3D Printing Webinar and Virtual Event Roundup, June 28, 2020

This week is packed full with 3D printing webinars and virtual events, with four taking place Tuesday, and two each on Wednesday and Thursday.  We’ll tell you all about them below!

Digital Manufacturing Investor Day

First up, software provider Dyndrite will be hosting its first ever Digital Manufacturing Investor Day on Tuesday, June 30th, featuring both pre-recorded and live content. Investors and venture capital companies have been invited to hear lightning presentations by hardware and software startups from all around the world, and several industry investment firms will also give panel presentations. The advisors for the inaugural Digital Manufacturing Investor Day are Gradient Ventures, HP Tech Ventures, and The House Fund.

“This virtual event is an initiative to help link startups in the digital manufacturing space to investors in the industry. As supply chains have been recently disrupted and workforces have to remain distanced, so new digital manufacturing technology becomes even more critical as manufacturers figure out how to tackle these challenges.”

Register here.

Additive Manufacturing for Aircraft Interiors 

Also on June 30th, a webinar about 3D printed aerospace applications will take place from 9-10 am EDT. “Additive Manufacturing for Aircraft Interiors – doing the trick for the In-Service Market” will discuss the use of polymer 3D printed parts for future aircraft cabins, how the technology can save money and time, possible new business opportunities for Maintenance Repair and Overhaul Providers (MROs), and what issues still remain, such as certification, investments, and availability of the right raw materials. Stephan Keil, Director Industrialisation for AM Global, will moderate the discussion between panelists Markus Glasser, Senior Vice President EMEA, EOS; Vinu Vijayan, Global Business Development Manager – Aerospace, EOS; Frederic Becel, Design Manager, CVE, Innovation Leader Aircraft Modification Division, Air France; and Karl Bock, Principal Design Engineer, Aircraft Modification Team, P21J Design Organisation, Lufthansa Technik.

“A wide spreading of AM manufacturing also has the potential to significantly change the supply chain setup of the Aero industry, impacting small and large suppliers, as distributed manufacturing moves closer to becoming a reality. Furthermore, new business models for spare parts and part design data may emerge, along with new services, which brings a need to tackle challenges around IP and regulation.”

Register here.

nScrypt’s Cutting Edge of Digital Manufacturing Webinar

nScrypt is also holding a webinar on the 30th, titled “Pushing the Envelope of Digital Manufacturing.” The first part of the Cutting Edge Digital Manufacturing webinar series will take place at 1 pm ET on the 30th, and the second part will occur at the same time on July 7th. Panelists Mark Mirotznik, PhD, University of Delaware; Jing Wang, PhD, University of South Florida and Oregon State University; Devin MacKenzie, PhD, University of Washington, and Raymond C. Rumpf, PhD, University of Texas at El Paso, will discuss the future of direct digital manufacturing, covering topics like metamaterial use, permeating electronics in structures for control, sensing, and smart features, and going from a CAD file to a final, multimaterial electronic product in one build.

“JOIN YET ANOTHER DISTINGUISHED PANEL for part ONE of an in-depth discussion on the future of direct digital manufacturing by some of the premiere additive manufacturing universities in the country. The projects these universities are working on are solving problems with traditional antennas and printed circuit boards (PCBs).

Register here.

ACCIONA’s Concrete 3D Printing Webinar

The last June 30th webinar will be held by ACCIONA, called “Let’s Talk Concrete 3D Printing.” It will take a multidisciplinary approach when discussing the technology’s use in the value chain, “where Innovation, Academia, Design, Manufacturing and Industry join together for a broad analysis of the technology.

Speakers will be Alaa K. Ashmawy, PhD, P.E. Dean and Professor for the School of Engineering at the American University in Dubai; Sualp Ozel, Senior Product Manager at Autodesk; Fahmi Al Shawwa, the CEO of Immensa Additive Manufacturing; Carlos Egea, Manager 3D Printing, Skill Center at ACCIONA; and Luis Clemente, COO 3D Printing at ACCIONA. The webinar will take place at 8:30 am EST, and attendees can join here.

