AMS 2020: 3D Printing Metals II Keynote by Craig Sungail, Global Advanced Metals

The final keynote presentation at our recent Additive Manufacturing Strategies, held in Boston and co-hosted by SmarTech Analysis, was given by Craig Sungail, the Vice President of Global Research and Development for Global Advanced Metals, which just so happened to be one of the event sponsors. Sungail was part of our new 3D printing metals track, and presented a very interesting talk about tantalum, “the other gray metal.”

“We’ve used other metals for years, like cobalt chrome and stainless steel, to make implants,” Sungail said. “In 80% of the cases, for most people, it’s successful. But 20% of the time, patients aren’t happy with the results.”

He went on to say that there is a 10% revision rate each year for surgical implants 3D printed out of these other materials, for reasons such as infection, fracture, and becoming dislodged. That’s why he said that we should all “consider tantalum as an alternative.”

“This metal has a long history. We’ve been reviewing the literature for the past 25 years. The authors vary – physicians, universities, etc. But there is a broad, diverse group of people investigating this metal for medical devices.”

Sungail explained that these journals have determined that tantalum (Ta) is not toxic, which “can’t be said for some of the other metals out there today.” Additionally, the research shows that when using tantalum for implants, the osseointegration (bone ingrowth) of the implant into existing bone is pretty good, and perhaps even better than implants made with straight titanium or the Ti-64 alloy.

He pulled up a slide listing some of the other benefits of using tantalum to fabricate medical implants, including the fact that it could enhance local host defense mechanisms, and that it may even have some antibacterial properties.

Sungail offered a brief history about tantalum, which is a transition metal/element. He explained how the material got its name, bringing up a slide about Greek mythology, which I had not been expecting and was very interesting. Tantalus, the son of Zeus and a nymph, stole ambrosia and nectar from his father, and the punishment definitely fit the crime in this case – he was forced to stand in a pool of water that was tantalizingly close to a fruit tree.

“The water would fade away, and the fruit was just out of reach,” Sungail went on.

Then, in 1802, Swedish analytical chemist Anders Gustaf Ekeberg became the first person to discover tantalum when he successfully separated it from nyobium. Ekeberg was tantalized for a long time attempting to achieve what many others had not, and once he’d succeeded, he was given the honor of naming both of the new elements.

“I’m confident that every one of you has been touched by tantalum in some way,” Sungail said. “It’s highly conductive, with a high melting point, chemical and corrosion-resistant, dense, hard, ductile, and biocompatible. We have to use biocompatible carefully, but I’m using it with the FDA definition – it’s been implanted in some way into the body, and studies concluded that the implant was biocompatible.”

Sungail said that the most common application for tantalum is in the capacitor sector, such as when it’s used for cell phones. It does have a 40-year history in medical devices, and it can be mixed with materials in order to make super elements, which can be used in turbines for jet engines and energy generation.

He explained that the company is “truly global,” with locations in the US and Japan. GAM also has a controlling interest in the largest reserve of tantalum in the world, which is in Australia. I’m skipping ahead a little, but I thought this was a good question – at the end of the presentation, an attendee asked Sungail about the potential environmental impact of mining tantalum. He explained that GAM does what he referred to as a “bag and tag” when they receive ore from a conflict country.

“We ensure the money isn’t going to terrorists, we do it ethically. If it wasn’t mined ethically, we wouldn’t have sales,” he stated.

Back to where we were, Sungail said that two years ago, the company was taking a look at the various AM markets, wondering which would be the best to participate in with its tantalum. Just like the above graph shows, GAM determined that its “value proposition was best in medical, and not automotive.”

“We realized we’d have to bridge the chasm between early adopters and later innovators. We’d have to teach the industry about tantalum and that it can be printed,” he said.

So the company got to work, using 200W and 300W lasers to 3D print medical devices like spinal implants and baseplates out of its tantalum; these fully dense parts are now in testing.

Sungail listed several reasons why tantalum is a good material to use in 3D printed medical devices – it resists blood clotting, so it can be used to fabricate stents, and its high surface friction, proven through several research studies done on animals, is good for implant stabilization.

Tantalum also has no problem with corrosion, which has been reported as being an issue with other implant materials. Sungail had a slide that showed a picture of a non-tantalum 3D printed hip implant, which required revision post-surgery due to corrosion; researchers determined that it was caused due to crevice (the oxygen effect) and galvanic (dissimilar metals). He explained that debris due to friction can lead to even more issues with implants, such as inflammation in the tissue around the joint, which can cause severe pain, and that cobalt chrome and Ti-64 implants can even lead to toxic effects, like bone degradation, if absorbed into the body.

