3DPOD Episode 12: Formalloy’s Melanie Lang: LMD Metal 3D Printing

This time we have a lively and fun discussion with Melanie Lang the Founder of Formalloy. Formalloy is a start up in the DED arena, a metal 3D printing technology that can be used to make large metal structures of a few meters or more. We spoke about how DED is being used, what the emerging applications are, Fuctionally graded materials, bimetallics, titanium, nickel superalloys and many more things. We hope you enjoy this episode.

Our episode about 3D Printing in space is here. The first podcast on going beyond PLA is here, our interview with Direct Dimensions CEO Michael Raphael is here, while our interview with design pioneer Janne Kyttanen is here. Our episode on bioprinting is here3D printing in medicine is here3D printed guns is here. Finally, here is the fourth industrial revolution episode, and all of them are here. You can find them on Spotify here.

The post 3DPOD Episode 12: Formalloy’s Melanie Lang: LMD Metal 3D Printing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Researchers Study the Microstructure of Laser Cladding

Distribution of crystallites in the cross-section of deposited droplets with different contact angle 10° (a) and 30° (b).

While metal additive manufacturing has plenty of benefits, it has its drawbacks as well. Two of those drawbacks are high production costs and often unpredictable failure of parts. Laser cladding (LC) is one commonly used method of metal 3D printing, but has an additional limitation that includes a narrow processing window. This is discussed in a paper entitled “On the role of capillary and thermo capillary phenomena on microstructure at laser cladding.”

“Direct numerical simulation (DNS) of heat-mass transfer during LC has proved to be a cost-effective method of searching for the optimal processing parameters which allows making a glance into this technology,” the researchers state. “Application of the DNS to test the troublesome regions that could be identified at the process planning stage can boost the quality and flexibility of direct fabrication.”

The researchers’ aim was to develop a coupled kinetic-hydrodynamic model of laser cladding for the microstructure simulation of the clad layer, taking into account the known contact angle of the melt and the substrate.

Cross-section at highspeed (a, c) and lowspeed (b, d) for wide (a, b) and narrow (c, d) powder jet

“The kinetic process is described by Kolmogorov‐Johnson–Mehl‐Avrami (KJMA) equation with non-uniform nucleation and growth rates,” the researchers continue. “The model allows investigating the spreading of molten powder onto a substrate with a different contact angle, to optimize and plan the LC process. The influence of contact angle on the main output parameters such as width, height and average crystalline size of the track is investigated. The model can account for oxidation, substrate roughness which is of great importance.”

The researchers simulated laser cladding by a non-scanning beam with coaxial nickel powder feeding, in order to study the influence of contact angle on the resulting microstructure. Substrates with a different wetting angle were used for that purpose. The powder was fed along with laser radiation on a cold substrate for 50 ms, forming a single drop. The laser radiation went off, the drop cooled and crystallization occurred.

The developed model, the researchers conclude, allows them to estimate the clad layer microstructure, taking into account the experimentally measured contact angle of the track and the substrate. The parameters of the substrate that influence the contact angle should be taken into account in the model.

Crystalline size distribution in a cross section of cladded track for two values of contact angle

“The spreading behavior of cladded tracks is shown for various processing conditions,” the researchers state. “The powder jet radius showed dissimilar response to the contact angle change depending on the comparison to the melt pool width. In the case of wide powder jet the increase of the contact angle decreases the track width and the catchment efficiency but the height is remained constant. The decrease of track width is accompanied with height increase in the case of narrow powder jet. The possibility of LC of tracks with the same geometric parameters and at the same time a different microstructure is determined. It is shown that an increase in the contact angle of the melt leads to an increase in the average size of the crystallites in the deposited layer. Results can be used for the process planning and optimization of LC.”

Authors of the paper include M.D. Khomenko and F. Kh. Mirzade.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

 

3D Printing News Briefs: August 31, 2018

Welcome to this month’s last edition of 3D Printing News Briefs! Today, in honor a new month starting tomorrow, we’re starting with stories about everything new. BEEVERYCREATIVE will soon launch a new 3D printer kit, while Fast Radius is opening a new headquarters and Thor3D welcomes a new CEO. Verashape is introducing the latest version of its SOFTSHAPER software, and Link3D launched a new additive manufacturing scheduling solution. Moving on from new things, Midwest Engineered Systems, an official KUKA partner, will be displaying its technology at IMTS 2018, and a company used its innovative laser cladding technology to restore a CNC spindle.

BEEVERYCREATIVE’s New 3D Printer Kit

Portuguese 3D printer manufacturer BEEVERYCREATIVE is getting ready to launch a new 3D printer DIY kit, and will present it publicly for the first time at the upcoming TCT Show 2018 in Birmingham. This is a big deal for the company, as it hasn’t introduced had a product launch for a new 3D printer since 2015; employees have been very busy working on the MELT project for the European Space Agency for the last two years, and are more than ready to introduce the new B2X300 3D printer kit.

BEEVERYCREATIVE conduct multiple studies before the launch, including market research on 3D printer user patterns and collecting quantitative and qualitative information from users about its helloBEEprusa 3D printer kits. The B2X300 is named for the company’s brand (B), its two extruders (2X), and its 300 x 200 x 300 mm print area (300), and was delivered to several beta testers this spring for testing and feedback. Aside from its build area, number of extruders, and the fact that it features auto bed leveling and trinamic drivers, we don’t know much about the 3D printer kit yet. But all will be revealed by mid-September.

