Wikifactory’s Docubot Challenge Creates a Hardware Solution for Documentation

International startup Wikifactory, established in Hong Kong last June, is a social platform for collaborative product development. Co-founded by four makers and counting 3DPrint.com Editor-in-Chief Joris Peels until recently as a member of its advisory board, Wikifactory also has locations in Madrid and Shenzhen, and is dedicated to makers and DIY projects. It’s an all-in-one workspace designed for open source communities to help connect product developers to useful tools, such as 3D printing.

Recently, the platform launched the Docubot Challenge to help inaugurate the first Distributed Hardware Hackathon in the world. The global open source community was charged with finding a hardware solution for an issue that every maker faces – documentation.

This is a very prevalent issue in the maker community in terms of open knowledge for the purposes of digital fabrication. Documentation makes it possible for community members to gain the necessary knowledge and skills to further contribute to an ever-growing base of information. But just because it’s useful doesn’t mean it’s easy – while documenting fabrication methods may be a necessary evil, it can be a painstaking and tedious process that can slip through the cracks if you’re not meticulous about updating your work.

“Every product developer faces the task of having to document their work, but it’s a painful process. When your hands are full with what you are doing, it’s hard to take a step back and jot down the steps. That’s why documentation is often written after the process has already been completed, so there will always be missing photos or information,” the challenge states.

“We should strive to make the process of documentation easier, because Documentation in itself is an amazing thing. As a resource, it helps a broader community learn the skills and acquire the knowledge to contribute to a growing open source knowledge base.”

The Wikifactory team really wanted to turn the first edition of its Docubot Challenge into a distributed event; it is, after all, tagged as being “designed for makers, by makers.” Due to support from makerspaces around the world – specifically Pumping Station One in Chicago, Makerspace Madrid, and TroubleMaker in Shenzhen, China – this hope became a reality. Wikifactory is a great tool when organizing maker community events like workshops and hackathons, as it makes it simple to bring teams together online so they can contribute before, and even after, the event.

The goal of the challenge was to, according to WikiFactory, “accelerate a solution to a common problem faced by product developers” by collaboratively building a real-time documentation assistant that will take photos and videos on command, and could even convert speech to text. As someone who spends plenty of time transcribing recorded interviews, I want to know when this documentation assistant will be commercially available!

“With a hardware solution, doing documentation can be made into a more interactive, assisted process which can help accelerate engagement and collaboration in open source design and hardware,” the challenge stated.

The Docubot Challenge was originally instigated by Wikifactory members Gianluca Pugliese and Kevin Cheng. The participants were connected through Wikifactory to host project events in their own cities, engage with other teams around the world, and accept feedback and advice from other problem solvers. While it was definitely a learning experience, Docubot is now officially an open source hardware initiative, and great progress has already been made.


The Shenzhen Team developed an app that converts speech to text, the Madrid Team created a fun game that helps makers beat laziness and get documenting, and the Chicago Team created a button that signals a phone to start recording voice messages as well as pictures,” Wikifactory wrote.

The worldwide maker community is invited to get involved and contribute to the Docubot initiative. Whether you’re working on design ideas, developing the app and OS, or the hardware integration, the collaborative project needs your help in further extending the ideas by the team members who originally started it.

“With interactive and intercity sessions, participants will get to build relationships with creative problem solvers from around the world. It is an opportunity to apply skills in digital fabrication machines like 3D printing, hardware, electronics, programming and robotics for a relevant cause.”

Learn more about the Docubot Challenge here.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below.

[Images: Wikifactory]

The post Wikifactory’s Docubot Challenge Creates a Hardware Solution for Documentation appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Researchers Use 3D Printing and Basic Electronic Components to Make Neuroscience More Accessible

While I was worse in math, science was also not one of my strong suits in school. So anything that makes it easier for students to better understand these complex subjects is a good idea, in my humble opinion. Tom Baden, a professor of neuroscience at the University of Sussex, has been collaborating with his colleagues to further open up access to science education with a piece of hardware that can demonstrate how our brains function.

“By making access to scientific and teaching equipment free and open, researchers and educators can take the future into their own hands,” Professor Baden said. ” In time, we hope that this type of work will contribute to level the playing field across the globe, such that ideas, not funding can be the primary driver for success and new insights.”

Professor Baden is also one of the scientists behind the innovative 3D printable FlyPi microscope, and his latest work – an educational model of neurons in the brain made with basic electronic components – is just part of his expanding range of equipment that uses DIY and 3D printable models to make science more accessible and interactive.

One of the central parts of neuroscience is, of course, understanding how our neurons encode and compute information. But there’s not a good hands-on type of way to learn about this…until now. Professor Baden and other colleagues are building Spikeling: a piece of electronic kit which behaves similarly to the neurons in the brain and costs just £25.

“Spikeling is a useful piece of kit for anyone teaching neuroscience because it allows us to demonstrate how neurons work in a more interactive way,” Professor Baden explained.

Professor Baden, together with researchers Ben James, Maxime J.Y. Zimmermann, Philipp Bartel, Dorieke M Grijseels, Thomas Euler, Leon Lagnado and Miguel Maravall, published a paper about their work on Spikeling in the open access journal PLOS Biology, titled “Spikeling: a low-cost hardware implementation of a spiking neuron for neuroscience teaching and outreach.”

The team hopes that their invention will end up being a useful neuroscience teaching tool, and in fact, they are already seeing the benefits of their hard work. A class of third year neuroscience students at the university have used the kit, and at a Nigerian summer school last year, scientists were also taught how to build the hardware from scratch.

Spikeling has receptors, which react to external stimuli such as light to simulate how information is computed by nerve cells in the brain. Then, students can follow the activity of the receptors, or cells, live on a computer screen. Users can also link several Spikelings together to form a network, which demonstrates how brain neurons interconnect. This action makes it possible to demonstrate the neural behavior behind every day actions, such as walking.

The goal in Professor Baden’s lab is to, as the university put it, “level the playing field in global science” and make necessary equipment less expensive than it usually is. That’s why all of the information and design files for Spikeling have been made available, joining a growing trend around the world of designs collected on the PLOS Open Hardware toolkit, which Professor Baden just so happens to co-moderate.

A. Bag of parts disassembled Spikeling, as used in our summer school in Gombe, Nigeria. B. Students soldering Spikelings as part of an in-class exercise on DIY equipment building.

“With all parts being cheap, and design files being free and open, we hope that like any open Hardware design, Spikeling can be a starting point for others to change or extend it to their requirements, and reshare their improved design with the community,” Professor Baden said.

Andre Maia Chagas, one of the research technicians in the lab, recently published his own article in PLOS Biology that explains the importance of open scientific hardware, in response to a piece by Eve Marder, an American neuroscientist who wondered if researchers who worked in less wealthy institutions would fall behind as scientific research equipment continues to grow more expensive. More and more, we’re seeing that 3D printing can be used to make sure this doesn’t happen.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Images provided by University of Sussex]