“Tantalum doesn’t corrode in a normal body,” Sungail said. “Its only attacker is hydrofloric acid, and threading should also not occur with tantalum.”

Looking at the graph above, you can see that the material’s printability comes down to several factors, of which bioinertness combines several; Sungail explained that “these are generic combinations of various features for easy reading.”

“It’s significantly more printable than some other metals we use for medical devices,” he continued. “Tensile and elongation properties unfortunately aren’t well reported, so we turned to engineering handbooks for this informnation, and modulus can be tuned with this material. There are four to five papers out now from researchers who printed tantalum and made it 70-80% porous, because this is the sweet spot for osseointegration. They noticed that the elastic modulus exactly matched bone in this range.”

Sungail said that he’s been at many conferences where people have concurred that tantalum is a great material, but don’t know how to justify using it since it’s more expensive than Ti-64.

“That’s the wrong question,” he said. “Ask the cost to the patient.”

While looking for a well-documented surgical study, GAM found an example with a 3D printed transforaminal lumbar interbody fusion (TLIF) implant, which is shown in the slide below with the cost benefit example analysis.

“We looked at the whole process, buying the raw material and printing and cleaning it and sterilizing it, packaging, surgery, to the point where the patient walks out,” Sungail explained. “Tantalum’s contribution to this implant on the slide is .02%. I think that’s nearly negligible. Tantalum will allow the patient to walk out much quicker and recover much quicker.”

3D printing isn’t even the most expensive part of the whole process – it’s the surgery itself. If annual implant surgery revisions can be prevented by even 5% from switching to tantalum, the medical industry will save $300-500 million a year.

Another example Sungail shared was a 3D printed knee implant made out of tantalum. The surgery took place in China back in 2017, and the patient was actually able to stand up two hours post-op…that’s a pretty impressive feat.

Wrapping things up, he pulled up a slide showing GAM’s “current” tantalum products for 3D printing. In its angular powder form, the material works for cold spray technology and DED printing, while spherical powder can be used with laser AM technologies. He said that the company is also working on tantalum tungsten, and is “always looking for partners,” especially since GAM doesn’t have its own 3D printing system yet and relies on its partnerships to print tantalum for them. However, Sungail said they are considering a 3D printer purchase…perhaps this is an announcement we’ll see in the near future?

Stay tuned to 3DPrint.com as we continue to bring you the news from AMS 2020.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Photos: Sarah Saunders]

The post AMS 2020: 3D Printing Metals II Keynote by Craig Sungail, Global Advanced Metals appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

AMS 2020: Keynote Presentations on 3D Printing in Metal and Medical Industries

For the second year running, and its third year total, 3DPrint.com and SmarTech Analysis have brought the Additive Manufacturing Strategies summit to Boston. With a theme of “The Business of 3D Printing,” the event continues its established coverage of 3D printing in the medical and dental industries, but adds a new metals track this year.

Lawrence Gasman, the President of SmarTech, welcomed everyone to the event, and then we jumped right into the thick of things, as Dr. Banu Gemici-Ozkan, Senior Market Intelligence Leader for GE Additive, presented her keynote, entitled “Metal Additive Strategies Enabling Next Generation of Adopters.”

Dr. Banu Gemici-Ozkan

Dr. Gemici-Ozkan explained that she’s been working with additive manufacturing for about four years, and her role is to oversee global operations, as well as support business in the metal AM space with the right applications.

“I’m in marketing, so I have to start with numbers,” she said, pulling up a slide of the “world of opportunities” for metal AM.

She explained that conventional manufacturing happens in many stages – you have to extract the metal, process it in chemical plants, assemble it into the final products, and several others that I’m definitely leaving out. Additive manufacturing can accomplish all of this in less steps, which is why it’s so attractive.

An example of an engine turbine came up, and at the bottom was a statement about how metal AM is competing with $570 billion worth of core conventional metal manufacturing processes. But, system redesign is what makes it competitive to this traditional methods – AM offers a simpler supply chain and leaner operations.

“It’s really exciting to see the potential of additive manufacturing,” Dr. Gemici-Ozkan said. “But where are we in this vision today?”

A timeline showed that the number of metal AM system installations in the first stage of the “diffusion of innovation,” in the 1990s, was less than 50…only the true innovators will put in the work of debugging these first systems and working out the kinks. The early adoption visionaries come in later, excited to invest in the technology.

“The customers are who drive the change,” she said. “So far, we’ve only seen innovators and visionaries.”

She explained that the next generation of the market will consist of the bigger players, or pragmatists, jumping on board. These adopters are cost-conscious, and will be looking for full solutions.

