Rochester Institute of Technology: Creating Reactive Metal Inks for 3D Printing

In the recently published ‘Three Dimensional Digital Alloying with Reactive Metal Inks,’ author Chaitanya G. Mahajan submitted a dissertation for a PhD at the Kate Gleason College of Engineering at the Rochester Institute of Technology, exploring new ways to 3D print multifunctional components with multiple materials.

Mahajan extensively explores the theory of nanoalloys, including details on core-shell nanoalloys, subcluster nanoalloys, mixed nanoalloys, multishell nanoalloys, along with the factors influencing their structure from strength of atomic bonding to surface energies of bulk elements, atomic size, and more.

The author discusses the variety of nanoalloys, created via a chemical, bottom-up method, as well as a physical top-down method. With bulk metal broken into nanosized particles for the top-down technique, for bottom-up, both atoms and molecules are brought together to construct nanoparticles.

“The main advantage of the top-down approaches is that bulk quantities of nanoparticles can be produced within a short span of time. However, the bottom-up approaches have the advantage of a more homogenous structure with more ordered crystallography within the nanoparticle,” states Mahajan.

The author explains that many applications use alloy nanoparticles; for example, they are employed in biomedical applications for in vivo and in vitro studies. Such materials exhibiting shape-memory effect will be even more useful.

Metal inks are used either with nanoparticles (top-down) or metal-organic decomposition (bottom-up approach) precursor inks, with the active material comprised of a nanoparticle suspension.

Top-down and bottom-up approaches for the synthesis of nanoparticles

“Additives such as surfactants are added to modify the surface tension of the ink, whereas dispersants are added to avoid agglomeration of the nanoparticles in the carrier solvent. To get rid of the carrier solvent, the printed pattern is thermally sintered to form a metallic layer,” stated the author.

Schematic overview of different approaches to form a metallic structure onto a substrate

Here, Mahajan presents a binary copper-nickel system to form an alloy with metal precursor inks, avoiding the typical clogging issues found with nanoparticle suspensions.

For this study, both copper and nickel inks were created for the purpose of inkjet printing, with reduction examined under a range of conditions. Both metal and alloy were then characterized using:

  • Thermal analysis
  • Infrared spectroscopy
  • Energy dispersive X-ray spectroscopy (EDS)
  • X-ray diffraction

“To achieve a homogeneous alloy formation, the copper phase and the nickel rich phase were diffused together at high temperatures,” stated the author. “Copper nickel alloy inks with ratios Cu30Ni70, Cu50Ni50, and Cu70Ni30 were formulated and reduced at 230 °C and later high-temperature diffusion was achieved at 800 °C.

“The lattice parameter of the alloy phase for the inks with ratio Cu30Ni70 was 3.5533Å, Cu50Ni50 was 3.5658 Å, and Cu70Ni30 was 3.5921 Å. Using Vegard’s law, the composition of the alloy phases for the three samples was estimated to be Cu32Ni68, Cu46Ni54, and Cu75Ni25. This formation of the desired alloy composition can open the door to numerous applications in the biomedical and electronics sectors, among others.

No segregations were seen for the samples that were sintered in vacuum and in the inert atmosphere; however, XRD analysis of the sintered alloy demonstrated both copper and bimetallic copper-nickel phases.

“To print a part with desired alloy composition, each layer can be printed and reduced over and over to build up a 3D structure. The final printed 3D part can be placed in a high-temperature furnace to achieve diffusion and form a homogenous alloy structure,” concluded the author.

“As the weight percentage of copper and nickel in the precursor inks presented were 6.5% and 4.5 % respectively, the number of printing and reducing steps increases to print a 3D part. The printing time can be reduced by increasing the drop volume of the ink or by increasing the solid content of the ink.”

3D printing has not only sparked innovation around the world, but also the study of materials—and especially inks—from direct ink writing to fiber ink, and even chocolate ink.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Schematic illustration of printing a Ni precursor ink and sintering it in presence of homogeneous magnetic field to reduce the nickel complex to aligned nanowires. Reproduced from [23] licensed under CC by 4.0

[Source / Images: ‘Three Dimensional Digital Alloying with Reactive Metal Inks’]

The post Rochester Institute of Technology: Creating Reactive Metal Inks for 3D Printing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Nanyang Technological University: Inkjet Printing of ZnO Micro-Sized Thin Films

In ‘Inkjet-printed ZnO thin film semiconductor for additive manufacturing of electronic devices,’ thesis student Van Thai Tran, from Nanyang Technological University, delves into the realm of fabricating products with conductive materials. As inkjet printing continues to gain popularity for researchers and manufacturers, it is the vehicle for creating a wide variety of innovations, to include tissue engineering and more. Here, however, Tran develops and examines ZnO thin film to promote electrical qualities in hopes of expanding 3D printing processes further overall.