Fast Radius Opening New Headquarters and AM Factory

The Fast Radius team, L-R: John Nanry, chief product officer; Bill King, chief scientist; Lou Rassey, CEO; and Pat McCusker, COO [Image: Manuel Martinez, Chicago Business]

3D printing solutions provider Fast Radius is scaling up its manufacturing footprint, and recently opened its new headquarters in Chicago’s West Loop, which features an advanced, industrial-grade 3D printing facility. This facility is home to extensive HP MultiJet Fusion technology, as well as what the company calls the largest Carbon production facility in the Western Hemisphere. This was a well-thought out location: the building of the Chicago-based Digital Manufacturing and Design Innovation Institute (DMDII) was where the company’s new CEO Lou Rassey first collaborated with several other Fast Radius executives, including Chief Scientist Bill King, PhD, Chief Product Officer John Nanry, and Enterprise Solutions Leader John Ramirez. The rest of the company’s executive team includes Vice President of Sales and Marketing Brian Simms and COO Pat McCusker.

Rassey said, “It was important to the Fast Radius team that we were headquartered in Chicago, as we are passionate about being a part of the next great industrial manufacturing renaissance in this city, the Midwest, and ultimately, the world.

“Pat, John, Bill, John and Brian form the perfect core team to grow Fast Radius as we build out our technology platform and global footprint to bring manufacturing innovation to the world at scale.”

Thor3D Welcomes New CEO

Anna Zevelyov

This week, Moscow-headquartered 3D scanner manufacturer Thor3D announced that it has appointed its very first Chief Executive Officer. The new CEO, Anna Zevelyov, is a company co-founder and a 3D printing market veteran who had been serving as Thor3D’s Sales Director; her long-time lieutenant, Vadim Fomichev, will now be taking on this role. Under Zevelyov’s leadership, the company will be focusing on R&D, with plans to release at least one new 3D scanner each year.

“Some history…the company was, until now, ruled by committee. Although periodically, this “collective-wisdom” approach was beneficial, over time we realized that a strict hierarchy and one person at the helm is needed,” Zevelyov wrote in a statement. “The Board of Directors took 6 months to consider whether to nominate a CEO and if yes, who that might be. After much debate about how this could change the culture of the company, the decision was made this month. I was elected unanimously, which, naturally, boosts confidence, as I take on this new challenge.

“I am honored and optimistic. My first priority will be R&D (after all, Thor3D is, first and foremost, a technology company). My aim will be to significantly improve our current technology and to introduce a new 3D scanner at least once a year (expect to hear big news before the end of the year). Another priority will be organization of our intellectual property. I anticipate filing a number of international patents over the next year to formalize the innovative work that has been done in the company over the previous months.”

New SOFTSHAPER Software Version

Verashape, which manufactures the VSHAPER line of 3D printers, has just introduced the latest version of its SOFTSHAPER software. Thanks to a license granted to the company by Siemens PLM Software last year, SOFTSHAPER 2019 is based on Parasolid Communicator. There are many improvements and new features in this latest version of SOFTSHAPER, including a technological process tree, detailed reports, and the ability to group layers and print manually adjusted supports.

“A huge simplification that SOFTSHAPER 2019 provides us with is the ability to print supports with higher density,” explained Seweryn Nitek, a Software Engineer at Verashape. “The density is higher only in the area of contact with the model. In other areas, the density of supports is selected in relation to the required stiffness. This saves time for printing supports, which are then removed by the user.”

Midwest Engineered Systems Displaying KUKA Technology at IMTS 2018

Two years ago at IMTS 2016 in Chicago, KUKA Robotics showcased how its robots integrate with 3D technology thanks to partnerships with companies like Midwest Engineered Systems (MWES), a leader in complex systems integration. MWES provides services such as robotic welding, machine tending, material handling, and automated production lines, but has become well-known in the last few years for its work in laser wire additive manufacturing. This technology is able to create very large parts, while also saving up to 90% of the material normally machined away.

“We’ve actually come up with a way way to print with metal using wire. Really what that does is allows you to print larger parts and it allows you to print them faster,” said Scott Woida, the President of MWES, in a video.

The company’s additive manufacturing system uses the hot wire process to preheat wire before it enters the molten pool. At the upcoming IMTS 2018, you can check out the MWES technology for yourself at KUKA’s Booth N-236200.

Restoring CNC Spindle with Laser Cladding

A company called Synergy Additive Manufacturing LLC (SAM), which claims to be one of the only turnkey jobshops to offer metalworking services like final machining, heat treating, metal forming, 3D CAD design, and 3D printing, also developed a laser cladding process is a more cost-effective alternative to hard chrome coatings. The company offers a 24 hour turnaround on the dimensional restoration of rotating components, like motor shafts and CNC spindles, using this technology.

In a new video, SAM demonstrated how its laser cladding method can be used to restore a CNC spindle. The technology offers a good metallurgical bond, and there is no chipping away or peeling once the restoration is complete. You can see this for yourself in the video below:

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below.