Then, she walked us through what she called the four “critical industries” in metal additive manufacturing. I’m sure you can guess them: medical, dental, aerospace, and automotive. When asked if they were there with the medical field, nearly half the hands in the room were raised, making Dr. Gemici-Ozkan’s point that this sector is a “great space to be in from a metal AM perspective.” The adoption drivers in this industry are cost and performance, with major applications in porous, biocompatible structures with fine features. Here, accuracy, repeatability, and traceability become really important.

Dental is the most mature industry for metal AM, a point that I heard multiple times throughout the day in different presentations. She explained that adoption drivers are lead time and customization; in this and the medical industry, the turnover time with metal 3D printed parts is roughly 24 hours, which you just can’t beat. Additionally, technology providers are focused on meeting customer needs.

In the aerospace industry, industrial production is the main focus. The materials are more versatile, and applications are in large parts and complex geometries with fine features.

“I could talk for hours about this industry,” she said.

“The potential is huge…this space offers a great potential from the industrial production perspective.”

She brought up the GE9X jet engine, which has 304 3D printed components and offers GE Aviation fuel savings of 10% when compared to its predecessor, the GE90, which only featured one 3D printed part.

The automotive industry is already automated, so its needs are focused on cost-conscious systems. Dr. Gemici-Ozkan said that AM technology providers “need to consider integrating their systems to the factory solutions.” The technology will have greater potential in this sector as material costs continue to come down, and she noted that binder jetting will be important in this space.

“Additive manufacturing is not a one-size-fits-all solution – it offers different solutions for different industries and applications,” Dr. Gemici-Ozkan said in summary. “It sounds like it’s all versatile, but these are the building blocks of mainstream technology.”

Then it was time for the next keynote presentation, “Medical 3D Printing: Building the Infrastructure for Innovation,” by Lauralyn McDaniel, Industry Manager, Analysis, for the American Society of Mechanical Engineers (ASME). Part of ASME’s mission is to improve people’s lives through engineering, which is definitely what 3D printing is working towards in the medical field.

McDaniel also started with numbers, with a slide stating that over one million patients had been directly impacted by AM, and that number increases to over two million when you take into account indirect impacts.

“Understanding the history of additive manufacturing in the medical industry can give us clues as to where we go from here,” McDaniel said, before launching into a brief timeline that began with the first 3D printed model from a medical image in 1988.

She explained that some of the factors leading to growth of the technology in the medical field include improved software, more material choices, precision medicine, faster and more precise processes, and the fact that more people share their resources and experience.

“You need published studies to generate the evidence that doctors need,” McDaniel explained.

Challenges include process bottlenecks, verification and validation processes, standards and regulations, and the workforce development.

Then, she cleared up something that many don’t always understand – most materials that people say are FDA-cleared are not, they have just been used in FDA-cleared devices. For example, titanium is often used in orthopedic implants, but the material itself is not cleared by the FDA, it’s just been cleared for use in the implant.

Continuing on to the regulatory process, McDaniel explained that there’s a “big difference” between a new product, and a new way to make the same product.

“The dental industry has a whole infrastructure set up to match patients with devices and implants, 3D printing just gives them a new, more efficient way to do it,” she said. “But anatomical models is a whole new product category.”

McDaniel said that ASME is supporting a series of discussions about the FDA’s concept framework for 3D printing at the point-of-care, and has worked with the agency to create validation and verification standards, including those for 3D printed medical devices. Just over half of the medical devices that have been cleared by the FDA are metal, so never fear, polymers are still significant in this space.

On the clinical side of things, standards aren’t quite as common, but she mentioned that the RSNA Special Interest Group is working to develop guidelines to help others with their own processes.

Some of the development highlights that McDaniel touched on include 3D printing-enabled tissue fabrication, clear dental aligners, which “exploded a bit because some of the patents expired,” tissue fabrication in outer space, and the fact that nearly 150 3D printed medical devices have been cleared by the FDA overall; at least three of these were patient-specific.

Moving forward with medical 3D printing, McDaniel said we need more collaboration and sharing of our experiences and resources, along with continuing materials development, improved software and AI, increased standards development, and more regulatory clarification, especially in hospitals.

Stay tuned to 3DPrint.com as we continue to bring you the news from our third annual AMS Summit.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Photos: Sarah Saunders]

The post AMS 2020: Keynote Presentations on 3D Printing in Metal and Medical Industries appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Wikifactory Partners with Fablabs.io, Introduces New Workflow Features

All-in-one workspace Wikifactory, a social platform for collaborative product development, has been pretty busy this summer, first releasing its beta platform and then launching the Docubot Challenge. Now the startup, which was established last summer in Hong Kong, has more good news to share – during its keynote at the recent FAB15 conference in Egypt, Wikifactory officially introduced its new Projects.Fablabs.io site to the global Fab Labs community.

