously to increase the bioink stiffness in photocrosslinking, and for this study the authors experimented with the SIS dECM-based materials, using riboflavin (RF) as a photoinitiator. Visible light was used for the photocrosslinking. The research team created four different types of bioinks, with successful printability.

“Our experiments suggest that a successful extrusion can be accomplished while the pressure is maintained in the range 25–45 kPa,” stated the researchers.

(a–c) Viscosity and shear rate as a function of time, measured at different points of the nozzle tip geometry (center, middle, and wall). Structural parameter for the three extrusion nozzles studied with diameters of (d) 0.21 mm, (e) 0.25 mm, and (f) 0.41 mm.

They also went on to state that these bioinks demonstrate strong mechanical properties that could ensure success in bioprinting endeavors—following in line with previous research studies where crosslinking resulted in excellent printability parameters, as well as offering better integrity in shape.

“Further in silico experiments allowed us to calculate a stability parameter that provided conceptual evidence for the aggregation of collagen in times as short as 5 s,” concluded the researchers. “Finally, rheology tests allowed us to recover power law parameters for CFD simulations that confirmed shear stress values low enough to maintain high cell viability levels.

“Future work will be focused on reformulating the bioink with the aid of synthetic polymers and/or thermal processing such that collagen fibers remain in an extended state and are readily accessible to the photoinitiated molecules.”

The study of materials in 3D printing has become a vast realm, and a necessary one for those dedicated to such progressive fabrication techniques. It is also a very serious area of study for scientists engaged in seeking out the best ways to grow tissue in the lab, with the potential for making serious impacts in medicine.

Researchers around the world are on an intense journey to perfect bioprinting, and eventually, reach the pinnacle of success in fabricating human organs. The challenge today, as tissue engineering results in a variety of different implants, is to keep cells alive to serve their function in bioprinting. This means seeking out the best bioprinted structures to build, bio-inks, printers, and techniques. Find out more about photocrosslinkable inks here. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: ‘Formulation and Characterization of a SIS-Based Photocrosslinkable Bioink’]