3D Systems Webinar Featuring VAULT

On Wednesday, July 1st, at 10:30 am EST, 3D Systems will be holding a live webinar, “Advanced Your Engineering and Equip Sales to Win Business with SLA,” featuring VAULT, which manufactures enclosures for tablets in the point-of-sale industry. The company integrated 3D Systems’ SLA technology into its process, and the 45-minute webinar will explain how SLA can be used at every stage of business. VAULT will share customer reactions to quality and service, in addition to the training and on-boarding process, and explain how companies can win new business by providing access to high-quality 3D printed parts.

“Gaining a new client is all about gaining their confidence. No matter how refined your sales pitch, nothing wins trust or business faster than immediately following through on your promises.

“Join our live web event featuring VAULT’s VP of Engineering, Quentin Forbes, to find out how in-house 3D printing with 3D Systems’ stereolithography is helping the company build its reputation and client base.”

Register here.

Webinar for New Metal 3D Printing Material

Also on July 1st, metallurgist expert Aubert & Duval will join Alloyed, formerly known as OxMet Technologies, in hosting a free webinar about ABD-900AM, a new nickel superalloy for metal additive manufacturing. When tested with laser powder bed fusion (LPBF) technology, the high-strength material offered improved manufacturability, as well as high creep and oxidation resistance, compared to common AM alloys. It also features ~99.9% density and is highly crack resistant. Adeline Riou, Global Sales Manager at Aubert & Duval, and Will Dick-Cleland, Additive Manufacturing Engineer at Alloyed, will give an overview of the material’s properties, along with several interesting case studies, during the 30-minute webinar.

“Designed for use at high temperatures up to 900°C / 1650°F, ABD®-900AM has been tailored for AM by Alloyed not just for high mechanical properties, but also for excellent printability. Compared with Ni718, ABD®‑900AM provides a minimum of 30% improvement in yield stress at temperatures >800°C and a creep temperature capability improvement by up to 150 o C – similar to alloy 939 and alloy 738.”

The webinar will begin at 11 am EST, and you can register here.

Stratasys Aerospace Webinar Series Continued

Stratasys will continue its new aerospace webinar series this Thursday, July 2nd, with “Value Proposition of AM to Airlines.” During this hour-long webinar, Chuan Ching Tan, General Manager, Additive Flight Solutions (AFS), will speak about several related topics, including when and where additive manufacturing can make its business case to airlines, use cases – especially regarding aircraft interiors – by AFS to airlines, and other issues to get past in order to speed adoption of the technology.

You’ll have to wake up early if you’re in my time zone – the webinar will take place at 4 am EDT. Register here.

VO Webinar: Coming of Age for Additive Manufacturing

Recently, Viaccess-Orca (VO), a global provider of advanced data solutions and digital content protection, joined the collaborative 3MF Consortium as a Founding Member. Now, it’s presenting a free 45-minute webinar with HP and Autodesk, also active members of the 3MF Consortium, about “Additive Manufacturing’s coming of age: the essential role of data security and standards.” The webinar, also held on July 2nd, will focus on the importance of data security and standards as the closed AM ecosystem moves to a more open future. Dr. Phil Reeves, Managing Director of Reeves Insight Ltd, will facilitate the discussion between speakers Scott White, Distinguished Technologist, 3D Software and Data, HP, Inc.; Martin Weismann, Principal Software Engineer for Autodesk; and Alain Nochimowski, Executive Vice President of Innovation at VO.

Learning objectives of the webinar will include why data standards are so important for the growth and deployment of the technology in the Industry 4.0 supply chain, how 3D CAD and AM hardware vendors can embrace both interoperability and data standards to benefit customers, what the 3D printing industry can learn about analytics, traceability, and data security from more mature industries, and the consortium’s newly released Secure Content specification. At the end, there will be a Question and Answer session, facilitated by Laura Griffiths, Deputy Group Editor at TCT. The webinar will take place at 10 am EST; register here.