The conference, which was titled “Collectively Independent” and ended a few days ago, welcomed members of the over 1,600 fab labs around the world to Egypt, where they could meet to discuss, collaborate, and share about innovation, technology, and digital manufacturing. Fab labs provide people with a place to invent, create, and learn – they bring their ideas, and fab labs provide access to an environment with advanced technology, materials, and skills so that makers can get busy making.

Fablabs.io is the official international online community for fab labs – it’s an open, online social network where artists, educators, engineers, fabricators, and scientists, from over 40 countries and ranging in age from 5 to 75, can discuss their projects. Soon after Wikifactory was launched in 2018, the startup wondered how it might be able to support the Fablabs.io community.

“That’s why we started working on a new Projects site that uses Wikifactory’s infrastructure to allow Labs around the world to collaborate more effectively in product and hardware development,” Wikifactory wrote in a press release.

The platform’s new partnership with Fablabs.io, which was announced at FAB15 by Wikifactory co-founders Christina Rebel and Max Kampik, means that fab labs around the world are able to not only document, but also share their projects via the Wikifactory-powered Projects.Fablabs.io site. This new site will make it possible for global members of the fab lab community to collaborate in a communal online workspace, which combines “the essential tools for online product development” so that communities, teams, and individuals can receive support and also use functionalities, such as an issue tracker and a version controlled drive, to their best advantage.

But the new Projects.Fablabs.io site isn’t the only news that Wikifactory is sharing. The platform also recently launched some new features to help improve its workflow for users.

Wikifactory launched three new features that will make it even easier to collaborate with distributed product development teams – a Version Control System, Time-travel, and Conflict Resolution.

“Both from an insiders and an outsiders perspective, it’s extremely useful to be able to track the evolution of a Project. This has influenced the design of our Version Control System, inspired by git, but designed for a product development environment,” Wikifactory wrote in a press release.

“Moving away from the command line but considering the same methodology, whatever changes you make to a Project in your own session of Wikifactory remain a local save to your computer until you click Contribute. Every contribution must have a title and a description to send your local changes to the global servers, and when they do, they get logged in the History.”

Version Control, which is “all about managing contributions” between product developers, makes it easier to browse, visualize, and download older versions of your existing files, while the Time-travel feature lets you find a specific version of an older file – such as one before a change was made that you’d like to do unmake. Both of these features allow users to browse through all the versions of a file on Wikifactory.

The visual Conflict Resolution feature obviously lets users resolve conflicts that may arise during product development, such as when a file was deleted by one person while another was modifying it, or if two different collaborators changed the same 3D file. The new feature helps you figure out which changes should stay, and which should be ignored.

“After implementing the conflict-resolution flow, we know this will pave the way to develop functionalities such as forking, merging, branches etc., which are all things we want to add, as we believe they will improve open/distributed collaboration for product developers,” the press release states.

To learn more about these new features and any other developments, check out the Release Notes category on the Wikifactory forum.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

The post Wikifactory Partners with Fablabs.io, Introduces New Workflow Features appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: February 16, 2019

We’ve got business, events, software, and materials news for you in today’s 3D Printing News Briefs. MELD has introduced a new operator training course, and Protolabs is launching a range of secondary services. AMUG announced the keynote speakers for its upcoming conference, while the call has gone out for submissions to the 2019 Altair Enlighten Award. This week at SOLIDWORKS WORLD 2019, Stratasys introduced AdvancedFDM software for GrabCAD Print. Finally, a gold partner at America Makes has created an Ultem 9085 materials database for FDM 3D printing, and 3D MicroPrint is using a powder rheometer to push the limits of additive manufacturing.

MELD Manufacturing Offers Training Program

MELD Manufacturing Corporation is launching a new operator training program to teach participants how to operate its award-winning technology, which uses an innovative no-melt process to additively manufacture, repair, coat, and join metals and metal matrix composites. The 4-day courses will provide both classroom instruction and hands-on machine training, and attendees will also review the history of MELD’s development.

“This program creates certified MELDers and delivers the capacity to integrate and innovate with MELD. Our customers have raved about the elegance of the MELD process and the ease of training. We’re excited to offer more of these opportunities,” said MELD’s CEO Nanci Hardwick.

The size of the classes, which will be held at MELD’s Virginia headquarters, will be limited so that each attendee can have the maximum amount of machine time in order to become certified, so you should register ASAP.

Protolabs Launches Secondary Services in Europe

Protolabs is a digital manufacturing source for custom prototypes and low-volume production parts and offers all sorts of traditional and additive manufacturing services. This week, the company announced that it was introducing detailed measurement and inspection reporting, which will be only the first part of its newly launched in-house Secondary Services across Europe. These services will provide support for the company’s On-Demand manufacturing requirements, and will also help in launching more value-add secondary operations, like assembly and surface treatment, in the future.

