3D Printing News Briefs: December 3, 2019

We’re starting today’s 3D Printing News Briefs out with a new case study, and then concluding with some business. CRP USA has been working with additive manufacturing in the motorsports sector. Moving on, Gardner Aerospace has acquired FDM Digital Solutions Ltd. Finally, the Head of Engineering at Formlabs is joining up with Digital Alloys.

CRP USA AM in Motorsports Case Study

3D printed oil pan in Windform SP, University of Victoria’s Formula SAE race car 2019 version

The University of Victoria (UVic) Formula Motorsport team has been using 3D printed oil pans on their SAE competition cars for the last four years that were created with CRP USA‘s laser sintering process, and Windform TOP-LINE composite materials. As a CRP case study details, carbon-composite Windform XT 2.0 was used to print the oil pans for the race vehicles in 2016, 2017, and 2018, and while they performed “amazingly” the first two years, the engine overheated during a test of last year’s car, which caused the temperature of the oil to rise above what the pan could handle.

For this year’s vehicle, the team decided to use the carbon-filled Windform SP composite material to 3D print the oil pan, as it has a higher melting point. They also made the mating flange thicker to lessen the chances of failure, and both of these changes led to a better, more robust oil pan. At next week’s Performance Racing Industry (PRI) Trade Show in Indianapolis, CRP USA will be showing off some of the other 3D printed solutions it’s helped create for the motorsports industry at booth 1041 in the Green Hall.

Gardner Aerospace Acquires FDM Digital Solutions

Graeme Bond (FDM) & Dominic Cartwright (Gardner Aerospace)

Global manufacturer Gardner Aerospace announced its acquisition of FDM Digital Solutions Limited, one of the UK’s top polymer additive layer manufacturers. FDM was formed in 2012, and its business model of original design solutions, manufacturing capability, and customer collaboration is successful in the aerospace, automotive, medical, and motorsports industries. The company will now become part of the new Gardner Technology Centre business unit, which is focused on R&D and advanced technology.

“Gardner Aerospace is breaking new ground in terms of technology. The acquisition of FDM and the creation of our new Technology Centre business unit provides us with the perfect opportunity to expand our technical knowledge, R&D capability and product offering, and aligns us with our customers’ growing expectations on innovative solutions, continuous improvement and cost competitiveness,” stated Gardner Aerospace CEO Dominic Cartwright.

“The role of 3D printing within manufacturing is constantly expanding and this newly acquired additive layer manufacturing capability complements Gardner’s long-standing capabilities as a producer of metallic detailed parts and sub-assemblies.”

Formlabs’ Head of Engineering Joins Digital Alloys

Carl Calabria

Carl Calabria, an AM industry veteran and the Head of Engineering at Formlabs, is leaving the company to join Digital Alloys, Inc. as its CTO. The Burlington, Massachusetts-based 3D printing company introduced its unique Joule printing last year, which it claims is the fastest way to make the hardest metal parts, as the wire-feed process doesn’t require any metal powder. By adding Calabria to its team, where he will be responsible for the company’s research and engineering, Digital Alloys can accelerate the release of its high-speed metal AM process.

“Leaving Formlabs was a difficult decision, but I was drawn to the size of Digital Alloys’ market, the team, and the opportunity to use Joule Printing to deliver metal printing solutions that have the speed, cost and quality needed for volume manufacturing of larger parts,” said Calabria. “The remarkable technology is producing titanium and tool steel parts faster, and at lower cost than conventional manufacturing processes.”

Watch this video to see Digital Alloys’ Joule printing process in action:

 

What do you think? Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below. 

The post 3D Printing News Briefs: December 3, 2019 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing Industry Review of the Year August 2018

The month of August welcomed various medical innovations within the 3D printing industry. The automotive and aerospace sector also further integrated additive manufacturing through Bugatti’s latest supercar, the Divo, and NASA’s cube satellite set for space from the Hindustan Institute of Technology and Sciences. Moreover, Reebok and BASF  began production of its 3D printed sneaker, […]

Digital Alloys Closes Series B Funding, Receives Patents for Novel Joule Printing Method

Located in Burlington, Massachusetts, 3D printing company Digital Alloys is bringing something brand new to the table. It’s called Joule Printing, and the company claims it will bring metal 3D printing into the mainstream. Although metal 3D printing is becoming more common as costs lower and technologies diversify, it still has its issues, including still-high production costs, slow printing speeds, complexity, and quality issues.