The author understands the many benefits of 3D printing, as they have unfolded since the mid-80s. Today, the technology has progressed far beyond rapid prototyping, and a wide range of functional products are being made.

“It is expected that 3D printing will play a significant role in the fabrication of goods soon. As a result, the demand for printed functional devices has been raised to fulfill the need for printed consumable products, which are composed of multi-materials,” states Tran. “Hereby, the printed functional devices are not only basic electrical elements, such as resistors, capacitors, and transistors, but also advanced electric devices, such as sensor, solar cells and batteries.

“The construction of a product using 3D printing requires a combination of structural material and functional material. To accomplish the fully additive manufacturing process, printing of functional materials, such as conductor and semiconductor, is crucial.”

ZnO is helpful today in applications like:

  • Optoelectronics
  • Electronics
  • Sensors
  • Piezoelectric devices

Inkjet printing technologies: Continuous inkjet printing and Drop-on-demand Inkjet printing and electrohydrodynamic inkjet printing

Tran does raise concerns, however, regarding the use of ZnO in inkjet printing—such as the likelihood that it may cause band bending, resulting in defects in the 3D printed products. Band bending issues must be controlled and ‘engineered’ to create a device that is highly functional, lending central focus to this study, along with creating a successful way to improve on using the photolithography process, and investigating issues in annealing.

As an intrinsic n-type semiconductor, ZnO also possesses piezoelectric properties, capable of generating voltage under pressure—and causing it to be suitable for applications requiring sensors and actuators. As for thin film transistors, ZnO is an attractive option due to compatibilities with LCD applications and a variety of miniaturized electronics. As Tran mentions, ZnO is also especially suited to UV photodetector applications too.

In this project, Tran fabricated thin films via inket printing, but modifications were made with annealing—decreasing the band bending. The author also discovered that electrical properties were greatly improved due to heat treatment, with film conductivity impacted by band bending changes.

“The successful inkjet printing of micro-sized ZnO thin films and the integrated photodetector has demonstrated the feasibility and great potentials of fabricating sophisticated semiconductor devices using additive manufacturing technology,” concluded the author.

3D printing and electronics have been coupled together since the beginning, allowing for expansive innovations—and allowing many manufacturers to create items never possible. They are also able to enjoy much greater sustainability in production, whether in creating breakthrough techniques in manufacturing, liquid materials for electronic applications, or wearables. Find out more about semiconductors in AM manufacturing here.

Discuss this article and other 3D printing topics at 3DPrintBoard.com.

Additively fabricated ZnO nanostructures. (a) Selectively grown ZnO nanowire from inkjet-printed pattern (b) Electro-spinning ZnO nanowire

Printer structure and printing process to prepare the thin film. (a) Printer structure shows the main components and three-axes of the printer. (b) Optical photo of the printer. (c) Optical picture of the cartridge, including ink container and nozzles. (d) The schematic of the droplet watcher, which is the system to observe the generation of droplet before running the printing

[Source / Images: Inkjet-printed ZnO thin film semiconductor for additive manufacturing of electronic devices]

Added Scientific Used Xaar Printhead in Pilot Project for 3D Printing Personalized Pharmaceuticals

Cambridge-based company Xaar may have had its start in developing piezoelectric, drop-on-demand industrial printheads, but transitioned to the 3D printing world back in 2014 when it helped develop the high speed sintering (HSS) FACTUM 3D printer. Xaar is also a leading developer of digital inkjet printing technology, and is currently helping research organization Added Scientific, headquartered in Nottingham, as it works to determine how suitable inkjet printing is in fabricating personalized pharmaceuticals.

Added Scientific, a spinoff company from the University of Nottingham, is using Xaar’s 1201 printhead to bring personalized medicine, with dosages tailored to individual people on an industrial scale, just one step closer to reality.

Craig Sturgess, Research Manager for Added Scientific, said, “Inkjet printing offers the ability to digitally control the printing with its precision placement of tiny droplets a few picolitres in size and the capability to place multiple materials to create complex multi-functional objects in 2D & 3D.

The project was initiated by Added Scientific with its collaborating partners Xaar and global pharmaceutical company AstraZeneca and funded under the UK government’s Industrial Strategy Challenge Fund’s Medicines Manufacturing Challenge, with additional support from Innovate UK. They’re building on research previously conducted at the university regarding the development of excipients: everything but the active pharmaceutical ingredient (API). This pilot project is looking at the long-term suitability and scalability of using inkjet printing to dispense APIs.

“Trial research carried out previously has shown that inkjet offers a real potential for printed medicines. This project was designed to answer questions pharmaceutical companies have around the suitability of inkjet printing in dispensing APIs at a scale that made both manufacturing and economic sense,” Sturgess continued.