“Our customers really value our rapid manufacturing services for low-volume parts and prototypes, but they now want the benefit of On-Demand manufacturing for production parts, which have higher expectations for sampling, measurement and process documentation,” said Stephen Dyson, Protolabs’ Special Operations Manager. “The marked increase from customers across all industries wanting to take advantage of the speed and flexibility of On-Demand manufacturing brings with it a desire to simplify the supply chain. We are offering Secondary Services to reduce the number of process steps that the customer has to manage, saving time and resources.”

Protolabs will hold a webinar for designers and engineers on February 28th as part of its Secondary Services launch.

AMUG Announces Keynote Speakers

L-R: Brian McLean, Brad Keselowski, Todd Grimm

The Additive Manufacturing Users Group (AMUG) recently announced who the keynote speakers will be for its 2019 conference, which will be held in Chicago from March 31st to April 4th. The conference, which will have nearly 200 presentations, workshops and hands-on training sessions, is designed for both novice and experienced additive manufacturing users, and the three keynote speakers will address the use of additive manufacturing in a variety of different applications. Brian McLean, the director of rapid prototype for LAIKA, will take attendees on a visual journey of how 3D printing has helped to redefine stop-motion animation, while NASCAR driver Brad Keselowski, the owner and founder of Keselowski Advanced Manufacturing (KAM), will share how technology such as 3D printing can help companies win the race. Finally, Todd Grimm, the president of T. A. Grimm & Associates, is returning to the conference as a keynote speaker again.

“We are extremely excited about our 2019 AMUG Conference keynote speakers,” said Gary Rabinovitz, the AMUG chairman and chair of its program committee. “They will provide a snapshot of the most transformative ideas shaping the AM industry today.”

2019 Altair Enlighten Award Submissions

Michigan-based technology company Altair, together with the Center for Automotive Research (CAR), are now taking submissions from around the world for the 2019 Enlighten Award, which is the only award from the automotive industry for dedicated lightweighting. The award will be presented in the categories of Full Vehicle, Module, Enabling Technology and The Future of Lightweighting, and winners will be recognized during the CAR Management Briefing Seminars (MBS), along with getting the chance to ring the Nasdaq stock market opening bell in New York. Suppliers and manufacturers can learn more about the criteria and submit an entry for the awards here.

“We are pleased to continue our collaboration with Altair because of their global leadership in solutions that produce the optimal balance between weight, performance and cost. This award helps drive innovation in lightweighting, which is critical to the success of e-mobility solutions,” said Carla Bailo, the President and CEO of CAR. “We can’t wait to see the key contributions the 2019 nominations will bring in new approaches to automotive engineering and design, contributing to further reductions in weight, fuel consumption, and emissions.”

Stratasys Announces AdvancedFDM Software for GrabCAD

At this week’s SOLIDWORKS World 2019 in Dallas, Stratasys introduced a new feature for its GrabCAD Print software that will remove more complexity from the design-to-3D print process. Advanced FDM will use intuitive model interaction to deliver lightweight yet strong and purpose-built parts to ensure design intent, and is available now via download with GrabCAD Print from versions 1.24 on up. The software feature will help users avoid long, frustrating CAD to STL conversions, so they can work in high fidelity and ramp up parts production, and it also features CAD-native build controls, so no one needs to manually generate complex toolpaths. Advanced FDM can automatically control build attributes, as well as calculate 3D print toolpaths, in order to streamline the process.

“For design and manufacturing engineers, one of the most frustrating processes is ‘dumbing down’ a CAD file to STL format – only to require subsequent re-injection of design intent into the STL printing process. This software is engineered to do away with this complexity, letting designers reduce iterations and design cycles – getting to a high-quality, realistic prototype and final part faster than ever before,” said Mark Walker, Lead Software Product Manager at Stratasys.

America Makes Ultem 9085 FDM Properties in Database

America Makes has announced that its gold-level member, Rapid Prototype + Manufacturing LLC. (rp+m), has created and delivered a complete, qualified database of material properties for the FDM 3D printing of high-performance ULTEM 9085 thermoplastic resin. This comprehensive database, which features processing parameters and both mechanical physical properties, was released to America Makes, and the rest of its membership community, in order to ensure the widespread use of the Type I certified material for 3D printed interior aircraft components. The database is available to the community through the America Makes Digital Storefront.