Will you attend any of these events and webinars, or have news to share about future ones? Let us know! Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below.

The post 3D Printing Webinar and Virtual Event Roundup, June 28, 2020 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs, June 10, 2020: 3D Systems, nTopology, Jellypipe

We’re discussing an upcoming event and some business news in today’s 3D Printing News Briefs. 3D Systems is holding a virtual trade show next month. nTopology and Yamaichi have signed an agreement, and a 3D printing platform has announced the onboarding of Europe’s largest purchasing and marketing association for industrial B2B.

3D Systems Holding Virtual Trade Show

On Wednesday, July 8, 2020, 3D Systems will be holding an exclusive virtual trade show centered on helping manufacturers keep their competitive advantage by using digital manufacturing solutions to fix supply chain dependencies, streamline supplier distribution, reduce supply interruptions, and lower risk. By integrating both additive and subtractive technologies into the environment, businesses can improve their productivity and agility, and offer customers new innovations. 3D Systems’ own Phil Schultz, Executive Vice President, Operations, and Radhika Krishnan, Executive Vice President and General Manager – Software, will give the keynote address for the event.

“Phil Schultz and Radhika Krishnan outline the essence of agile manufacturing, explaining in practical terms how to transform your environment to deliver a digital end-to-end manufacturing workflow that is fit for today and perfect for tomorrow.”

The event will kick off at 9:30 am EST and, in addition to the keynote, will include live webinar presentations and a virtual exhibit hall. Register here. If you’re unavailable to attend on the day of, the virtual trade show will be available on demand for the 30 days following the event.

nTopology and Yamaichi Sign MoU

Software startup nTopology has signed a Memorandum of Understanding (MoU) with Yamaichi Special Steel (YSS) to bring its next-generation nTop software platform to Japan. YSS is part of the automotive and heavy industry manufacturing supply chain in Japan, and its additive division promotes 3D printing and DfAM in the aerospace, automotive, and medical industries. The two have set up a reseller and service agreement, where YSS will bring nTop to its Japanese customers, providing support and training to users. Then, the Cognitive Additive solution of YSS will be connected to the nTop platform, to help users predict cost and printability.

To kick off the partnership, the YSS Additive Manufacturing team used topology optimization to redesign a brake caliper. As the part is used in a high temperature and fatigue environment, YSS designed a TPMS-based heat exchanger for the caliper, and also added an oil circuit and shielding surfaces. The brake caliper was 3D printed out of aluminum alloy AlSi10 using laser powder bed fusion (L-PBF) technology.

Jellypipe Onboards PVH Future LAB and E/D/E

German 3D printing platform Jellypipe uses its Jellypipe Eco-system to help companies take their 3D business to the next level, and features a comprehensive marketplace and the largest 3D printing factory in the D-A-CH region. Now, it’s announced the onboarding of PVH Future LAB, an innovation platform for technology-driven business models, and Einkaufsbüro Deutscher Eisenhändler GmbH (E/D/E), which drives PVH and is the largest purchasing and marketing association for industrial B2B in Europe. Both will now connect to the Jellypipe Eco-system.

“With Jellypipe’s 3D ecosystem – the connection with 3D specialists and our partners is a most important step in the digital automation and supply of 3D printed parts,” said Thilo Brocksch and Frederik Diergarten, both General Managers at PVH FUTURE LAB GmbH. “We can now offer our customers a new and wide process range for 3D printed products.”

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

The post 3D Printing News Briefs, June 10, 2020: 3D Systems, nTopology, Jellypipe appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing Stalwarts: EOS

EOS was an early pioneer in laser powder bed fusion (PBF) technology and currently stands as a leader in the space, though there are an increasing number of entrants. The company was established by Hans Langer, who previously worked as the Director of European Operations at U.S. laser beam steering company General Scanning before founding EOS (Electro Optical Systems) in 1990.