The project partners used the Xaar 1201 printhead with one of the university’s formulations to evaluate its impact on the API, in addition to how well it can operate under Good Manufacturing Practice (GMP) conditions. GMP is the de facto standard for manufacturing in the pharmaceutical industry. They also studied if the formulation had an effect on the life of the printhead, and rounded out their experimental trials by evaluating AstraZeneca’s data from conventional tablet manufacturing against inkjet printing process times.

Xaar’s 1201 printhead

“The Xaar 1201 is ideal for a wide range of industrial applications including Advanced Manufacturing due to its ability to print fluids with a range of viscosities, reactivity and conductivity. This pilot project has demonstrated the Xaar 1201’s versatility for pharmaceuticals and how inkjet printing is proving itself to have the potential to drive innovation as well as efficiencies in many areas of 21 st century life,” stated Mike Seal, Business Development Manager, Advanced Manufacturing, at Xaar.

The results from the team’s project showed significant time saved in unit process times from inkjet printing in comparison to conventional manufacturing methods. Production trials consisted of 1,000 dosage forms printed in batches of 100, and no issues or interaction with the API occurred in Xaar’s 1201 printhead; additionally, there was no impact on the life of the printhead itself.

“These are exciting times. Our project has clearly shown that printing personalised medicines – with all their advantages of dose and design freedom – is no longer just a theory, but a scalable and economic reality for pharmaceutical companies and we look forward to extended trials to confirm these findings,” Sturgess concluded.

Added Scientific and its project partners are certainly not the first to investigate the idea of using 3D printing to fabricate personalized medication, and I doubt they will be the last. However, inkjet printing is not typically used to make 3D printed medication, so it will be interesting to see what the team’s next steps will be.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Images: Xaar]

XYZprinting Introduces Its New Full-Color Option: The da Vinci Color mini 3D Printer

Taiwan-based 3D printer manufacturer XYZprinting almost always has a new 3D printer to introduce whenever an industry event or trade show rolls around. At last year’s IFA exhibition, the company unveiled its da Vinci Color 3D printer, and is now expanding its portfolio even further at IFA 2018 with the release of its consumer-oriented da Vinci Color mini.

Part of the company’s Color series, the compact, full-color da Vinci Color mini uses 3DColorJet technology, which combines FFF 3D printing with inkjet technology, so users can turn their ideas into colorful reality.

“Desktop full-color 3D printing is here. Now, consumers can purchase an easy-to-operate, affordable, compact full-color 3D printer for $30,000 less than market rate,” said Simon Shen, CEO of XYZprinting. “This is revolutionary because we are giving the public access to technology that was once only available to industry professionals. We are proud to be the industry leader in desktop, full-color 3D printing.”

The new da Vinci Color mini by XYZprinting, weighing in at just 53 lbs, is convenient and lightweight enough to be easily placed on any desktop or table top, while also providing the same high level of versatility and quality that XYZprinting is known for. This makes it the perfect 3D printer for designers, entrepreneurs, and STEAM students.

The 3D printer, which the company says is “a modern full-color 3D printing solution to traditional bulky and expensive full-color 3D printers,” works seamlessly, thanks to several features like WiFi connectivity, an EZ removable print bed, hands-free automatic calibration, and a 5″ color touchscreen LCD panel for user-friendly, intuitive operation.

Additional features include:

  • Complete full-color 3D printing capabilities (3-in-1 CMY ink cartridges)
  • Upgradable laser engraving function for leather, wood, and more
  • Mono-color 3D printing in PLA, PETG, and Tough PLA
  • Full-color 3D printing in Color PLA
  • 5.1″ x 5.1″ x 5.1″ build volume
  • Fully enclosed
  • UL certified

The compact da Vinci Color mini is easy to set up, so users can get right down to the business of 3D printing. XYZprinting’s 3DColorJet technology is able to provide a full spectrum of millions of colors, which can be applied to various layers in 3D prints.



The da Vinci Color mini was designed for all sorts of consumer and professional 3D printer users, such as producers who create prototypes of film and animation models that need to be available for immediate use post-print, and educators looking to add full-color 3D printing capabilities into their classrooms. This 3D printer is also perfect for small business owners looking to open their own 3D printing business, designers and architects who want to help clients get a better idea of their final product with the help of miniature landscapes and scaled down models, geek culture collectors and fans, and just daily consumers in need of a more cost-effective 3D printing solution.

XYZprinting’s new da Vinci Color mini 3D printer retails for $1599.95, but early adopters can save $600 by pre-ordering it on Indiegogo; it should be shipped to crowdfunding backers in October of 2018.

The da Vinci Color mini will also be on display later this month at IFA 2018, which will be held at the Berlin Exhibition Grounds in Germany from August 31st to September 5th. You can see the 3D printer for yourself at the company’s Booth 107 in Hall 12.

What do you think of the XYZprinting’s da Vinci Color mini? Discuss this new 3D printer, and other 3D printing topics, at 3DPrintBoard.com or share your thoughts in the comments below.

[Images provided by XYZprinting]