“The qualification of the ULTEM 9085 material and the establishment of the material properties database by the rp+m-led team are huge steps forward for AM, particularly within the aerospace and defense industries. On behalf of all of us at America Makes, I want to commend rp+m and its team for enabling the broad dissemination of the collective knowledge of ULTEM 9085 for the innovation of future part design,” said Rob Gorham, the Executive Director of America Makes. “The ability to use AM to produce parts with repeatable characteristics and consistent quality for certifiable manufacturing is a key factor to the increased adoption of AM within the multi-billion dollar aircraft interior parts segment.”

3D MicroPrint Identifying Ultra-Fine 3D Printing Powders

Additive Manufacturing Powder Samples

Germany company 3D MicroPrint uses 3D printing to produce complex metal parts on the micro-scale with its Micro Laser Sintering (MLS) technology, and announced that it is using the FT4 Powder Rheometer from UK-based Freeman Technology, which has over 15 years of experience in powder characterization and flow, in order to push the technology to its limits by identifying ultra-fine metal powders that will process efficiently. The system can differentiate raw powder materials, less than five microns in size, with the kinds of superior flow characteristics that are needed to produce accurate components using 3D MicroPrint’s Micro Laser Sintering (MLS) technology.

“With MLS we are essentially pushing standard AM towards its performance limits. To achieve precise control at the micro scale we spread powders in layers just a few microns thick before selectively fusing areas of the powder bed with a highly focused laser beam. The ultra-fine powders required typically behave quite differently to powders of > 25µm particle size,” explained Joachim Goebner, the CEO at 3D MicroPrint. “We therefore rely on the FT4 Powder Rheometer to identify materials which will perform effectively with our machines, with specified process parameters. Before we had the instrument selecting a suitable powder was essentially a matter of trial and error, a far less efficient approach.”

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

AMS 2019 Day 3: Keynote Speaker Lars Neumann from TRUMPF Discusses 3D Printed Medical Devices

At last week’s second annual Additive Manufacturing Strategies (AMS) summit, held in Boston and co-hosted by 3DPrint.com and SmarTech Markets Publishing, there were several firsts, including an exhibition floor, a startup showdown, dedicated workshops, and two separate tracks for medical and dental 3D printing. During the official opening of AMS 2019, “The Future of 3D Printing in Medicine and Dentistry,” Lawrence Gasman, the President of SmarTech Markets Publishing, said that while last year’s event had participants from roughly 11 countries, this year 24 countries, along with 27 US states, were represented.

The first keynote speaker at AMS 2019 was Dr. Ali Tinazli, the Head of Healthcare and Life Sciences Strategy for HP; he discussed the democratization of medicine and the implications of this. On the final day of the summit, Lars Neumann from German machine tool supplier TRUMPF took the stage for the final keynote presentation, titled “Integrating Additive Manufacturing Into Medical Device Production” and centering around 3D printed instruments and implants.

Neumann, who works at the company’s south German location, explained that TRUMPF is a family business, and that after 90 years in the manufacturing business, it has “quite a bit of a track record” in the medical field, noting examples like using lasers to cut stents.

“If there are any doctors here, typically I’m not talking to you…my presentation today is the production of these devices,” Neumann stated at the beginning, explained that he was mostly talking to the medical device manufacturers.

Neumann noted that in the previous days at the summit, attendees had seen and heard lots of numbers, and said that he was going to be “looking at growth, more than the actual numbers.”

Speaking of those numbers, he mentioned that growth rates for 3D printed medical devices were around 10-15%, which is “quite a significant growth year on year.” But when it comes to fusion devices, Neumann said that people in the industry believe that additive manufacturing will be used 100% in the future.

Some of the main things Neumann said we need to keep discussing to allow serial additive manufacturing to become economically viable for more implants and devices include system and process capability, cost per part, and quality assurance, as “driving up quality lowers cost.”

But how can we assure quality when it comes to 3D printing? Neumann said lots of input, such as CAD data, are necessary when attempting to fabricate a medical device that fulfills all of its defined specifications, since the regulations and standards (like ASTM and ISO) aren’t complete yet. While the lengthy old guard of quality assurance centered around manually maintaining the quality of inputs, like powder, during 3D printing and post-processing and then again checking the completed product, now that imaging equipment and sensors are being added to help ensure quality during the build, we can ideally intervene, if necessary, during the actual 3D printing process.

It’s equally as important to lower the cost per part. In manufacturing environments, such as factory floors, ideally the 3D printers should be working on builds around the clock, instead of having to take time for set-up and cleaning. Neumann said that to help ensure this notion, laser off times need to be reduced, and that all other processes, such as post-processing, should be moved to different locations so that the printers can just keep doing what they do.