The founder of EOS, Dr. Hans Langer.

To develop his concept for a laser-based 3D printing technology, Langer received venture capital funding from a former development manager at BMW in order to meet the auto giant’s needs for an SLA 3D printer. By 1991, he delivered the STEREOS 400 to BMW and began establishing a European footprint before releasing the STEREOS 600 and even turning a profit just a year later.

The German company continued to grow and attract international attention such that, in just its third year, EOS was sued by 3D Systems, the original inventor of SLA, for patent infringement. In an interesting move, Langer sold 75 percent of his shares to the Zeiss Optical Group, leaving Zeiss to deal with the lawsuit and Langer free to oversee the developing of its first laser sintering system, the EOSINT 350.

EOS then partnered with Electrolux RD (which it eventually acquired) to develop direct metal laser sintering (DMLS), resulting in the creation of the EOSINT M 160. In other words, over the course of just four years, EOS had developed SLA, SLS and DMLS technology, but it didn’t stop with just resins, thermoplastic powder, and metal powder. In 1995, the firm’s first sand 3D printer, the EOSINT S 350, based on its EOSINT P 350 plastic system, was launched for printing sand cores and molds for metal casting.

After Carl Zeiss Jena, of Zeiss Optical, left the business in 1997, Langer bought back the rest of his shares and ultimately sold off the STEREOS SLA line to 3D Systems, while taking over the global patenting rights for laser sintering.

EOS continued to develop its technology, becoming the first to create a laser sintering printer with two lasers for sand printing in 1996 and plastic in 2000.  In the process, the company also created new materials for SLS and DMLS, including glass-filled polyamides, copper, steel, aluminum filled polyamide, CobaltChrome, the world’s first flame-retardant SLS powder, and polyaryletherketone (PAEK) family powders as well.

EOS also implemented an interesting business model during this time, licensing its DMLS technology to Trumpf and Concept Laser (now owned by GE Additive), thus allowing for further proliferation of metal PBF.

Metal parts 3D-printed with Micro Laser Sintering.

Among other collaborations and innovations, the German firm partnered with Materialise, seeing SLS and DMLS attain greater adoption through its use in 3D printing service bureaus. This really signifies some of the first batch production deployed with 3D printing. EOS also worked with 3D-Micromac AG to create a process for 3D printing small metal parts with layers as fine as 1 µm, which is unheard of in metal PBF. EOS also partnered with Cookson Precious Metals Ltd on the PRECIOUS M 080 for printing precious metals, such as gold, for the jewelry industry.

Throughout this time, DMLS, along with other flavors of metal PBF, has increased in adoption and, though it as improved, we see manufacturers like EOS work on developing enhanced process monitoring and quality control techniques. EOS was awarded ISO 9001 certification in 1998, but it wasn’t until 2007 that the company launched its EOSTATE software for in-process quality assurance. This would herald a new era of working to develop repeatability and quality control within metal PBF that is still continuing to this day.

Since entering the market three decades ago, EOS has found itself surrounded by competitors developing their own takes on metal PBF and plastic sintering. Earlier in its history, Arcam came on the scene with electron beam melting while, more recently, Velo3D has released a highly controlled version of metal PBF that it claims ensures quality and repeatability, while also reducing post-processing. As for SLS, the biggest competitor on the market now is HP with Multi Jet Fusion technology (with High-Speed Sintering to be on the market any day now).

EOS clearly remains a leader in the 3D printing space, but one wonders what will come next for the company. Will it continue to jump ahead with some unforeseen innovation or become absorbed into the quickly evolving world of metal and plastic sintering?

The Integra P400 system from EOS, which the Vulcan Labs team will be working on.