“Current methods take too long to be practical, or require the use of dangerous materials, specialized hardware, and multiple complex finishing steps involving shrink compensation software, chemical baths, and furnaces,” says Digital Alloys CEO Duncan McCallum. “Look past the hype around metal 3d printing, and you’ll find it’s rarely used in manufacturing.”

These challenges, says Digital Alloys, are circumvented by Joule Printing, a wire-feed additive manufacturing process that does not require any sort of metal powder. It works with any metal in wire form, and involves the tip of the wire being positioned in the desired printing location. The system then pushes current through the wire and into the print bed. The current melts the wire using joule heating, also known as resistance heating, which is the same method that heats a toaster coil. The process continues as the print head moves across the bed, laying down beads of metal which are fused together to form fully dense metal parts.

The positioning and melting of the wire occur in a single step, which lowers cost, saves time and increases repeatability. Joule heating, according to Digital Alloys, is the most efficient way to convert electrical energy into heat. Because the wire melts from within, there is no need to wait for the heat to move to where it’s needed. Melting occurs instantly at the desired location, which will allow Digital Alloys’ system to print at 5-10 kg per hour at very low power.

“Joule Printing™ provides precise closed-loop control of melting at the voxel level,” continues McCallum. “Since the wire is held in a precision motion system, we know exactly where the melt is deposited. Unlike a direct energy deposition system, there is no dripping or splashing. We use the precision wire feed system to measure and control how much metal goes into the melt pool. The electric circuit provides measurement and control of how much energy is applied to the melt. This combination of tightly controllable process parameters allows the system to deliver consistently dense (99.5%+) isotropic parts that are stronger than castings. In addition, the process data for every voxel is saved for post analysis. In combination with our machine learning technology, this provides the capability for non-destructive QA of printed parts.”

Digital Alloys was formed last year as a spin-out from NVBOTS, and today announced that it has completed its Series B financing, supported by:

“Our investment in Digital Alloys will help Boeing produce metal structural aerospace parts faster and at higher volume than ever before,” said Brian Schettler, managing director of Boeing HorizonX Ventures. “By investing in companies with emerging additive manufacturing technologies, we aim to strengthen Boeing’s expertise and help accelerate the design and manufacture of 3D-printed parts to transform production systems and products.”

Digital Alloys was also awarded its first two patents on Joule Printing. The technology is capable of 3D printing with multiple metals in one part, and offers higher resolution than other wire-based 3D printing technologies, according to the company.

3DPrint.com spoke with Duncan McCallum the CEO of DigitalAlloys about their technology,

Duncan said that, “the application area for our technology, if we slice the market, is for parts sized between a baseball and a beach ball. Our costs per machine hour are much lower than alternative technologies. We’re manufacturing parts at one Kilogram per hour at the moment. We are aiming for 5 to 10 Kilios of parts per hour in the future.” 

This means that Digital Alloys is already a sea change faster than current generation metal 3D printing speeds. By staying away from crowns and small implants, the traditional stomping ground of powder bed fusion and focusing on larger less expensive parts they may find and exploit their own market. He said that, “Powder Bed Fusion is too slow and the powder too expensive. Wire DED type technologies are fine for large parts but too sloppy for fine ones. We see ourselves as in between these technologies.” That is a wide application area to be in and may make them cost-effective and usable for automotive and larger aerospace parts. In terms of costs there are also significant advantages. Digital Alloys claims that next to no post processing has to be done with their technology but they can make near net shape 99.5% dense parts without post processing. So without destressing, debinding and other costly steps the time to part will be much faster. The cost per part will also be significantly lower as well. 

Duncan stated that, “Our process does not require HIP or other post processing techniques this significantly lowers cost as well. Our wire feedstock is also much less expensive than other 3D printing materials. Overal we have significant cost advantages over existing technologies. We are aiming to produce parts 25% cheaper than conventional manufacturing if we look at buy to fly ratios. Especially in materials that are difficult to cut such as tool steels we aim to be significantly cheaper than conventional manufacturing. By exactly feeding in a material and knowing precisely at which Voxel that material is we can heat it quicker. It forms a circuit and that’s how we can feed in the material precisely into the melt pool and control the melt pool. By doing this we have good control over microstructures and the final part. Joule is simply the most efficient way to heat and its fast as well.” This is quite the claim. If Digital Alloys can deliver on reliability and repeatability then they may have a very exciting manufacturing technology on their hands. Want to try it out? Before launching their machine the company will be acting as a service. If you’re curious as to what geometries are possible and what the pricing is you can contact them to find out more. They already will produce parts for a dozen clients by the end of the year. 

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Images: Digital Alloys]