In terms of system and process capability, Neumann asked the room what the industry could be doing better to arrive at not only different implants, but also more of them. His personal impression is that, since the additive manufacturing field is developing so quickly, process chain integration is one of the main topics at the moment, along with software, and that machine technology will need to be pushed again a few years down the road.

Neumann stated that in terms of additive manufacturing, the main medical device categories are:

  • standardized implants
  • personalized implants
  • medical instruments
  • non-implantable devices

He also noted what he called “three key advantages” for 3D printing in the medical field: mass personalization, which provides new treatment options; using porous structures to improve osseointegration; and cost-effective manufacturing, such as low- to mid-volume, less expensive materials, and the ability to create complex shapes. Neumann said that this last point is “slowly coming into focus,” because when it comes to medical 3D printing, hundreds of thousands of parts are not always needed, which can definitely help keep costs down.

Because of increased interest by medical device manufacturers to use 3D printing, Neumann believes that instrumentation as an application will definitely grow, and mentioned that about 100 3D printed medical devices are already FDA-approved.

Switching the focus to the metals used to 3D print many of these instruments and devices, Neumann said that while many people have been excited about titanium in recent years, new materials like cobalt chrome and stainless steel are the talk of the town at this point in time. With a nod to one of his previous points, he also brought up how preheating implants 3D printed with Ti64ELI can affect the overall quality of the final component by ensuring less distortion. Neumann said that more information on this will come from TRUMPF later in the year, but did note that in the future, it may no longer be necessary to use as much heat treatment, which also helps lower costs.

Finishing up, Neumann said that aerospace companies are the only ones that possess guidelines to follow when installing metal 3D printers, and that it would be helpful if this would eventually spread to other sectors as well, such as the medical field.

“I hope someday this norm is valid for all industries equally,” Neumann stated.

Some of the questions asked at the end of Neumann’s keynote were quite interesting. One person approached the mic and asked his opinion on the currently available simulation tools, and Neumann said that the software is interesting and seeing a lot of investment at the moment, as many companies, such as OEMs, that use 3D printing are running simulations ahead of nearly every component they’re manufacturing in order to predict defects early on. But, he also noted that the data coming from these simulation solutions has yet to be validated.

Another attendee mentioned again the demand for new, exotic materials in medical instrument 3D printing, and asked Neumann for any specific examples. While it may not sound exotic, he said that stainless steel is one material that many manufacturers can use without having to change the production or post-processing methods, meaning that re-certification won’t be required, so lead times will likely decrease.

Plans have already been laid in motion for the third annual Additive Manufacturing Strategies summit, which will be held from January 29-30, 2020 and will include a metal 3D printing track. To keep up to date on registration information and everything else for AMS 2020, sign up for our newsletter here.

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below.

[Images: Sarah Saunders]

AMS 2019 Day 2: Medical 3D Printing Keynote by HP’s Head of Healthcare and Life Sciences Strategy

Lawrence Gasman, SmarTech Markets Publishing

Our second annual Additive Manufacturing Strategies summit, held in Boston and co-hosted by SmarTech Markets Publishing, is in full swing after Tuesday’s two featured workshops. This year’s AMS event, “The Future of 3D Printing in Medicine and Dentistry,” now includes a track each for medical and dental 3D printing, along with a startup competition, an exhibition floor with 12 booths, and even more speakers.

Yesterday morning, Lawrence Gasman, the President of SmarTech Markets Publishing, officially opened the summit, and had some exciting news to share – while last year’s AMS had participants from roughly 11 countries, this year 24 countries, along with 27 US states, are represented. Gasman mentioned that the hope is for the AMS summit to be rooted in the entire healthcare industry, before introducing Dr. Ali Tinazli, the Head of Healthcare and Life Sciences Strategy for HP and the day’s keynote speaker.

Dr. Tinazli has been leading HP’s corporate-wide, global strategy for Healthcare and Life Sciences since 2015, and though he referred to himself as a “3D print novice,” spoke today about “3D Printing Going Mainstream for Health 4.0,” with the main theme centered around the democratization of medicine and the implications. He is currently working on a healthcare testing ecosystem made up of mobile diagnostics and small microfluidic parts, and, as a self-proclaimed fan of technology convergence, noted with admiration that an event such as AMS would not have been possible even a few years ago.

Dr. Ali Tinazli of HP

After giving a brief history of HP, which celebrates its 80th anniversary this year, and how it is “using technology to make a better future for everyone,” Dr. Tinazli explained why 3D printing excites him; the reasons include the fact that 3D printing is connecting HP’s core technology, can be used to customize products, and is also “the catalyst for the fourth industrial revolution” by enabling faster innovation. He noted that democratization is helping to make technologies, such as 3D printing, available to everyone.