EOS certainly seems to be aiming for the former as, most recently, it worked with Finnish firm Etteplan to actually embed electronics within a DMLS part, previously impossible with metal PBF. It also acquired Stratasys spin-out Vulcan Labs earlier in the year, which will be working on EOS’s Integra P400 system, an open and modular approach to PBF that presents a quite different architecture than EOS is known for. And the integration of Additive Works simulation software into its metal 3D printing workflow should keep it ahead of the game in terms of quality control. With no outside investors on board, EOS is 100% owned by the founder of the firm. The future is certainly looking bright for the founder and EOS.

The post 3D Printing Stalwarts: EOS appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Fraunhofer ILT: Making Tungsten Carbide-Cobalt Cutting Tools with LPBF 3D Printing

Obviously, the Fraunhofer Institute for Laser Technology ILT does a lot of work with lasers, and, in the same vein, with metal 3D printing processes that use lasers. Now, it’s teaming up with scientists from the Institute for Materials Applications in Mechanical Engineering IWM and the Laboratory for Machine Tools and Production Engineering WZL, both at RWTH Aachen University, to investigate laser processes for the 3D printing of cutting tools made of tungsten carbide-cobalt (WC-Co).

The new AiF project – “Additive Manufacturing of Machining Tools out of WC-Co – AM of WC-Co” – began on October 1st 2019 and will last for 30 months; funding is provided by the Otto von Guericke e.V. working group of industrial research associations.

Cutting tools made of WC-Co are very heat- and wear-resistant, which is what one generally wants in this type of application, but it’s not easy to use conventional methods of manufacturing to create them. Complex sintering processes are currently used, but it’s not ideal, as only a restricted amount of geometrical freedom is possible, and it’s expensive and difficult to introduce complex cooling structures into the tools as well.

The process development aims to generate a homogeneous, almost dense structure of the WC-Co-composite, as shown here in this SEM measurement. [Image: Institute for Materials Applications in Mechanical Engineering IWM, RWTH Aachen University]

One of the project goals is to create cutting tools with integrated complex cooling geometries in order to ensure longer tool life. That’s why the Aachen researchers are looking into Laser Powder Bed Fusion (LPBF) 3D printing for WC-Co cutting tool fabrication, which offers near-net-shape production for generation of cooling structures within these tools, and far more design freedom. This technology requires users to carefully choose their process and material parameters in order to create components with strength that’s comparable to what could be achieved with conventional manufacturing methods.

For the past few years, Fraunhofer ILT scientists have been researching a major problem in the LPBF process – temperature distribution in the part. Conventional systems slow down the cooling process with a heated base plate, but with LPBF, the metal powder is melted where the laser touches it and cools down quickly, which can cause cracks and tension.

Fraunhofer ILT has been working with adphos Innovative Technologies GmbH on this issue, and together the two created a system which uses a near-infrared (NIR) emitter to heat the component from above to over 800°C. This system is what Fraunhofer ILT and its fellow Aachen researchers are using to process tungsten carbide-cobalt material for cutting tools in the “AM of WC-Co” project.

Under the scope of the project, the researchers are investigating the process route all the way from powder formation and 3D printing to post-processing and testing the components. Together, they will qualify the materials and processes that will replace complex sintering processes in fabricating these cutting tools.

Preheating the machining plane with the NIR module significantly reduces stresses in the laser-manufactured component. [Image: Fraunhofer ILT]

3D printed WC-Co cutting tools will have a hardness comparable to those made with conventional manufacturing methods, but because of the cooling structures that the LPBF process can be used to create, they will have a longer service life. Additionally, the NIR emitter system developed by Fraunhofer ILT and adphos can lay the groundwork for processing refractory alloy systems in the future.

At formnext 2019, in Frankfurt from November 19-22, you can stop by the Fraunhofer Additive Manufacturing Alliance booth D51 in Hall 11 to learn more about the collaborative “AM of Wc-CO” project.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

[Source: Fraunhofer ILT]

The post Fraunhofer ILT: Making Tungsten Carbide-Cobalt Cutting Tools with LPBF 3D Printing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.