Dr. Tinazli discussed blended reality, where the physical world tells us how to shape certain things and we then use this information to automate and digitize it. A good example of this is using CT scans to build medical devices and implants, which are then 3D printed and used on patients.

He noted that some specific megatrends (slow-changing, transformative, global trends), such as decentralized healthcare and an aging population, are indicating a transformation in life sciences, which, when paired with 3D printing, could create some major opportunities for disruption in healthcare.

3D printing is reinventing industries and “making the leap to factory production,” and Dr. Tinazli noted some of the economic justifications for adopting the technology, such as:

  • making objects at a faster speed, with less waste and low risk
  • ability to fabricate unique geometries on a massive scale
  • mass customization
  • scalable

While he noted that some of his favorite 3D printing topics are art and fashion (like me!), Dr. Tinazli said that healthcare is the oldest industry benefiting from the technology – current applications include skull patches, hearing aids, custom orthotics, prosthetics, insoles, and surgical planning.

He noted four classes of mainstream healthcare applications – orthodontics, dental prosthetics, hearing aids, and orthopedics – that see a combined 400,000 custom medical devices 3D printed per day…an impressive number, indeed.

Dr. Tinazli moved on to discuss some of the many innovative companies using 3D printing for medical applications, starting with the startup Smile Direct Club, which either delivers an impression kit directly to a customer’s home or has one of its remote SmileShops scan the teeth in order to fabricate custom dental aligners. Dr. Tinazli noted that dental is in an “interesting growth phase,” and also mentioned nivellipso, a Swiss company that uses HP’s MJF technology to 3D print dental molds.

One of Dr. Tinazli’s favorite examples is the custom earbud manufacturing solution that Formlabs debuted at CES 2018. He noted that the earbuds are made with the same technology and workflow as custom 3D printed hearing aids are, which is an excellent example of 3D printing solutions in the clinical world being applied to consumer products.

“The more I learn about new technologies, the more I think it’s about the user experience,” he stated.

[Image: UNYQ]

This was the perfect segue to the 3D printed UNYQ Align scoliosis brace, which is far more pleasant for teenage patients to wear for 24 hours than the traditional braces, which are typically heavy and far too hot.

Dr. Tinazli said, “User experience, even in medicine, neglected over the past decades, is getting better.”

Another example he brought up was HP’s FitStation platform, which is using 3D printing to deliver individualized, custom-fitting footwear and orthotics.

“Clinical applications can have an impact on the consumer,” Dr. Tinazli said.

The talk then moved on to point-of-care (POC) 3D printing, and how the use of 3D printed anatomical models before surgery can decrease the length of the operation, which in turn saves on cost and improves the patient’s experience and surgical outcome. This is where full-color 3D printing, which Dr. Tinazli called “a strong domain of HP,” can be very helpful.

He also touched on additional 3D printing applications that HP technology is being used to make, such as more comfortable cranial helmets for infants, prosthetics and sockets for braces, and eyewear.

Using the Jet Fusion 4210 3D printer, Dr. Tinazli said that it will only cost $700-800 for an entire build of 322 sunglass parts, which makes it possible to sell them “at a profit.”

In addition, the MJF 300/500 3D printer series is able to make sunglasses that have custom designs, like Minecraft-themed, and can even include QR codes to help lower the risk of counterfeiting.

Finally, Dr. Tinazli mentioned HP’s “latest baby: Metal Jet Fusion,” which was introduced in late 2018 and allows companies to “dive instantly into mass production.” Additionally, it can also be used for medical applications, such as 3D printing surgical devices and tools.

[Image: HP]

Then came the question and answer portion of the keynote. Someone asked what industries will be most immediately impacted by HP’s Metal Jet Fusion; Dr. Tinazli replied that HP is going after professional users in high value mass markets, like automotive and medical.

Another attendee asked about specific patient populations being looked at by HP.

“From 3D printing, we look at it as more of a B2B business, and it’s up to the companies we work with,” Dr. Tinazli answered. “We do not have any immediate exposure to patients.”

He expounded on this answer further during the next question, when a facial surgeon in the audience asked about the entire workflow of 3D printing in healthcare, in terms of training technicians and physicians to use the equipment to fabricate customized models, and if HP was doing anything to address the full spectrum of care, rather than just providing the 3D printer itself.

“We have all these internal debates about how deep we’re going into the service,” Dr. Tinazli answered, stating that the company could very easily find itself in the service business and competing with healthcare customers.

“That’s why we look at it as B2B. Otherwise we would be getting too close to our customers…definitely more lucrative, but presently we don’t do that.”

We’ll have more to share with you from AMS 2019, so stay tuned!

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Images: Sarah Saunders unless otherwise noted]